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CONTROL OF ERRORS IN THE COMPUTATION OF
MOMENTS OF RANKED DISCRETE VARIABLES*

EDWARD L. MELNICK"

Abstract. Most discrete probability functions do not admit closed forms for the moments of their
ranked variates. A computational method is proposed that allows error bounds to be set that are a function
of both truncation error and roundoff error.
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1. Introduction. Nonparametric statistics deals almost exclusively with order
statistics. Most testing procedures are based upon the moments of these statistics
which, in general, cannot be expressed in closed form. They require numerical
approximations. Such solutions generally contain errors in two areas" (1) errors
resulting from the mathematical formulation of the problem and (2) errors incurred
in finding the numerical solution (Ralston and Rabinowitz [5]). The first error type
occurs when the mathematical statement is an approximation to the actual problem,
for example, the replacement of an infinite process by a finite approximation. Roundoff
error represents the second type of error.

David [3, Chapt. 4] provides an excellent discussion of a number of computational
methods for computing moments when the underlying distribution is continuous. One
method assumes a strictly increasing cumulative distribution function and uses

Schwarz’s inequality to bound the moments of order statistics. Although this method
can also be applied to underlying discrete parents by approximating it with arbitrary

precision using strictly increasing continuous functions, roundoff error is introduced

with the calculation of the continuous functions. Related to this approach is a method

proposed by Sugiura [6] that provides bounds and approximations for means, variances

and covariances of order statistics based on orthogonal inverse expansions. This

method is not recommended for computing higher moments because of the resulting

formidable formulation of the truncation error bound and the extremely difficult

problem of constructing reasonable roundoff error bounds of the sequence of

calculated polynomials comprising the orthonormal system of equations. Another
method, first proposed by Pearson [4] and David and Johnson [2], is based on the

Taylor expansion of the inverse cumulative distribution function. This approach
does not appear to carry over to the area of discrete distributions since the differ-

ential calculus has many conveniences that the calculus of differences lacks; for
example, the inverse Taylor series approach has no simple counterpart in the calculus of
differences.

This paper presents a computational procedure for computing moments of ordered
variates from an underlying discrete distribution function by setting the truncation
error and a uniform roundott error bound. Let Xl:n-<-"’-<Xr:n-<’" <-X,: be an
ordered sample of observations from a discrete probability mass function f(x) and
corresponding cumulative distribution function

(1.1) F(k)= Y. f(x).
x=0
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The probability that the rth smallest of n ranked variates has the value k is
(tc) (l__V)n-rvr-1

(1.2) P(Xr:, k)
F-i fl(r, n r + 1)

dv,

where fl(p, q) is the beta function with parameters p and q. By definition,

F(k) r-l(1 1))n-r(1.3) E(Xtr:n k20 k’ !
v

.,F(k-1) fl(r, n --r + 1)
dr.

Since k takes integer values, it is easily shown that ([3, eq. (3.3.5)])

f’- or-l(1__ V)(1.4) E(Xr:n) ff"o J dv,
((r,n-r+l)

so that the first moment is a sum of incomplete beta-integrals. If the range of k is
finite, (1.4) is probably the best form for the computation of E(X,:n). For an infinite
range of variation, the series must be truncated at some point.

As in the continuous case, we have a simple relationship of the form

(1.5) (n r)E(Xt,.:N) nE(X’,.:,_I rE(X+:n), O<=r<n

(David [3]). Since all moments may be expressed as a linear combination of E(X’I:m)
and E(Xre:m), where m <= n, we concentrate our attention upon the moments of the
extreme order statistics X:, and X,:,, where

E(X:,) Y. kt[(1-F(k- 1))" -(1-F(k))"]
k=0

(1.6)

and

(1.7) E(X.:.)= Z k [F(k)"-(F(k-1)) ].
k=O

Despite their apparent simplicity, (1.6) and (1.7) are very difficult to use for general
n and t.

E(X:,,) and E(Xt,,..,). The first2. Control of errors in the computation of
theorem presents a bound on the truncation error incurred in the representation of
the tth moment of the largest order statistics by a finite approximation.

(2.1) IE(X:.)- Y’. k Pr (X.:. k)l<n ., ktf(k).
k=l n=m+l

Proof. Write the tth moment of the largest order statistic by truncating the series
after the ruth term as

(2.2) E(Xtn:n) . k Pr (X.:. k)+Rm(t),
k=l

where Rm (t) (the remainder after the ruth term) is given by

(2.3) Rm(t) Y’, k Pr (X,:, k).
k =m+l

Using the formula for the difference between the nth power of two quantities gives

(2.4) Rm(t)= 2 ktf(k) 2 fi(k)F"-l-i(k- l)
k=m+l i=0
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Since F(k)<- 1, it follows that

(2.5) R,,(t)<n kf(k) n kf(k)-Y kf(k)
k =m+l

The theorem is proved.
We now look at the control of roundott error. An error e in f(k) will produce

an error of modulus not greater than (k + 1)lel in F(k). Let

(2.6) Ek --(k + 1)1 I.
If/(k) is the computed value of F(k), then at worst

(2.7) -(k) F(k)+ Ek,

so that from (1.7) the computed value

(2.8) G(X:,,) Z k’[ff’(k)" -(.fi’(k- 1))"]

is subjected to roundoff error. Theorem 2 provides a bound for this error.
THEOREM 2.1

(2.9)
k=l k=l

Proofi Use the formula for the difference between the nth power of two quantities
to show

n-1

(2.10) I."(k)-F"(k)l l(k)-F(k)l Y .(k)F"--(k)
i=0

Since F(k)<_- 1, it follows that

(2.11) IP"(k)-F"(k)l <- nl.(k)-f(k)l <-- nEk.

Let

and rewrite the roundott error

D,(k)="(k)-F"(k),

2 k’[-"(k)--"(k 1)]- k’[F"(k)-F"(k 1)]
k=l k=l

(2.12)

2 k’[D.(k)-D,,(k- 1)]

m-1

m’D,(m)+ Y’. [k’-(k + 1)’]D,(k)
k=O

m-1

-<_ m’[D. (m)l + Y ID. (k)[[(k + 1)’ k’]
k=0

<=2m’(m+l)nlel.

The last line follows from (2.11). The theorem is proved.

The author is indebted to an anonymous referee for tightening the bound in this theorem.
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A similar result holds for the tth moment of the smallest order statistic. If Ec (X:,)
is the computed value of E(X:,) p 1 or n, then from Theorems 1 and 2

(2.13) [E(X:,)-E(X:.)l<=R,,(t)+2m’(m + 1)n]el.
Under the assumption that Y.k--1 k’f(k) can be calculated without roundoff, a

bound of the roundoff error in the calculation of Rm(t) can be obtained by noting
that the error in n Yk=l ktf(k) is bounded by nle[Y.k--1 k The resulting roundoff
error of R, (t) is of the same order of magnitude as found in Theorem 2.

By repeatedly applying (1.5) to the right-hand side of itself, recursive relations
[3, 3.4] are derived as

(2.14)
,=r

(-1)’E(X:’)

and

(2.15) E(Xt,.:,.,)=(-1)’’-r+l
i=n--r+l

(__1)i(i)(n_lr) E(X:i).

From these relationships and the moments of the extreme order statistics, moments
of the rth smallest of n ranked variates can be obtained from (2.14), if r> n-r + 1
(or from (2.15), if r<-_n-r+ 1). Thus, if the largest error in E(X..i), where r<=i<=n
is 161, the error in E(Xtr:,) could be as large as 2-(7)1al.

3. Example. Let XI:, _-<X2:, =<" _-<X,:, be a ranked sample of n independent
observations from the Poisson probability mass function

e-Xh k

(3.1) /(k)= k!
k=0,1,...,

0 elsewhere.

In the range n 1(1)10; a 1(1)10 and 1, 2, we have, for p 1 and n,

(3.2) IE(X’,,:.)-E(X’,,:.)l<=llOn y. e- 1Ok
m-1 --. + 2m’(m + l)n le

(the worst cases occurring when a 10, n 20, and 2). The remainder, Rm (2),
for the Poisson distribution is

Rm(2) <- n Y’, k2f(k) n , kZe-a
m+l m+l k!

(3.3)

)-n Y. e-xa Ak
m+l (k -2)!

+ e-
(k 2-11!

<_-n(h2+h) Pr (k_->m-1).

Thus, by setting [el 10-13 and rn 35, the resulting error is everywhere less than
2 x 10-7.

4. Concluding remarks. Many computational algorithms produce numerical solu-
tions by placing bounds on errors resulting from truncating series expansions. Rarely
is the accumulation of roundoff errors considered in the evaluation of the output.
One noticeable exception is the interesting paper by Aggarwal and Burgmeier [1] in
which an error model is developed that produces error bounds for evaluating computa-
tional roundoff errors. In our paper, a method for computing moments of ranked
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discrete variates is presented. The method is based on a recursive relationship between
the moments of the rth order statistic and the moments of the extreme order statistics.
Bounds on the estimated moments are constructed as a function of both truncation
error and computational roundoff errors. As m increases, the truncation error bound
decreases while the roundott error bound increases. When a larger value of m is
needed to obtain a negligible truncation error, high precision in the computations
(i.e., setting of lel) is required since the roundoff error is a function of rn t+l. Although
it may be possible to construct a set of tighter error bounds for different values of m,
such a procedure has not yet been developed. The proposed algorithm is a straightfor-
ward method that generates moments with any desired level of accuracy.

REFERENCES

[1] V. B. AGGARWAL AND J. W. BURGMEIER, A roundoff error model with applications to arithmetic
expressions, this Journal, 8 (1979), pp. 60-71.

[2] F. N. DAVID AND N. L. JOHNSON, Statistical treatment o] censored data, Biometrika, 41 (1954), pp.
228-240.

[3] H. A. DAVID, Order Statistics, John Wiley, New York, 1970.
[4] K. PEARSON, On the mean character and variance of a ranked individual and on the mean and variance

of the intervals between ranked individuals, Biometrika, 23 (1931), pp. 364-376.
[5] A. RALSTON AND P. RABINOWITZ, A First Course in Numerical Analysis, McGraw-Hill, New York,

1978.
[6] N. SUGIURA, On the orthogonal inverse expansion with an application to the moments of order statistics,

Osaka Math. J., 14 (1962), pp. 253-263.



SIAM J. ScI. STAT. COMPUT.
Vol. 3, No. 1, March 1982

() 1982 Society for Industrial and Applied Mathematics

0196-5204/82/0301-0002 $01.00/0

AN ADAPTIVE FINITE ELEMENT METHOD FOR INITIAL-BOUNDARY
VALUE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS*

STEPHEN F. DAVIS’ AND JOSEPH E. FLAHERTY

Abstract. A finite element method is developed to solve initial-boundary value problems for vector
systems of partial differential equations in one space dimension and time. The method automatically adapts
the computational mesh as the solution progresses in time and is, thus, able to follow and resolve relatively
sharp transitions such as mild boundary layers, shock layers or wave fronts. This permits an accurate
solution to be calculated with fewer mesh points than would be necessary with a uniform mesh.

The overall method contains two parts, a solution algorithm and a mesh selection algorithm. The
solution algorithm is a finite element-Galerkin method on trapezoidal space-time elements, using either
piecewise linear or cubic polynomial approximations, and the mesh selection algorithm builds upon similar
work for variable knot spline interpolation.

A computer code implementing these algorithms has been written and applied to a number of problems.
These computations confirm that the theoretical error estimates are attained and demonstrate the utility
of variable mesh methods for partial differential equations.

Key words, finite element methods, initial-boundary value problems, adaptive grids, moving elements,
partial differential equations

1. Introduction. In this paper we construct an adaptive grid finite element
procedure to find numerical solutions of M-dimensional vector systems of partial
differential equations having the form

(1.1) Lu := u, + f(x, t, u, ux) [D(x, t, U)Ux Ix O, 0 < x < a, > O,

subject to the initial and linear separated boundary conditions

(1.2) u(x, 0) u(x), 0=<x -<a,
Bu(0, t):= A(t)u(0, t) + Aa(t)u(0, t) b(t),

(1.3)
B2u(a,t):=A21(t)u(a,t)+A22(t)Ux(a,t)=b2(t), t>0.

There are kl initial boundary conditions at x 0 and k2 terminal boundary conditions
at x a. We are primarily concerned with solving diffusion problems where D is
positive definite and k + ka 2M; however, we will not restrict ourselves to this case,
but instead, we assume that conditions are specified so that (1.1)-(1.3) have an isolated
solution.

Problems of the above form arise in many applications which model problems
as diverse as heat conduction (cf. Friedman [18]), determining bacterial motion (cf.
Keller and Odell [28], [33]), combustion (cf. Kapila [27]), chemical reactions (cf. Fife
[16]), population dynamics (cf. Hoppensteadt [23]) and convecting flows (cf. Batchelor

* Received by the editors March 26, 1981, and in final form July 27, 1981. This research was sponsored
by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under grant
AFOSR 80-0192. Partial support for work performed under NASA contract NAS 15810 was also provided
while the second author was in residence at ICASE, NASA Langley Research Center.

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.
Present address: Ballistic Research Laboratory, U.S. Army Armament Research and Development Com-
mand, Aberdeen Proving Ground, Maryland 21005. This work was submitted in partial fulfillment of his
Ph.D. requirements at the Rensselaer Polytechnic Institute.

: Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181,
and Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23665.
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[4]). Therefore, a general purpose code to solve (1.1)-(1.3) numerically would be
extremely useful.

Many of the problems mentioned above have solutions which contain sharp
transitions such as boundary layers, shock layers or wave fronts. In order to resolve
such nonuniformities using a minimum number of mesh points, it is desirable to
concentrate the mesh within the transition layers. Since these transition layers can
move, it is all the more desirable for the mesh to adapt itself with the evolving solution.
To do this we develop methods that (i) discretize (1.1)-(1.3) on a nonuniform mesh
and (ii) determine the proper mesh point locations.

We discretize (1.1)-(1.3) using a finite element Galerkin method on trapezoidal
space-time elements. This approach is similar to that of Jamet and Bonnerot [6], [25],
and it was chosen because it is generally easier to generate high order approximations
to partial differential equations on a nonuniform mesh with finite element methods
than with finite difference methods. The accuracy and order of convergence of our
methods are analyzed in Davis [13] and are demonstrated experimentally in 4 of
this paper.

Adaptive mesh selection strategies typically involve some recomputation of the
solution. That is, an initial solution is computed on a coarse mesh, and this is used
to determine whether to add mesh points to some portion of the domain and redo
the calculation, redo the calculation using a more accurate method, redo the computa-
tion using some combination of these methods or accept the present computation.
Algorithms of this general type have been developed and successfully applied to
adaptive quadrature (cf., e.g., Rice [36] and Lyness and Kaganove [31]), two-point
boundary value problems (cf., e.g., Childs et al. [9]), elliptic boundary value problems
(cf., e.g., Carey [8] and Brandt [7]) and parabolic and hyperbolic problems (cf., e.g.,
Gropp [20], Berger et al. [5] and White [40]).

Primarily because of the expense involved in recomputing the solution of the
partial differential equations at possibly every time step, we have developed an
algorithm which initially places a fixed number of mesh points in optimal locations
and then attempts to move them so that their locations remain optimal. Algorithms
of this type have been used by Lawson [29], de Boor [14], [15] and Jupp [26] for
variable knot spline interpolation, and it is their work that motivated our mesh selection
algorithms.

A different approach to this problem was proposed by Miller and Miller [32] and
later extended by Galinas et al. [19]. They approximated the solution of parabolic
partial differential equations by piecewise linear polynomials where both the poly-
nomial coefficients and the mesh on which they were defined were unknown functions
of time. These functions were determined by minimizing the least squares residuals.
They found that the mesh points could coalesce in certain situations, and they avoided
this by adding a number of spring and damping terms as constraints to the equations.

One advantage of the above approach is that it readily extends to higher
dimensional problems. However, we are not convinced that it is necessary to couple
the solution and mesh selection methods. This can dramatically increase the size of
the discrete system without offering any corresponding increase in order of accuracy.
Furthermore, the entire solution procedure must halt if an acceptable mesh cannot
be calculated. Under the same circumstances, our methods can continue to compute
a solution on a suboptimal mesh. Since both methods are under development we have
not attempted any detailed comparisons.

In 2 of this paper we develop a finite element Galerkin approximation to
(1.1)-(1.3) using trapezoidal space-time elements. In 3 we describe a practical and
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efficient mesh selection procedure that approximately minimizes the L2-error of the
computed solution. In 4 we apply the method to a number of problems and discuss
the computed results. Finally, in 5 we present an overall discussion of this effort
and .some suggestions for future work.

2. Finite element formulation. We discretize (1.1)-(1.3) using a finite element-
Galerkin procedure. To this end, let $. be the strip

(2.1) S, := {(x, t)lO<=x <-a, t, <-t<-t,+l},

choose "test" or "weight" functions v(x, t)e C(S,), multiply (1.1) by v, integrate over
S, and integrate the time derivative and diffusive terms by parts to get

(2.2)

tn+l IOF(u, v):= {--U/)t +f(x, t, U, Ux)V + D(x,. t, U)UxVx} dx dt
tn

+ uv dx Duxv dt
tn tn

Equation (2.2) is called the Galerkin form of the problem, and any function u that
satisfies (2.1) and the initial and boundary conditions (1.2), (1.3) is called a "weak
solution."

We introduce a mesh {0 x’ < x2 <’" < Xu a} at t, and a different mesh
n+l n+l n+l{0 X < X2 <" < XN a} at t,+l. We connect the corresponding points

n+lx and x by straight lines, and consequently divide the strip S, into a set of N- 1
n+ltrapezoids. We let xi(t) denote the straight line connecting x and x and let Ti

denote the trapezoid with vertices (x’, t,,) (x" t,), (X n+l n+l
i+1, i+1, t,+l), (xi t,+l) (el. Fig. 1).

tit

x(t)
n+l n+l

0

n+l n+l
X

XI4.1

X

FIG. 1. Space-time discretization for the time step t. <- <- t. 1.

nl
X N
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We approximate u(x, t) on S, by U(x, t) ?/K (S,), which has the form

K

(2.3) U(x, t)= Y ci(t)qbi(x, t).
i=1

The "trial" functions bi(x, t), 1, 2,..., K, can be used to construct a basis for
o//K(S,). They are selected to be of class C(S,) and, in finite element methods, to
have small support. Particular choices of b are given in 2.1; herein, it suffices to
note that bi is nonzero only on Til LI T’ and that K must be at least N.

We determine U on S, by solving a discrete problem of the form

(2.4) PU(x, 0) Pu(x), n 0,

(2.) (u, v)= 0 Vv

(2.6) lxU(0, t,+a) Ix(t,+x), i2U(a, t,+) 12(t,+x).

Here o//. is a finite dimensional space of C(S,) functions that depends on the boundary
conditions (ef. 2.3); P is an interpolation operator (ef. 2.3); !, f, fl2, 2 are
approximations of B1, b, B2, b2 obtained by numerical integration (of. 2.3); and
’(U, v) is an approximation of F(U, v) obtained by evaluating the integrals in (2.2)
numerically (of. 2.2). Equations (2.5), (2.6) result in an MK-dimensional nonlinear
algebraic system for determining the Galerkin coordinates ei(t,+x), 1, 2,... K, in
terms of e(t,), 1, 2,. , K. Since e(0), 1, 2,. , K, are determined from the
initial conditions (2.4), (2.4-6) define a marching algorithm for determining U(x, t)
in successive strips Sn, n 0, 1,. .

If there were no boundary conditions, we would select i(x, t), 1, 2,..., K,
as a basis for 7/’:. This prescription has to be modified slightly for 1 and/or
K (cf. 2.3) since boundary conditions are generally imposed; however, it is still

appropriate to write F(U, v) as a sum of contributions from each trapezoid. Thus,

F(U, v)= {-Uvt +f(x, t, U, U)v +D(x, t, U)Uv} dx dt
i=x

(2.7)
u- [Ix’+1(’)t]t"+l [I,"+ t]+ Y. Uvd DUxvd =0 /v o//.:.
i=1 xi(t) t=tn x=0

Since the bases for both the trial and test spaces have small support, most of the
integrals in (2.7) will be zero. The algebraic system (2.5), (2.6) will be sparse, and
hence, it may be solved efficiently.

2.1. Selection of a basis. A simple way to construct a basis on trapezoidal
elements that satisfies the necessary continuity requirements and has small supports
to apply a local transformation that maps each trapezoid onto a rectangle. The inverse
of this transformation on T7 is

+1 "+-x’;)’+tx+ -x -x+a+x)x=x +(x" -x
2 2+ +(xi

(2.8)
t=t,+(t,+-t,)-.

It maps the rectangle

(2.9) R {(:, ’)1-1 <_- : _-< 1, 0 <_- " <- 1}

in the (, z)-plane onto T7 in the (x, y)-plane.
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We choose this basis so that i(x, t) is a function of s only on T’. To be specific,
we currently allow $i(x, t) to be either a piecewise linear or a piecewise Hermite cubic
polynomial in s on T’.

For piecewise linear approximations, we construct a basis in terms of the canonical
basis function

(2.10) (:)= 1-, _1<:<1=
2

by defining

(so), (x, t) T’,
(2.11) &i(x, t) (-), (x, t) TiC_l, 1, 2,..., K N,

0, otherwise.

Thus, the dimension of the trial space a//r is K N. Along the line xj(’) joining
and x’/ 1, we have

(2.12) (xj(’), t(z)) tu, 0 <_- z <_- 1,

where tu is the Kronecker delta. Using (2.3), this implies that

(2.13) e(t) U(-):= U(xi(-), t(-)).

Thus, since only and +1 are nonzero on T’, we have

(2.14) U(x, t) V,(r)() +U+(r)(-), (x, t)e

For piecewise cubic Hermite approximations, we construct a basis in terms of
the two canonical basis functions

(:) 1/4(1- )(2 + :), , (’) 1/4(1 + ’)(1- ’)a, 1_-< :_-< 1(2.15)

by defining

(:), (x, t)e T
(2.16a) 2i-(x, t)= (-:), (x, t)e T"__, i= 1, 2,..., N,

0, otherwise.

( (), (x,t)eTT,
(2.16b) 2i(x, t)= -X(-), (x, t). Tin_l, 1, 2,. ., N,

[ 0, otherwise.

Thus, the dimension K of the trial space is 2N.
We note that 2-(x, t) CI(Sn) with

(2.17a, b) 2i_(xi(z), t(z))= ’u,
but 2(x, t) C(S,) with

,_.(x(z), t(z)) 0,

.(x(z), t(z)) x(z)’(2.17c, d) 2i(x(z), t(z))= O,

The function xe(’) is easily computed from (2.8) as

(2.18) xe(z) =1/2(x" x’;)+1/2(x "+ "+
i+1-- i+1 --Xi --Xi+l q’xi

0_<_r_<-l.

if (x, t)e T’.
Thus, xe(z) is different on each trapezoid (unless the mesh is uniform and

rectangular) and .(x, t) jumps as x crosses x(z). However, using (2.3) and (2.17),
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we can make U(x, t) of class CI(Sn) by selecting

(2.19a) c2i_1(t) Ui(r):= U(xi(r), t(r)),

(2.19b) c2i(t) x(r)Ux, (r) := xt:(r)Ux(xi(r), t(r)).

Thus, on T’ we have

(2.20) U(x, t)= Ui(r)(j)+Ui+x(r)(-j)+Ux,(r)x(r)(tj)-U,+l(r)x(r)(-tj).

2.2. Numerical integration. Ignoring the boundary conditions for the moment,
we choose v -b.(x, t) according to either (2.11) or (2.16) and use (2.8) to transform
(2.7) to

where

Ii(U’ t)= I0 I_l {-Uvjt+f(x,t,U,Utjx)V
(2.22a)

r=O

t, U)Uoxt
x=a,=l

(2.22b) IB(U, v)= f, D(x, dr
ao =o,5

The functions ’t, x, xe, t, and [JI, the Jacobian of the transformation, can be
computed from (2.8).

In order to complete the specification of our numerical method, we need to select
quadrature rules for evaluating the integrals in (2.22). We use the trapezoidal rule to
evaluate the r integrals and a three point Gauss-Legendre rule (cf. Abramowitz and
Stegun [1, Chap. 25]) to evaluate the " integrals. The latter was chosen because it is
known (el. Strang and Fix [38]) to have the same order discretization error as our
finite element method, with cubic approximations and the exact integration of (2.22).
At present, we also use the three point Gauss-Legendre rule for linear approximations
although it is more accurate than necessary in this case and, therefore, somewhat
inefficient.

Upon use of the above mentioned quadrature rules, the equations (2.21) become
N-1

(2.23) ’(U, 4.) i(U,b.)-B(U,b.)=0, ]=1,2,...,K,
i=1

where i and n denote the approximations of (2.22) that are obtained by numerical
integration.

2.3. Initial and boundary conditions. Solution technique. The solution U is
determined on Sn by solving (2.23) together with the initial and boundary conditions
(2.4) and (2.6), respectively. We satisfy the initial conditions (and implicitly define
the interpolation operator P of (2.4)) by requiring

(2.24a) U/ U0(X/), 1, 2,’ ", N,

for both linear and cubic approximations, and additionally

(2.24b) Uo o=Ux(Xi), i=1 2,... NXi

N-1

(2.21) F(U, bj) Y’. Ii(U, <b.)-l.(U, b) 0, j 1, 2," ", K,
i=l
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for cubic approximations. Here

(2.25) U’:= U(x’, t,), U" := Ux(x, t,).xi

We obtain the approximate boundary conditions (2.6) by substituting (2.3) into
(1.3), integrating the resulting equation from tn to tn/l and evaluating the integrals
by the trapezoidal rule. Each boundary condition is associated with a particular partial
differential equation in the vector system. The test space rK is modified by setting
the test functions bl and bv (for linear approximations) or b2r-1 (for cubic approxima-
tions) equal to zero for those partial differential equations associated with boundary
conditions. This has the effect of replacing the Galerkin approximation of a partial
differential equation at either x--0 or x a by its corresponding approximate
boundary condition.

The system (2.6), (2.23) is a nonlinear algebraic system for determining
1, 2,...,N, for hnear’ approximations" or U+, Ux,’+, t=" 1, 2,..., N, for cubic

approximations given the same information at t,. We solve this nonlinear system
by Newton’s method, which requires the computation of the Jacobian of the vector
IF(U, qt), F(U, b2), , F(U, br)]T with respect to [U "+11 |]’n+12 UV+1T] for

rrvn+l .,rn+l ln/l lln+l l.n+l l-n+l’llinear approximations or LU ,ux ,,2 ,,, ,’’’,,n ,, j for cubic
approximations. The Jacobian will be block tridiagonal because of the local nature
of b. The elements in the ith block of rows will be the M M matrices

(2.26a)
0F(U, i)
0U+

j=i-l,i,i+l,

for linear approximations and the 2M x 2M matrices

F.0F(U___z, _2i--_1) 0F(U, 2i--1;
OU]+ OUx(2.26b)

| 0F(U, 6,) OF(U, 6z) i i- 1, i, + 1,

for cubic approximations. The elements of (2.26) are obtained from (2.22, 23) in a
relatively straightforward manner, but their computation requires users of our code
to supply subroutines that define t.(x, t, n, u), t.. (x, t, n, n,)and D.(x, t, u). Subroutines
that define fix, t, , n,) and D(x, t, u) must, of course, also be supplied. We calculate
and factor the Jacobian once per time step and use U(x, t,) as an initial guess or
U(x, t,+). The linearized Newton system is solved by an efficient block tridiagonal
algorithm that uses pivoting both within and outside of blocks (eL Davis [13]).
Generally, two iterations are performed per time step.

3. Adaptive mesh selection strategy. In 2 we developed a finite element method
to obtain numerical solutions to systems of partial differential equations on nonuniform
trapezoidal grids. In this section we construct an algorithm to select a grid at
so that the L2-norm of the error at t,+ is approximately minimized. This algorithm
builds upon the work of de Boor [14], Lawson [29] and Jupp [26] on variable knot
spline interpolation.

For most of this section we will be discussing approximations at a single time
level, say t,, so whenever there is no possibility of confusion we omit the n
superscript on x7 and U and suppress the dependence when writing u(x, t). We
also present the development for scalar functions u and indicate the extensions to
vector functions in 3.2.
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It is well known (cf. [12], [38], [39]) that the errors in finite element-Galerkin
methods for problems like (1.1-3) satisfy estimates of the form

(3.1) Ilu UIIL= <-- Cllu UIIL=,
where PU e q/r interpolates u. Thus, the error in the solution of the partial differential
equation is bounded by an interpolation error. The following result (cf., e.g., Pereyra
and Sewell [34]) indicates how to minimize this interpolation error for piecewise
polynomial interpolants.

LEMMA. Let IIv := {0 Xl < x2 <" ( XN a} be a partition of [0, a] into N- 1
subintervals, and let u(x) C/+a[0, a]. The piecewise polynomial of degree on (xi, Xi/l),

1, 2, .., N- 1, that interpolates to u on IIr has minimal L2-error when the knots
xi, 2, 3, ., N- 1, are chosen such that

+a (+a(i)[ E, 1,2, ,N 1,(3.2) hi lu
where u (l) is the/th derivative of u with respect to x, i (xi, xi/a), E is a constant and

(3.3) hi Xi+l-Xi.

The lemma states that the interpolation error is minimized by selecting the
/+1 (l+partition in such a way that the quantity hi lu a)(:i)[ is equidistributed. Considerable

success has been achieved by using this result to implement adaptive grid algorithms
for two-point boundary value problems (cf. Lentini and Pereyra [30], Ascher,
Christiansen and Russell [2] or Russell and Christiansen [37]). Nevertheless, some
practical difficulties still remain, and we discuss these and our solutions to them below.

Rather than work with (3.2) directly, we follow Lawson [29] and Jupp [26] and
express (3.2) in the form

(3.4) pi:=hi+l/hi=[lu(l+l)(i)/u(l+l)(i+l)[]1/(l+l), i= 1, 2,... ,N-2,

where 1 for piecewise linear and 3 for piecewise cubic approximations.
In addition to (3.4), we impose the constraint that

(3.5) ha + h2 +" + hN-1 XN --X1.

This can be expressed in terms of the pi’s by defining

(3.6) z := 1 + (Pl) + (Pa P2) + (Pa P2P3) +’" + (PlPEP3’’ PN-2)

and observing that

hi + h2 + h3 +" + hr-a Xr(3.7) z .
ha ha

Equations (3.3), (3.4), (3.6), (3.7) permit us to determine hi, 1, 2,. ., N- 1,
and xi, 1, 2,..., N, in terms of u (+a) without an explicit determination of E.

Of course, u (l/a) is unknown and must be approximated by Ul/1. The finite
element procedure provides us with an approximate solution U and, for cubics, an
approximate first derivative Ux. However, (3.4) requires a knowledge of second
derivatives for linear approximations and fourth derivatives for cubic approximations.
This situation typically arises in adaptive mesh algorithms, and it is usually resolved
by using finite difference approximations for the necessary higher derivatives.

De Boor [14] used finite difference approximations to choose mesh points for
the solution of two-point boundary value problems by assuming that the (l + 1)st
derivative was constant on each subinterval. We modify this scheme slightly by
assuming that U(l/a) is linear on each subinterval and takes on the following values
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at the nodes:

(3.8a) u(l/l)(xi)

where

(3.8b)

We use the approximation

h2+hl
mull)3

lr(l)
/2 At.., i_I/2+

hi-l+ hi-2 hi + hi-1’
2AU3/2

hN-1 + hN-2’

]r r(l) ull)A/’/!/) ’-- (.. i+1

(3.9a) U’i-1/2

for linear polynomials and

hi-1

i=3,4,... ,N-I,

12(U/_a Ug) 6(Ux,_x + Ux,)(3.9b) rr,,
t i-1/2 -h 3

i-1 h 2i-
for cubic polynomials.

We note that Pi becomes infinite or indeterminate when u(l+l)(i)- 0 (cf. (3.4));
hence, we can expect numerical difficulties when ul/a)(x) is small on any subinterval.
Indeed, numerical experiments have shown that the mesh becomes very sensitive to
small perturbations whenever ul/)(x) is of the same order of magnitude as the
discretization error in the computed solution U.

We combat this problem by imposing a lower bound on ]U+l(x)[. Thus, we let
At, (t,+ t,) and h a/N denote the current time step and the average mesh spacing,
respectively, and for linear approximations, we calculate U"(xi)[ as the maximum of
the value computed by (3.8), (3.9) and max (AtZ/h 2, ha), while for cubic approxima-
tions, we calculate U()(x)[ as the maximum of the value computed by (3.8, 9) and
12 max (At/h, h z) + 6 max (At4/h 3, h2). These limits were determined empirically.
They are small enough so that they do not affect the mesh adaption procedure when
U(l+a)(x) is not small but large enough to avoid the numerical difficulties caused by
vanishing values of U(I+I)(x). Observe that if u(l+l)(x) is uniformly small on [0, a]
our limits assure that the solution of (3.3, 4, 6, 7) is a uniform mesh, as it should be
in this case.

The discussion, thus far, has concerned the computation of an optimal grid at a
time level tn where the solution U has already been computed. We would also like
to estimate an optimal grid at time level t,/l prior to computing the solution there.
This can be done by extrapolating the optimal grids computed at a number of previous
time levels to t,/a. It was somewhat surprising that numerical experiments seemed to
favor zero order extrapolation; i.e., the optimal grid computed at time level t, is used
at time level t,/l. Multilevel extrapolation consistently overestimated the distance
that a mesh point should move in one time step and then overcorrected this error in
the next time step. In some cases this caused the mesh to oscillate wildly when in fact
the solution changed very little. When we simply extrapolated the optimal mesh
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determined at the previous time level, it tended to follow the solution even when
rapidly moving fronts were present.

It is easy to show that the mesh selection strategy (3.3, 4, 5, 6) maintains the
knot ordering so that no two mesh points can cross. It does not, however, prohibit
severely distorted trapezoidal elements. Ciarlet and Raviart [12] and Babuska and
Aziz [3] have studied the effect of element distortion on the accuracy of the finite
element method. They have shown that the error obtained when computing on
trapezoidal elements is a multiple of the error obtained when computing on rectangular
elements. The multiplicative factor is proportional to a power of the magnitude of
the derivatives of the transformation (2.8). Therefore, we must control the magnitude
of these derivatives in order to maintain acceptable accuracy. We let

n+l
Xi --Xi(3.10) h--Xi+l-Xi, At=t+l-t, tanto/=

At
Hence, O) is the angle between the line xi(t) and the positive axis.

Differentiating (2.8) and using (3.10), we find
n+lhi +z(hi -hi)

X 2

[ (tan (.Oi+ -tan toi)(s + 1)](3.11) x At, tan toi +
2

re=0, t=At,.
n+lSince the magnitudes of h and h are controlled by the bounds that we

imposed on u(/l and At is prescribed, we can limit the magnitude of the derivatives
in (3.11) by controlling the growth of Itan o1. We found that the condition

3"
(3 12) max [(,oil <--

l<--i<=N 8
worked well in practice.

3.1. Mesh selection algorithm. In this section we discuss some details of a mesh
selection algorithm based on the discussion of the previous section. The first algorithm
uses the finite element solution U(x, t), calculated on the mesh x ’, 1, 2, ., N.
and (3.3, 4, 6, 7) to find a new mesh at t, that satisfies the optimality condition
(3.2). This is the mesh that should have been used to calculate U(x, t). Instead, we
use it in the second algorithm to estimate an optimal mesh at t,/x.

The difficulty in solving (3.3), (3.4), (3.6), (3.7) for the optimal mesh is that these
equations are nonlinear and must be solved iteratively. We use a relaxation scheme
that is similar to one which has been analyzed by Isaacson and Keller [24, Chap. 3].
They give necessary convergence criteria, but, we chose not to incorporate these into
our algorithm because they require too much additional computation. The following
algorithm, which calculates the relaxation parameter heuristically, has not failed to
converge in any of our tests.

(0)1. Set the relaxation parameter f:= 1, and let x :=xi, 1, 2,...,N, be an
initial guess for the optimal mesh. Calculate

:= (x x x >),
z (1) := z + 2e,

,:= 1,
where e is a convergence tolerance.
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2. Compute

U(I+I)(xI)), 1, 2,’’’, N,

using (3.8), (3.9).
3. While ]z (v)- z (v+a)] > e or u _-< Pmax do

4. Calculate U(+)(xlV-)), 1, 2,. , N, by linear interpolation of
UTM) (x(O) ), i- 1, 2,...,N. Calculate

U(t+l)tx(V-) /(t+)Plv):=lU(l+x)(xl:xx))/ i+2 )1 i=1,2,...,N-2

and
(v),., (v)(v):= 1 +(p]V))+(p]V)pV))+. .+(pa ez P)--z).

5. Ifu>lthen
If 12 (v)- z(V-1) _-> Iz (v-)- z(V-2) then f := 1q/2.

6. Calculate
h- := (x- _x.-x)/(",
X :-" :"- X

(v-l)x := ,k7 := x,
^(v) (v)
Xi+l :’- Xi + hi

(v). (v)hi+, := hlV)pi 1, 2,"" ,N-2,

Xi+l :-- [’i+1 + (1- fl)xl
z(-) := (x -x)/(x -x"),

7. u:= u+l.
For vector systems we need only to change the definition of p v) used in step 3. We used

M
(v) /- ]-(/+1) (v-1

Pi := [,._,j (X i+1 ))/,,..]./.(/+1) (Xi+2)[1/(l+l),
/=1

where U. is the/’th component of U.
After we compute a convergent mesh, x =xi i=l,2,...,N, weperform

the following:
1. Compute

AXma max x
2<i<N-1

2. If AXmax < Atn tan (3zr/8),
then AXfix := AXmax
else AXfix :-- Atn tan (3r/8).

3. Compute corrected mesh xn+x as

Xi
n+l :-’- Xi "b (+1 --Xin)AXmax/AXfix i=2,3,’" ,N-1.

Steps 2-3 prevent the elements from becoming too distorted.
The algorithms contain several approximations and heuristic procedures. Deriva-

tives are estimated by differences and are assumed to vary linearly between mesh
points. Zero order extrapolation was used to predict optimal grids at subsequent time
levels. Grids were restrained to prevent severe element distortion. Even with these
approximations, the mesh selection algorithms performed satisfactorily on all test
examples that we considered. In addition, we note that Rheinboldt [35] has shown
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that an order A error in the placement of the optimal mesh only produces an order
A2 change in the computed solution. Thus, it suffices to be only close to the optimal
mesh in order to reap its benefits.

4. Computation results. In this section we examine the performance of our
method on four problems which are graded in difficulty such that each one exercises
an additional facet of the method. The following norms are used to evaluate the
performance of our method on examples where exact solutions are known.

(4.1a) Ile(t)lL :- max [e(xi, t)l :- max Ill(Xi, t)- U(xi, t)lx:
<=i<_N <_i<=N

(4.1b) hi 2Ile(t)ll= :- (le(x/, t)l / le(xi+l, t)l),

where

(4.1c) Ivi:- max [vkl.
l<_k<=M

Example 1.

(4.2)

2

Ut=() Uxx, O<X<I, t>O,

u (x, 0) sin 7rx, u (0, t) u (1, t) 0.

1.0 x I0"s-

L2

l.Ox I0"’

I
I;

I

I
I

I
I, i

/

0 /t : 0.05
El : 0.05

: 0.01
) : 0.005

1.0 x I0"
0.01 0.05 0.I

h
FZG. 2. L2-error vs. h for Example computed on uniform meshes with linear approximations. The

dotted line connects points ]’or which At h.
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The exact solution is

u (x, t) e-’ sin rx.

Analysis presented in [13] indicates that the finite element method described in
2 would have L2-error of O(h2)+ O(At2), with linear elements and O(h4)+ O(At2)

with cubic elements on a uniform spacial mesh of width h and a uniform time step
of duration At. We created this simple constant coefficient example to verify that these
errors are actually attained. Figures 2 and 3 present plots of the L2-error at t= 1 as
a function of h for linear and cubic approximations, respectively.

The analysis of [13] predicts that the points on Fig. 2 for which At h, and the
points in Fig. 3, for which At h2, should lie on straight lines having slopes 2 and 4,
respectively. These lines are shown confirming that the theoretical error bounds are
actually attained.

Example 2.

(4.3a) ut trUxx +f(x), 0 < x < 1, > O, tr > O.

The initial conditions, boundary conditions and source f are chosen so that the exact
solution is

(4.3b) u (x, t) tanh (rl(x 1) + rat).

The solution (4.3b) is a wave that travels in the negative x-direction when rl and
r2 are positive. The values rl and r2 determine the steepness of the wave and its speed

1.0 x I0"

1.0 x I0"

l.Ox I0"

&t=0.5

I
!

o0 !
I
0

.0051/
.0025

0
I
I
I
I
I

I

1.0 x I0"z
.05 .I0 .50 1.0

h
FIG. 3. L2-error vs. h for Example computed on uniform meshes with cubic approximations. The dotted

line connects points for which At h2.
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of propagation. Thus, the problem can be made more or less difficult by adjusting rl
and r2.

We created this problem to study the effectiveness of our adaptive mesh algorithm
at concentrating grid points in transition regions, following moving fronts and reducing
errors below those of uniform grid calculations.

We first solve problem (4.2) with rl r2 5, uniform time steps of At 0.01, 10
elements per time step and linear approximations. The mesh computed by our adaptive
mesh algorithm is shown in Fig. 4. The grid points are concentrated in the region of

2.0

0
0 0.2 0.4 0.6 0,8 1.0

FIG. 4. Mesh selected for Example 2 with rl r2 5, uniform time steps of At =0.1, N 10 and linear
approximations.

maximum curvature and move to the left with the wave. As the wave front passes
out of the domain and Uxx becomes small, the grid points move toward a uniform
distribution. It is clear that the grid adapts to the solution and follows its progress.

As a somewhat more difficult problem, we solve (4.3a) with initial conditions,
boundary conditions and forcing function chosen so that the solution is given by (4.3b)
with r r2 100. The wave front is much steeper than in the previous test of (4.3).

In Table 1 we present a comparison at 1 of the results of computation using
linear approximations on a variety of uniform and variably spaced meshes. These
results are somewhat disappointing. At best, the mesh moving scheme improves the
accuracy of the solution only slightly. The improvement is greater when At is small,
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TABLE
Results of computations at for Example 2 with rl r2 100 using linear approximations

on uniform and variably spaced grids.

N

10

20

40

100

At

0.1
0.05
0.01
0.1
0.05
0.01
0.025
0.01
0.01

Uniform spacing

0.168
1.107
0.146
0.365
0.177
0.768
0.367
0.342
0.701

E-1
E-1
E-1
E-2

0.137
1.708
0.254
1.391
0.392
0.226
0.697
0.158
0.703

E-1

Variable spacing

0.459
0.492
0.121
0.567
0.155
0.166
0.348
0.106
0.493
0.144

E-1
E-1
E-1
E-2
E-2

1.346
0.949
0.340
1.00
0.746
0.870
0.565
0.105
0.158
0.275

and in some cases, when At is large, the uniform mesh is more accurate. A closer
examination explains these results and reveals something about the nature of this
mesh moving scheme.

Table 1 shows that the solution of this problem was not computed accurately
with either a uniform or a variable mesh. This can be explained by examining the
time evolution of the solution at a fixed value of x, say x*. The solution is approximately
given by -1 until the time when the wave reaches the point x*. It then jumps suddenly
to a value near 1. If the time step At is too large to resolve this transition, we would
expect large errors in the vicinity of the wave. The solid curve in Fig. 5 confirms this

2.0

lel xO

0.8-

0.4

o
0 .20 .40 .60 .80 .0

x

FIG 5. Local error at t= 1.0 for Example 2 with rl rE 100, uniform time steps of At 0.01, N 20

and linear approximations. The solid curve was computed on a fixed uniform mesh, the broken curve on a

variable mesh.
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prediction. The mesh selection procedure misinterprets these errors as being part of
the solution and places too many points in the region outside of the wave front. Thus,
a suboptimal mesh is selected and the expected decrease in the error is not obtained.
When At becomes small enough to adequately resolve the passing wave, the mesh
selection procedure does improve the accuracy of the solution (cf. Table 1).

This points out the need for an algorithm to adaptively refine time steps in the
vicinity of severe temporal gradients. Such a procedure was used by Berger et al. [5]
to solve hyperbolic partial differential equations, and we are currently studying its
suitability for our code.

Table 2 summarizes the results of computations performed on the same problem
using cubic approximations. In these cases the time steps At were small enough to
resolve the transition of the solution and the cubic approximations were accurate
enough to provide us with reasonable estimates of the derivatives. As a result, the
variable mesh scheme improved the solution significantly.

TABLE 2
Results of computations at 1 ]:or Example 2 with rl r 100 using cubic approximations on

uniform and variably spaced grids.

N

10
14
20

At

0.01
0.005
0.01
0.005
0.0025

Uniform spacing

0.607 E-
0.319 E-1
0.214 E-1
0.185 E-1
0.138 E-1

0.801 E-1
0.257 E-1
0.394 E-1
0.309 E-
0.405 E-2

Variable spacing

0.130 E-1
0.332 E-2
0.167 E-1
0.483 E-2
0.353 E-3

0.232 E-
0.602 E- 2
0.951 E-1
0.950 E-2
0.170 E-2

Figures 5 and 6 for linear and cubic approximations, respectively, show that the
mesh selection algorithm tends to distribute the local error evenly over the domain,
and thus, as indicated in 3, approximately minimizes the error in L2.

.004

.005

lel

.002

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Local error at 1.0 forExample 2 with rl r2 100, uniform time steps of At 0.0025, N 20
and cubic approximations. The solid curve was computed on a fixed uniform mesh, the broken curve on a
variable mesh.
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Example 3. (Burgers’ equation).

ut -UUx + eUxx, 0 < x < 1, > O,
(4.4)

u (x, 0) sin zrx, u (0, t) u (1, t) 0,

and e 5 x 10-3.
It is well known that the solution to this problem is a wave that steepens and

moves to the right until a shock layer forms at x 1. After a time of O(1/e), the
wave dissipates and the solution decays to zero. Figures 7 and 8 show the results of
computations on this problem using linear approximations on a uniform mesh and a
variable mesh with a constant time step of At 0.1 and 10 elements per time step.
The results in Fig. 7 are typical of finite difference or finite element calculations for
this problem (cf., e.g., Chin et al. [10]). Spurious oscillations develop in the computed
solution unless the mesh width is of the same order as the width of shock layer, which
is O(x/) for this example. The variable mesh results in Fig. 8 largely suppress these
oscillations by automatically concentrating the mesh in the shock region as the wave
steepens.

When Example 3 is solved using cubic approximations on a uniform mesh, we
find that the solution U’ at the nodes is computed accurately; however, there are
large errors in the slope of the solution U, at the nodes when the mesh is not suitably
fine in the shock region. This effect is exhibited in Fig. 9 where the solution at 0.6
is shown for a calculation performed with At 0.1 and N 10. Equations (2.16, 18,
19, 20) were used to calculate the solution between mesh points.

1.0

t--O,,
0 ;,,

0.8

u

0.6

0.4

0.

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Solution o1 Example 3 ]’or various values o[ using linear approximations on a uniform mesh
with At 0.1 and N 10.
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1.0-

0.6-

U

0.4-

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 8. Solution of Example 3 for various values of using linear approximations, uniform time steps

of At O. and a variable mesh with N 10 elements per time step.

1.0

0.8

0.6

U

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Solution of Example 3 at 0.6 using cubic approximations on a uniform mesh with At 0.01
and N 10.
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One possible explanation of this behavior was proposed by Miller and Miller
[32], but they do not explain why the large errors in the slopes do not feed back and
cause large errors in the function values.

Once again, these problems are corrected when the mesh adapts with the solution.
Figure 10 shows the results of a similar computation using cubic approximations on
a variable mesh. Both the function values and slope values are computed accurately
at the nodes.

1.0

0.8

0.6

U

0.4

0 0.2 0.4 0.6 0.8 1.0

FIG. 10. Solution o" Example 3 for various values of using cubic approximations, uniform time steps
o]: At 0.01 and a variable mesh with N 10 elements per time step.

Example 4.

(4.5) b,=[tz(s)bx]x-[bx(s)s,,]x, s,=-k(s)b, 0<x <5, t>0.

This two-component nonlinear system was studied by Keller and Odell [28], [33]
as a model for the chemotactic motion of bacteria. The quantity b(x, t) denotes the
bacterial density, and s(x, t) denotes the concentration of the critical substrate (bac-
terial food). If the functions/z, X and k satisfy conditions derived by Keller and Odell
[28], equations (4.5) have traveling wave solutions. These solutions have been com-
puted by Odell and Keller [33] and are interpreted as traveling bands of bacteria.
For our study, we choose k(s)= 1,/z(s) =/z0 and X(s)=6o/S, where/xo and 8o are
constants. The initial conditions are shown in Fig. 1 l a and the boundary conditions are

(4.6) b(0, t)= b(5, t)= 0, s(0, t)= 1.

We solved this problem for 80//Zo 2 using cubic approximations, uniform time
steps of At 0.005 and 50 elements per time step. The computed solutions at 0,
0.1, 0.5 and 1.0 are shown in Figs. l la, b, c and d, respectively. The method places
the majority of the mesh points in the regions of the wave fronts and follows the
bacterial motion. The results indicate that our adaptive mesh algorithm may be also
used for vector systems of equations.
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FIG. 11. Computational results for Example 4 with 6o//Xo 2.0 using uniform time steps of At 0.005,
N 50 and cubic approximations at 0, 0.1, 0.5 and 1.0.
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5. Discussion and conclusions. The computations presented in the last section
show that it is possible to construct an accurate and stable adaptive grid finite element
method for nonlinear systems of partial differential equations and that such techniques
offer advantages ’over fixed grid techniques. In particular, we have shown that the
error estimates obtained by Davis [13] are actually realized in practice and that the
adaptive mesh algorithm correctly concentrates the mesh in a sharp transition and is
able to follow moving fronts. Examples 3 and 4 of 4 indicate that our method is
also useful for nonlinear equations and vector systems of equations.

In the present study we used piecewise polynomial functions for both the trial
and test spaces. However, work of Flaherty and Mathon 17], Heinrich et al. [21] and
Hemker [22] indicates that exponential and "upwinded" polynomial functions may
give superior test spaces for singularly perturbed problems. In addition, recent work
of Chin and Krasny 11 indicates that there may be more efficient iterative procedures
for equidistributing the mesh. We plan to test these potential improvements shortly.

All of our calculations were performed with a constant time step. Examples 3
and 4 of 4 indicate that it would be most desirable to be able to vary the time step
during the calculation. Our code presently allows for this, but as yet, we have not
implemented an algorithm to adaptively alter the time step. We also plan to add this
feature to our code shortly.

Other areas for future study include free boundary problems and higher
dimensional problems. The present work has shown that it is possible to construct a
practical adaptive grid finite element method. Future work must refine this method
and apply it and test it on a greater variety of problems.

Acknowledgment. The authors would like to thank Dr. R. C. Y. Chin for his
helpful comments and suggestions.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, Dover, New York,
1965.

[2] U. ASCHER, J. CHRISTIANSEN AND R. O. RUSSELL, Collocation software for boundary value ODE’s,
ACM Trans. Math. Software, 7 (1981), pp. 209-222.

[3] I. BABUSKA AND A. K. AzIz, On the angle condition in the finite element method, SIAM J. Numer.
Anal., 13 (1976), pp. 214-226.

[4] G. K. BATCHELOR, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge,
1970.

[5] M. BERGER, W. GROPP AND J. OLIGER, Grid generation for time dependent problems: Criteria and
methods, Numerical Grid Generation Techniques, NASA Conference Publ. 2166, NASA Langley
Research Center, Hampton, VA, October 1980, pp. 181-188.

[6] R. BONNEROT AND P. JAMET, Numerical computation of the free boundary for the two-dimensional
Stefan problem by space-time finite elements, J. Comp. Phys., 25 (1977), pp. 161-181.

[7] A. BRANDT, Multilevel adaptive technique (MLAT) for fast numerical solution to boundary value
problems, Lecture Notes in Physics 18, Springer-Verlag, New York, 1973, pp. 82-89.

[8] G. F. CAREY, A mesh refinement scheme for finite element computations, Comput. Meth. Appl. Mech.
Engrg., 7 (1976), pp. 93-105.

[9] I. CHILDS, et al., eds., Codes for Boundary Value Problems in Ordinary Differential Equations:
Proceedings of a Working Conference, May 14-17, 1978, Lecture Notes in Computer Science 76,
Springer-Verlag, New York, 1979.

[10] R. C. Y. CHIN, G. W. HEDSTROM AND K. E. KARLSSON, A simplified Galerkin methodfor hyperbolic
equations, Math. Comp., 33 (1979), pp. 647-658.

[11] R. C. Y. CHIN AND R. KRASNY, A numerical method for stiff two-point boundary value problems,
to appear.

[12] P. G. CIARLET AND P. A. RAVIART, Interpolation theory over curved elements with applications to

finite element methods, Comput. Meth. Appl. Mech. Engrg., (1972), pp. 217-249.



ADAPTIVE FINITE ELEMENT METHOD 27

[13] S. F. DAVIS, An adaptive grid finite element method ]:or initial-boundary value problems, Ph.D.
Dissertation, Rensselaer Polytechnic Institute, Troy, NY, 1980.

[14] C. DE BOOR, Good approximation by splines with variable knots II, Conf. on the Numerical Solutions
of Differential Equations, Lecture Notes in Mathematics 363, Springer-Verlag, New York, 1973.

[15],A Practical Guide to Splines, Appl. Math. Sciences, 27, Springer-Verlag, New York, 1978.
16] P. C. FFE, Singular perturbation and wave front techniques in reaction-diffusion problems, SIAM-AMS

Proceedings, 10 (1975), pp. 23-49.
[17] J. E. FLAHERTY AND W. MATHON, Collocation with polynomial and tension splines ]’or singularly

perturbed boundary value problems, this Journal, 1 (1980), pp. 260-289.
[18] A. FRIEDMAN, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968),

pp. 51-8"7.
[19] R. J. GALINAS, S. K. Doss AND K. MILLER, The moving finite element method: Application to

general partial differential equations with multiple large gradients, J. Comp. Phys., 40 (1981),
pp. 202-249.

[20] W. D. GoP,, A test of moving mesh refinement for 2-D scalar hyperbolic problems, this Journal,
(1980), pp. 191-197.

[21] J. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ AND A. R. MITCHELL, An upwind finite
element scheme ]’or two-dimensional convective transport equations, Int. J. Numer. Meths. Engrg.,
11 (1977), pp. 131-143.

[22] P. W. HEMKER, A numerical study of stiff two-point boundary problems, Ph.D Dissertation,
Mathematisch Centrum, Amsterdam, 1977.

[23] F. HOr’PENSTEADT, Mathematical Theories of Population: Demographics, Genetics and Epidemics,
CBMS Regional Conference Series in Applied Mathematics 20, Society for Industrial and Applied
Mathematics, Philadelphia, 1975.

[24] E. ISAACSON AND H. B. KELLER, Analysis of Numerical Methods, John Wiley, New York, 1966.
[25] P. JAMET AND R. BONNEROT, Numerical solution of the Eulerian equations of compressible flow by

a finite element method which follows the free boundary and interfaces, J. Comp. Phys., 18 (1975),
pp. 21-45.

[26] D. L. JuPP, Approximation to data by splines with free knots, SIAM J. Numer. Anal., 15 (1978),
pp. 328-343.

[27] A. K. KAPILA, Reactive-diffusive systems with Arrhenius kinetics: Dynamics of ignition, SIAM J.
Appl. Math., 39 (1980), pp. 21-36.

[28] E. F. KELLER AND G. M. ODELL, Necessary and sufficient conditions [or chemotactic bands, Math.
Biosci., 27 (1975), pp. 309-317.

[29] C. L. LAWSON, Segmented rational minmax approximations, characteristic properties and computational
methods, J. P. L. Tech. Rept., pp. 32-57, 1963.

[30] M. LENTINI AND V. PEREYRA, An adaptive finite difference solver for nonlinear two-point boundary
problems with mild boundary layers, SIAM J. Numer. Anal., 14 (1977), pp. 91-111.

[31] J. N. LVlESS AND J. J. KAGANOVE, Comments on the nature of automatic quadrature routines, ACM
Trans. Math. Software, 2 (1976), pp. 65-81.

[32a] K. MLLER AND R. MLLER, Moving finite elements, I, SIAM J. Numer. Anal., 18 (1981),
pp. 1019-1032.

[32b] K. MILLER, Moving finite elements. II, SIAM J. Numer. Anal., 18 (1981), pp. 1033-1057.
[33] G. M. ODELL AND E. F. KELLER, Traveling bands of chemotactic bacteria revisited, J. Theoret. Biol.,

56 (1976), pp. 243-247.
[34] V. PEREYRA AND E. G. SEWELL, Mesh selection [or discrete solution ofboundary problems in ordinary

differential equations, Numer. Math., 23 (1975), pp. 261-268.
[35] W. C. RHEINBOLDT, Adaptive methods in numerical analysis, Invited lecture, SIAM 1979 Spring

Meeting, June 11-13, Toronto, Canada.
[36] J. R. RICE, A meta algorithm for adaptive quadrature, J. Assoc. Comput. Mach., 22 (1975), pp. 61-82.
[37] R. D. RUSSELL AND J. CHRISTENSEN, Adaptive mesh strategies for solving boundary value problems,

SIAM J. Numer. Anal., 15 (1978), pp. 59-80.
[38] G. STRANG AND G. J. FIX, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs,

NJ, 1973.
[39] M. F. WHEELER, A priori, L2-error estimates for Galerkin approximations to parabolic partial differential

equations, SIAM J. Numer. Anal. 10 (1973), pp. 723-759.
[40] A. B. WHITE, JR., On the numerical solution of initial value problems, SIAM J. Numer.

Anal. 19 (1982), to appear.



SIAM J. ScI. STAT. COMPUT.
Vol. 3, No. 1, March 1982

1982 Society for Industrial and Applied Mathematics
0196-5204/82/0301-0003 $01.00/0

A SPLINE LEAST SQUARES METHOD FOR NUMERICAL
PARAMETER ESTIMATION IN DIFFERENTIAL EQUATIONS*

J. M. VARAH"

Abstract. In this paper, we describe a straightforward least squares approach to the problem of finding
numerical values for parameters occurring in differential equations so that the solution best fits some
observed data. The method consists of first fitting the given data by least squares using cubic spline functions
with knots chosen interactively, and then finding the paramters by least squares solution of the differential
equation sampled at a set of points. We illustrate the method by four problems from chemical and biological
modeling.

Key words, parameter estimation, spline fitting, differential equations

1. Introduction. The general problem can be stated as follows" we are given a
system of ordinary differential equations

y =/x(t, y, p),

y,=f,(t,y,),

where p (Pl, ’, P,,) are m (real) parameters whose numerical values are unknown.
Also, the solution vector y(t)= (yl(t),’’’, yn(t)) has been measured at certain data
points {ti, 1,..., N}. The problem is to find reasonable values for p so that the
solution of (1.1) with these parameter values, and suitably chosen initial conditions,
fits the given data.

As a specific example, consider the Lotka/Volterra predator-prey model (see,
e.g., Clark (1976, p. 194))

Y =PlY-P2YtY2, Y =P3YlY2--P4Y2.

Here y(t) measures prey population, y2(t) predator population, and the {Pi} are
positive constants dealing with birth, death and interaction rates. Typically, there are
measured values for yl(t), y2(t) at certain times t= ti, and we are asked to provide
reasonable values for the {pi} so that the solution (y(t), y2(t)) approximates the data.
Of course, there is a certain amount of error inherent in the data, so we cannot expect
to fit the data perfectly. Furthermore, there may or may not be exact initial conditions
given; the first point (y(tt), y2(tl)) may be just as much in error as the other points.

Such problems arise frequently in various areas, for example, in chemical reaction
equations, and in the modeling of biological and ecological processes. In this paper,
we describe a simple approach to the problem, discuss its merits relative to other
methods which have been proposed, and illustrate the method on four specific
examples.

2. Method of solution. Recently, the most popular method for solving this
problem has been an initial value technique" initial estimates of the parameters are
made, and (1.1) is integrated using these parameters and some (possibly given) set of
initial conditions. Then the least squares deviation of the solution at the data points
is measured, and this is treated as a function of the parameters, which one tries to

* Received by the editors November 25, 1980, and in revised form June 24, 1981.

" Department of Computer Science, University of British Columbia, Vancouver, British Columbia,
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minimize over the space of parameter values. This approach is described in Bard
(1974), van Domselaar and Hemker (1975) and Benson (1979). Although it can work
well, we feel it has some serious drawbacks’

(a) The solution of (1.1) may be very sensitive to the initial conditions, thus
making it difficult to integrate the equations. This sensitivity will be worsened in cases
where the initial conditions are not known accurately; often the data error is at least
10%.

(b) The technique requires guessing the parameter values; if these are not known
reasonably well in advance, again it may be difficult to integrate the equations, and
the behavior of the solution may be totally different from that obtained using "good"
parameters.

(c) There is a large amount of computational work involved; each new set of
parameters requires a full-scale integration of the equations, possibly with a special
method (e.g., if the initial value system is stiff). This all means that the computer
programs set up to solve such a problem are by necessity long and complex.

(d) When the parameters occur linearly in (1.1), as in the Lotka/Volterra model,
the method does not simplify: an iterative procedure still ensues.

We would like to propose a simple, straightforward method which, we feel,
overcomes all of these drawbacks.

(1) First, fit the given data by least squares using cubic spline functions. That is,
for each component 1,..., n, construct a cubic spline sj(t) with fixed knots {t},
k 1,..., q, choosing the spline coefficients to minimize the least squares deviation
at the data points. This technique is described in de Boor (1979, Chapt. 14) and we
give some further details in the next section, as it is useful for data fitting in general.
The number and position of the knots {t} are adjusted adaptively, preferably using
interactive graphics, until a "good" spline fit is obtained. We assume that this can be
done" that is, that the user is a good judge of whether a given spline fit represents
the data properly.

(2) When these spline fits have been found (so that the data has in effect been
smoothed), we then find parameters to minimize the least squares deviation in the
differential equation system (1.1) measured at some set of sample points {?i},
1,...,M. That is, we find p to

M

(2.1) minR(p)= Y. [s (/’i) -](/’i, s, p)]2.
P j=l i=l

In particular, notice that when the parameters p appear linearly in (1.1), this is
a linear least squares problem, which can be solved directly by setting up the overdeter-
mined system of nM equations in m variables (p) and solving this by a OR factorization
or by using the normal equations. Moreover, no initial value solver is needed and no
specific initial conditions are required. Thus the amount of computation, and the
complexity of the program needed, are much less than for the initial value method
described earlier. Wc should add that this technique is not new" a similar method
(using a different data fitting technique in (1)) was proposed by Swartz and Bremerman
(1975), and other similar methods were probably proposed earlier.

We should add that, strictly speaking, the wrong least squares sum is being
minimized’ instead of RD in (2.1), we are really interested in minimizing the integrated
residual

M

(2.2) R2 (p) (yi(ti)- 37i/(p))2,
j=l i=1
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where )Tij(p) is the numerical approximation to yi(ti) obtained by integrating the DE
system (1.1) with parameters p. However, to do so would mean we would have to
integrate the DE system for each parameter choice, and this is precisely what we are
trying to avoid. Our purpose here is to present an efficient algorithm which produces
reasonable values for the parameters. Of course, the parameters found should be
checked, a posteriori, by integrating the DE system with these values to check the
residual RI. We have done this in the examples. In all the examples we tried, the DE
residual (Ro) and the integrated residual (RI) were minimized at roughly the same
parameter values, but this is indeed open to question. However, we expect that with
enough sample points and enough data points, this will be the case. In Mezaki, Draper
and Johnson (1973), an example is given where the use of two different minimizing
functions produces two different minima, but these functions are not so closely related
as RD and Rt.

3. Least squares cubic splines. To simplify the notation, assume we have only
one y-component, so our data are {(t, y), 1,..., N}. Also let a _-< tx -< t9. <...

t <= b. We wish to approximate this by a cubic spline s(t) with knots {t* }, a < t <_- t <_-

<_-t < b. Thus the spline s(t) is made up of different cubic polynomials in each
interval (a, tl*), (t, t2*),’’’, (t*, b), matched at the knots so that s"(t) is continuous
throughout (a, b). Since each cubic polynomial has four coefficients, and the above
requires three continuity conditions per knot, we are left with (q / 4) coefficients to
determine by least squares solution of the data equations s(ti)- yi, 1,.. , N.

Of course, one can solve directly by expressing each cubic polynomial in powers
of t, matching the continuity conditions at the knots and solving the least squares
problem for the other coefficients. However, it is much easier (technically, if not
conceptually) to use a B-spline basis for the cubic splines. Each cubic B-spline B (4)i (t)
is uniquely defined by 5 successive knots, and is positive inside and zero outside this
range. They can be easily generated by the recurrence relation (see de Boor (1979,
p. 131)).

1, t/* <t<t*i+1,
B )i (t)

0, otherwise,

t- t*i (fl-1) tf+k(3 1) B(k(t)=t,i+k_l_t,iBi (t)+t,i+k_t, Blk-(t), k=2 3 4+1
i+1

Notice that this generates, in order, the B-spline of degree 1, 2 and 3 over the
appropriate set of knots. To make this complete, the endpoints a and b must be
included as 4-fold multiple knots. Since there are q interior knots, this defines (q + 4)
B-splines, which then form a basis for all cubic splines over these knots in the interval
(a, b). To find the best least squares spline, we solve the overdetermined linear system

q+4-, (4)
ai (ti) Yi, 1, , N.

=1

This is the data fitting technique we advocate here. The knots {t } must be chosen
fairly carefully in order to get a reasonable fit of the data with not too many knots.
It is best to do this interactively, using a graphics terminal if possible. We should also
remark that the knots may be multiple; a double knot, for example, allows the second
derivative of the spline to be discontinuous. This can be helpful in fitting data which
change abruptly.

Clearly it is important that the derivative s’(t) be a reasonable approximation to
the rate of change of the given data. As is well known, this can be a tricky business,
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and it is for this reason that we have used cubic splines. Our experience indicates that
cubic splines give as good a derivative as can be expected from the data. As an
indication of this, when we tried the method on the example of Anderssen and
Bloomfield (1974), we obtained the same accuracy as they did for their Fourier or
regularization method. Cubic smoothing splines are also a possibility; see de Boor
(1979, p. 235).

4. Details of the method. To succeed, our technique should be used in an
interactive environment. When the data are first fitted with a cubic spline, it is very
important that a graph of the fit be plotted. For a given knot set {t}, we may obtain
a small least squares residual at the data points, and yet the spline may deviate
considerably from the "expected curve" between the data points.

With an interactive plot, the knots {t} can be adjusted to get a better "visual"
or overall plot. Similarly, although one could automate the choice of knots by
minimizing the least squares residual at the data points over all possible knot sets
{t}, such a choice will not necessarily produce the "best" fit, because of possible
large oscillations between data points and because the final curve we are after is not
the spline fit, but a solution curve of the differential equation. This is borne out in
our examples in 6.

Similarly, the choice of sample points {/’i} is somewhat arbitrary, and should be
done interactively. Enough points should be chosen that the behavior of the solution
is adequately represented, and it is important to place sample points "where the action
is", that is, where the solution is changing rapidly. It has been our experience that a
reasonable selection of sample points {/’i} and knots {t} is what is important, not their
exact placement; that is, the method is fairly robust.

After the choice of sample points, the next step is the solution of (2.1). As we
have mentioned, this is a linear least squares problem if the parameters appear linearly
in (1.1) and, if so, the problem can be solved directly using normal equations or a
OR factorization (which is, of course, required for the spline fit earlier). If the
parameters appear nonlinearly, however, there are many techniques, algorithms and
programs available. We have contented ourselves with using a simple direct search
algorithm for nonlinear minimization, which has the advantage of not requiring any
partial derivative cOfi/Op. However, much more sophisticated techniques are available
for such nonlinear least squares problems and should probably be used, since these
partial derivatives are required in any case if we want to obtain confidence intervals
for the parameters by solving the sensitivity equations (see (5.1) below). Particular
methods are Levenberg-Marquardt (which is available in various implementations)
and the algorithm of Dennis-Gay-Welsch (1979), which was designed for large residual
problems. For a survey of such methods, see Nazareth (1980).

There is also an intermediate case which often arises" some of the parameters
can appear linearly and some nonlinearly in (1.1). In this case one can use the idea
of separability or variable projection (see Golub and Pereyra (1973) or Ruhe and
Wedin (1980)), in which the linear parameters are implicitly solved for, the resulting
(fully) nonlinear least squares problem is solved for the nonlinear parameters, and
then the linear parameters are obtained using their representation in terms of the
nonlinear parameters. Since this reduces the size of the nonlinear least squares problem
to be solved, it is worthwhile.

Once the parameters p have been found, their validity should be checked by
integrating the system (1.1) using these values. As we indicated earlier, this can present
difficulties, particularly if exact initial conditions are not given, as is the case in our
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first two examples in 6. It is important to realize that this causes real difficulties with
the initial value techniques mentioned in the introduction: the inexact initial conditions
must be included as parameters, thus increasing the dimension of the parameter space.
Moreover, the initial value problem may not have a solution for some of the initial
conditions used as parameter values during the course of the algorithm.

Here we are in a better situation" we have our parameter estimate (p* say) and
we are only concerned with estimating the integrated residual RI(p*) properly. We
could merely use the given values yj(tl),/" 1, ., n, as initial conditions and integrate
once; however, we feel that in some cases it is better to allow the initial values to
vary slightly, and choose those values which minimize the integrated residual. This
process is, or course, itself a linear or nonlinear least squares problem, involving
integrations of the DE system at each step, but there are only n parameters involved
and we have good estimates of them, so that only a few iterations are required for
the minimization.

We used this technique for the first two examples in 6, and the corresponding
values of RI(p*) did drop substantially. For the other examples, however, the variation
was insignificant.

Finally, we mention a special difficulty which arises in the third example in 6,
wherein data are only given for some of the components. This causes great hardship
for any method, including ours, since there is no data to fit the spline to (for some
components)! In our example, we can finesse the difficulty by converting the 2 x 2
system into a single equation of second order involving only that variable for which
we have data measurements. Notice that this means we must also use second derivative
estimates of the fitted spline curve (and (2.1) changes accordingly). In general, this
only works if the nondata variables can be explicitly solved for, and even then
necessitates approximating higher derivatives of the data variables, possibly using
higher degree splines.

5. The sensitivity equations. After having obtained estimates of the parameters
p and the solution vector y(t), one can obtain estimates of the sensitivity and accuracy
of the parameters. Define Zij OyffOpi, 1, , n, 1,.. , m. Differentiating (1.1),
it is easy to see that Z satisfies the first order linear equation

Z’=G(t,y,p)+J(t,y,p)Z,

where Gii Ofi/Opi and Jii Ofi/Oyj. These are the sensitivity equations, and one can
obtain estimates of the sensitivity of the solution to changes in the parameters (i.e.,
Z(t)) by integrating (5.1) using the computed values for p and y. This is quite well
known (see Bard (1974) for example), although it is not clear to this author what
initial conditions should be used for (5.1). If exact initial conditions are specified, then

Zii 0 is appropriate and seems to always be used; however, if the initial co,nditions
are not known exactly, then it is not clear that Zi 0 should be used. For this reason,
we have not attempted to compute Z(t) in our examples.

Once Z(t) has been computed, confidence intervals for the parameters can be
obtained in the usual way, by assuming that the least squares function

=1 (y/(ti)--yij)(P)
i=1 j=l

is locally quadratic near the minimum p*. Then if the uncertainty or noise level in 42is e the confidence intervals are of the form

< 4-[Pi--P*i [---E Hii
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where H H(p*, y) is the Hessian matrix at the minimum. This Hessian consists of
two terms:

N N

Ukl E Zil(ti)Zi(ti) + , (Yi(ti) Yii)
i=1 j=l i=1 j=l

0y(t)
Op

Usually the second term is considered negligible so that H can be computed directly
from Z(t)" H i1ZT"(ti)Z(ti). This is reasonable in cases where the residual is fairly
small, or the problem is (nearly) linear in p. In other cases, however, the second term
can materially affect H, and it is probably wise to use a nonlinear least squares routine
which computes an approximate Hessian as the minimization proceeds (again, see
Nazareth (1980)). Near-singularity of the Hessian can be caused by (for example)
nearly linearly dependent parameters, or insufficient data to separate the parameters.
In any case, this indicates the problem is poorly conditioned and should be revised.

6. Numerical Examples.
A. Barnes’ problem (see van Domselaar and Hemker (1975)--referred to as

VDH).

y =PlYl-p2yly2, Y2 =P2YlY2-P3Y2.

TABLE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Yl 1.0 1.1 1.3 1.1 0.9 0.7 0.5 0.6 0.7 0.8 1.0

Y2 0.3 0.35 0.4 0.5 0.5 0.4 0.3 0.25 0.25 0.3 0.35

This problem as originally given represented chemical reaction equations; however,
it is also the well known Lotka/Volterra predator-prey model in ecology (see, e.g.,
Clark (1976, p. 194)). The solution components to this system are oscillatory in nature
and out of phase with each other. Moreover, the data are only accurate to about 10%,
so it is clear that we should not try too hard to fit the data closely.

Table 2 displays a sample of results obtained, using up to four knots in the spline
approximation.

TABLE 2

Knot Spline DE residual Parameters Integrated Initial
positions residuals (# sample points) found residual conditions

3.0 0.16, 0.11 1.3 (20) 0.85, 2.13, 1.91 0.35 1.02, 0.25
3.0 0.16, 0.11 1.7 (40) 0.80, 2.06, 1.86 0.36 1.05, 0.26
1.5, 3.0 0.14, 0.04 1.0 (20) 0.85, 2.20, 2.04 0.38 1.02, 0.24
1.5, 3.0 0.14, 0.04 1.5 (40) 0.83, 2.17, 2.01 0.37 1.04, 0.24

*0.4, 2.5 0.10, 0.09 3.0 (40) 0.62, 1.73, 1.60 0.44 1.16, 0.29
0.9,2.1,3.6 0.11,0.04 1.6(40) 0.80, 2.11, 1.94 0.36 1.05,0.24
1.0, 2.0, 3.0, 4.0 0.09, 0.02 1.6 (40) 0.85, 2.21, 2.02 0.365 1.02, 0.24

"0.14, 0.97, 3.2, 3.9 0.06, 0.01 40.0 (40) -0.01, 2.19, 1.47 1.9 1.02, 0.24
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The VDH values were (0.86, 2.07, 1.81) with Rx 0.40. Knot selection was made
visually, except for the cases marked with an asterisk; these knots were found by
minimizing the least squares deviation of the spline fit for the first component.
Notice that although these gave better spline fits, the corresponding parameter
values were very poor. In some sense, we are trying "too hard" to fit the data,
and produce a curve which is not close to an integral curve of the differential
equations.

This problem is linear in I), so the minimization (2.1) is a linear least squares
problem. Its residual is given in the third column; we used twenty (or forty) equally
spaced sample points. In each case, the parameter values were checked by integrating
the system from the first data point (t 0) and varying the initial condition so as to
obtain the smallest least squares deviation in the integrated residual. These results
are given in the last two columns. We also give plots of the first one knot spline fit
and the corresponding integration in Figs. 1 and 2 (for the first component yl) and
for both four knot cases in Figs. 3-4 and 5-6.

FIG. 1. Example A--One-knot spline fit.

The Hessian matrix for this problem is not ill-conditioned, so in that sense the
problem is well-conditioned. The rather large variation in parameter values obtained
(for about the same residual) is due to the inaccuracy in the data, and the correspond-
ingly large residual (relative to the size of the data).
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X

X

.o 0.8 1.6 2.4 3.2 T.o 4.8 5.6 6.4 7.2

FIG. 2. Example A--Integration using one-knot spline fit.

0.8 1.6 2.4 3.2 4.0 4.8 5.6
"’v ...1 ,,v v" v’a"

FIG. 3. Example A--Visual four-knot spline lit.

6.4 7.2
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X

0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
.I,

FIG. 4. Example A--Integration using visual [our-knot spline fit.

IL 0.8 1.6 2.4 3.2 4.0 4.8 5.6

FIG. 5. Example AmOptimal four-knot spline fit.

6.4 ?.2
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x x

x

x

0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 -/,2

FIG. 6. Example A--Integration using optimal four-knot spline fit.

B. Bellman’s problem (Bellman et al. (1967)).

y p(126.2- y)(91.9- y)2-p2y.

TABLE 3

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Yl 0.0 1.4 6.3 10.4 14.2 17.6 21.4 23.0

10.0 12.0 15.0 20.0 25.0 30.0 40.0

27.0 30.4 34.4 38.8 41.6 43.5 45.3

This problem arises from a chemical reaction, and is also treated in van Domselaar
and Hemker (1975). This is somewhat easier to solve than problem A, and we give
results in Table 4.

TABLE 4.

Best
Knot Spline DE residual Parameters Integrated initial

positions residuals (# sample points) found residual condition

20.2 2.7 0.86 (15) 0.46 x 10-5, 0.27 x 10-3 3.9 -1.10
20.2 2.7 0.76 (20) 0.46 x 10-5, 0.30 x 10-3 4.0 -0.98
20.2 2.7 0.98 (40) 0.47 x 10-5, 0.31 x 10-3 3.7 -1.49

5.0, 15.0 1.6 3.0 (20) 0.40 x 10-5, 0.15 x 10-3 6.7 0.89
5.0, 15.0 1.6 3.1 (40) 0.41 x 10-5, 0.23 x 10-3 6.4 0.33
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Notice that we get a better result using only one knot, and this is at least indicated
by the relative size of the DE residual in column 3. In Figs. 7-10, we give the best
results for both one and two knots. Again the Hessian matrix was not ill-conditioned;
however, in this case the data were fitted very well, so the variation in the parameters
is much less than in Example A. The VDH values were (0.45 x 10-5, 0.27 x 10-3)
with Rt 4.7.

C. Enzyme effusion problem (van Domselaar and Hemker (1975)).

Z.O

P4 4991

x/2r
((lg(t)-p2)2)y p(27.8- y)+x-; (Yz- Yl)+ts_ exp -0.5

P3

P4y .. (yl- y).

TABLE 5

0.1 2.5 3.8 7.0 10.9 15.0 18.2 21.3 22.9 24.9

27.8 20.0 23.5 63.6 267.5 427.8 339.7 331.9 243.5 212.0

26.8 30.1 34.1 37.8 42.4 44.4 47.9 53.1 59.0 65.1

Yl 164.1 112.7 88.1 76.2 62.3 58.7 41.9 40.2 31.3 30.0

73.1 81.1 91.2 101.9 115.4 138.7 163.2 186.7

Yl 30.6 23.5 24.8 26.1 33.3 17.8 16.8 16.8

oO 12.0 18.0 24.0 30.0 36.0

FIG. 7. Example B--One-knot spline fit.
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18.0 24.0 30.0 36.0

FIG. 8. Example B--Integration using one-knot spline fit.

48.0 54.0

18.0 24.0 30.0 36.0

FIG. 9. Example B--Two-knot spline fit.

42.0 48.0 54.0
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X

2,4.0 30.0 36.0 42.0 48.0 54.0

FIG. 10. Example Bmlntegration using two-knot spline fit.

This problem represents the modeling of enzyme concentrations in the blood, inside
and outside the heart, over a period of time. A complication here is that observations
are only available on y l. We remedy this (as indicated earlier) by solving the first
equation for y2, differentiating and substituting in the second equation to get a single
second order equation for yl.

This was more difficult to solve than the first two, both because of the nonlinear
parameters and because of the difficulty in obtaining a good spline fit to the data.
Results were as shown in Table 6.

TABLE 6

Knot Spline DE residual Parameters Integrated
positions residual (# sample points) found residual

8.0, 11.0, 23.0, 43.0 64 7.8 (28) 0.326, 2.674, 0.40, 0.198 94
8.0, 11.0, 23.0, 43.0 64 15.5 (40) 0.257, 2.62, 0.364, 0.29 70
9.2, 11.25, 22.7, 42.8 62 5.3 (28) 0.36, 2.72, 0.40, 0.04 111
9.2, 11.25, 22.7, 42.8 62 15.7 (40) 0.266, 2.65, 0.353, 0.228 64

8.0, 12.0, 18.0, 24.0, 43.0 60 6.6 (28) 0.278, 2.673, 0.378, 0.193 64
8.0, 12.0, 18.0, 24.0, 43.0 60 12.3 (40) 0.251, 2.61, 0.348, 0.327 67
11.3, 12.1, 15.0, 29.1, 39.4 54 7.9 (28) 0.017, 2.63, 0.281, 0.277 1968
11.3, 12.1, 15.0, 29.1, 39.4 54 58.0 (40) 0.192, 2.52, 0.231, 0.487 136

For each knot set, we used 28 sample points (=data points) and 40 sample points
(skewed to represent the function better). The first knot set represents the best we
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could do with four knots chosen visually. We then tried optimizing the knot locations
by minimizing the least squares deviation at the data points as a function of the four
knots. This gave the second knot set which, with 40 sample points, gave the best
result. We plot this spline fit and result in Figs. 11 and 12. The third set of five knots
was again chosen visually and gave equally good results (notice, however, that the
last parameter has changed appreciably without affecting the residual). We again
optimized the knots, but this final knot set was not as successful (although still
reasonable). We plot this for comparison in Figs. 13 and 14. The VDH values were
(0.27, 2.65, 0.364, 0.21) with Rx 64.

.0 2"/.0 5tl. 8] .0 101].0 135.0 162.0 189.0 2]6.0 213.0

FIG. 11. Example C--Optimal four-knot spline fit.

D. Blood ethanol problem (Ralston et al. (1979)).
Finally we present an example with very sensitive parameters. This is (Ralston

et al. (1979, Example 3.3)) where the blood ethanol concentration was measured over
a period of time, with intravenous ethanol injected for an initial period. Michaelis-
Menton kinetics are assumed, giving the model

p P:____Z_Y

y,= pa+y’

pa+y’

t<2,=

t>2.
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X X ."4_
X X X

.0 2"7.0 54.0 8] .O 108.0 135.0 162 .O 18.9.0

FIG. 12. Example CNIntegration using optimal [our-knot spline [it.

2]6.0 243.0

X

.0 27.0 54.0 8] .0 1oo.o 135.o 162.o 1e9.o 2]6.0

FIG. 1 3. Example C--Optimal five-knot spline fit.

243.
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X X X

FIG. 14. Example C--Integration using optimal five-knot spline fit.

The data are shown in Table 7.

TABLE 7

0.0 0.083 0.250 0.500 0.750 1.0 1.5 2.0 2.083 2.167

y 0.0 0.10 0.23 0.37 0.47 0.52 0.69 0.81 0.79 0.72

2.25 2.50 2.75 3.0 3.5 4.0 4.5 5.0 5.25 5.5

y 0.78 0.66 0.59 0.59 0.55 0.48 0.41 0.32 0.29 0.29

5.75 6.0 6.26 6.50 6.75 7.0

y 0.23 0.17 0.13 0.10 0.06 0.049

7.25 7.5 7.75 8.0 8.25 8.5

0.037 0.024 0.017 0.011 0.0053 0.0023

The authors minimized a weighted least squares residual by an initial value
technique. We prefer to consider the nonweighted case, and can compare the results
from our technique with those obtained from direct integration, since we can integrate
the DE explicitly’

(p -p)
for <_- 2, solve pl(e 1)- p2x for x

P3

and set y(t) =Plp3(eX 1),
Pl-P2
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for > 2, solve p3x + y(2)(e 1) (2- t)p2 for x

and set y(t) y(2)e x.

Both of these equations for x are nonlinear, of the form e a + bx, and can be solved
by Newton’s method (although for t <2 a good starting approximation is needed as
there is an extraneous root). Thus for any t, we can compute y(t), and thus the least
squares function

/2(p) (yi y(te; P))2.

We minimized this directly as a function of p, obtaining a minimum of ]’ 0.30 at
p*= (0.557, 0.221, 0.151).

For our spline technique, it is clear from the model that the solution is only CO

at 2, so it is natural to use a spline fit with a triple knot at this point. However,
although the spline did fit the data well even with no additional knots (see Fig. 15),
the parameters obtained by minimizing the DE residual Ro were not close to the
values above, yet gave much the same residual. Typical values were (with forty sample
points) p (0.58, 0.78, 1.54) with Rz 0.32. We plot this solution in Fig. 16 and give
the direct integration result in Fig. 17. Notice how flat the least squares surface must
be: p2 and p3 have changed enormously, with little change in R.

FIG. 15. Example D--Triple knot spline fit.
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X

X

1.2 2.4 3.6 4.8 6.0 -/(2. 8.4
...,?, ,x, X XX

FIG. 16. Example D--Integration using triple knot spline fit.

9.6 10.8

X XX

1.2 2.4 3.6
.,l I.,

FIG. 17. Example D--Integration using direct minimization.

10.8
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EXTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON
ITERATION FOR INDEFINITE LINEAR SYSTEMS*

CARL DE BOORt AND JOHN R. RICE

Abstract. The application of Richardson iteration to a symmetric, but indefinite linear system requires
certain parameters which can be determined from the zeros in the error of a certain best polynomial
approximant on some set S known to contain the spectrum of the coefficient matrix. It is pointed out that
this error can also be obtained as a multiple of the extremal polynomial for the linear functional p-p(0),
and this leads to an efficient Remes type algorithm for its determination. A program incorporating this
algorithm for the case that S consists of two or more intervals bracketing zero is available.

Key words. Richardson iteration, symmetric indefinite, Remes, norm preserving extension, norm
calculation for linear functional, Chebyshev polynomial

1. The iteration problem. Consider the linear system of equations Ax b, and
the iteration

x/ =x" -a.(Ax -b).

With e := xn-x the error in the nth iterate, we have

e" (1-a,_lA)e"-1 lI (1-ai_lA)e On(A)e,
j=l

where On is the polynomial of degree n which vanishes at 1/ao,.’., 1/c,_ and is
1 at 0. This is Richardson’s (first order) iteration, with iteration parameters aj. If the
spectrum of A is known to lie in some compact set $, then a standard analysis suggests
that one should choose the parameters ai so as to minimize

IIo lls := max
sS

The resulting polynomial Pn is then the error in the best Chebyshev approximation on
S to 1 from {]=/3t}. If S is an interval not containing the origin (hence A is known
to be definite), then it is well known that a renormalization of Pn to make the coefficient
of t" equal to 1 gives T,, the Chebyshev polynomial for the interval S. For this case,
the three-term recurrence relation for the Chebyshev polynomials may be employed
to build up x" without the use of the zeros of P,. This has the advantage that the
iterates x so generated along the way are themselves using Pi. This method is known
as the Chebyshev semi-iterative method. This variation requires more memory (3
vectors rather than 2 are used) and more computation per step (since more vectors
are combined per step). The conjugative gradient method is a further variation which,
with some more work per iteration, removes the dependence on the interval $; the
mere knowledge that such an interval exists suffices to show that the error produced
at the nth step is of the form Pne, with Pn the error in a best approximation to 1 on
the spectrum of A itself.

The conjugate gradient method may run into difficulties when A, though sym-
metric and invertible, is not definite. See Paige and Saunders [1975] for a detailed
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by the U.S. Army under contract DAAG29-80-C-0041.

5" Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706.
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of this author was supported in part by the National Science Foundation under Grant MCS 77-01408.
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discussion and some remedies. For this reason, Richardson iteration becomes an
attractive alternative in this case. We now have the spectrum of A contained in two
intervals, with the origin between them. Akhiezer [1928] determined the Chebyshev
polynomials for two such intervals of equal length, and Lebedev [1969] extended this
technique to a set $ consisting of an arbitrary number of intervals of equal length
and applied his result to iteration. See Anderssen and Golub [1972] for a translation
of Lebedev’s paper and further discussions, particularly on the important subject of
the order in which best to use the ai’s.

Specifically, let S [a, bill [c, d]. For certain values of a, b, c and d, Atlestam
[1977] has obtained a representation of the Chebyshev polynomials for $, ot the
following form’ Let

with

O(t) := cos (m(vr + I(t))),

I(t) := (u- r)p(u) du, r := up(u) du p(u) du

and

p(u) := ((u-a)(u-b)(u-c)(d-u))-/2.

If there are integers rn and k so that I(b)= kvr/m, then Q is a polynomial of degree
rn proportional to the Chebyshev polynomial for $. Atlestam further shows that, for
any interval pair S, the Chebyshev polynomial is of this form but for a slightly different
pair of intervals, and this difference goes to zero as the degree goes to infinity. Her
arguments can be used to show that in the same way, for any interval pair S bracketing
the origin, the best polynomial Pn is of the above form, but for a slightly different
interval pair. These results can be used to obtain sharp asymptotic results on the
degree of convergence of the iteration method, but it is not clear how useful the
representation is for obtaining the necessary iteration parameters.

In the present paper, we give what we feel is a more useful formulation of the
mathematical problem underlying the determination of the parameters; well-known
results then establish existence and uniqueness of the solution of this problem and
characterize it. In particular, we are led to a Remes type algorithm for the determina-
tion of Pn, whose zeros can then be determined efficiently by the Modified Regula
Falsi. For the particular case that S is an interval pair, we present some numerical
results to illustrate the nature of the parameters and the convergence rate of the
corresponding iteration.

2. The extremal polynomial. The papers mentioned above all use Chebyshev
polynomials in some essential way, so we first note that, in general, the required
polynomial P, is unrelated to the Chebyshev polynomial T, for S. This is seen in the
analysis of Atlestam [1977] or, more directly, from the fact shown below that P,
alternates one less time on $ than does T,.

To recall, the Chebyshev polynomial Tn for the compact set $ is the polynomial
n--1

of the form + Yj=0 fliti which is as small as possible on $. In other words, Tn is the
error in the best approximation on $ to from {-1/3iti}" By contrast, we are
interested in the polynomial P, which is the error in the best approximation on S to
1 from
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We now reformulate this problem as follows. Let A be the linear functional on
r, (:- the polynomials of degree n or less) whose value at p is p(O). In symbols,

X 7r, --> : p-p(O).

An extremal for A is any polynomial of norm 1 at which A takes on its norm, i.e., any
p r, with ]]Plls 1 and Ap ]]A II. Here

Ilpll Ilplls := max Ip(s)l

and

Ap 1
I1 := max

’-[Iplls min {][PIIs’P 7r,, p(0)= 1}

This shows that the polynomial P, which is of minimum norm on $ and satisfies
P,,(0) 1 is a multiple of an extremal p* for A, i.e., P, =p*/p*(O).

The standard approach to the construction of extremals is via norm preserving
extensions, i.e., via a so-called canonical representation for A (see, e.g., Rivlin [1974,
pp. 82 if.I). Such a canonical representation for A consists of n + 1 points tl < t2 <" <
t,+x in S and corresponding coefficients a, 02,’ an+l, SO that

n+l

Ap , aip(ti), all p r.
i=l

and

n+l

II, II--
j=l

In other words, writing It] for the linear functional of evaluation at t, such a canonical
representation provides us with an extension

n+l

=1

of A from r, to all of C(S):= Banach space of continuous functions on $, and this
extension has the same norm (on C($)) as does A (on

We will give a constructive proof later on of the existence of such a canonical
representation for our particular A. Taking this for granted (or referring for it to Rivlin
[1974]), we note that, for the Lagrange polynomials li given by

we must then have

t- ti
/i(t) :=

i=1 ti- ti
ij

]=1," .,n+l

n+l

li(O) =Ali Z a,li(t)=
i=1

This implies that

nfil --ti
tlj

i-- t- t
all j;
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hence all coefficients are nonzero if, as we assume, 0 does not lie in S. Further,

(ljaj+lO iff tiO--ti+l.
If now p* is an extremal for h, then we have

II il- Ap* a/p*(ti) Ip*(t)l--< Ic Ilp*ll--II;ll,
/=1 /=1 \j

so equality must hold throughout this relationship. In particular,

sign (aj)p*(tj) --IIp*ll 1, all j.

This pins down p* uniquely. Explicitly,
n+l

p*= Y’. sign (lj(O))li
j=l

for any canonical representation Y’. ai[ti] of A. Moreover, if p is a polynomial of norm
-, n+l1 of the form z.i=l sign (lj(O))l for some points tl, ., tn+l in S, then p p*.

If now 0 lies to one side of [tl, tn+l], then it follows that p* alternates on
q,’", tn/l; hence p* is necessarily a multiple of the Chebyshev polynomial for
S [t, tn/l]. Further, Ip*(t)l > 1 for not in [fl, t,/]. We conclude that in the case
of particular interest to us, namely when 0 is in the convex hull of S, there must be
some k for which

tk <O<tk+l.

This shows our assertion at the beginning of this section that, in general, P, need only
alternate on n points in S. Further, for tk < < tk+l,

n+l

p*(t) E (sign (li(O)))li(t) Y’. (sign (li(t)))li(t) Y’. I/(t)[ > lY./(t)[ 1
j=l

if n > 1. Consequently, then,

tk b := max S F) (-oo, 0], tk / C := min $ f’) [0, oo).

We gather these various facts in the following theorem, for the record.
THEOREM 1. Assume that S is compact and does not contain O, and n > 1. Further,

,n+llet= a[ti] be a canonical representation for A "p-p(O). Then

(a) ai 1-I (-t,/(ti- t,)), j 1,..., n + 1.
j

(b) has a unique extremal, p*, and this extremal satisfies
n+l t-- tip*= Y’. sign (lj(O))l with lj(t)= 1-I all].= t t

If, in addition, 0 is in the convex hull of S, then
(c) tk < 0 < tk+l ]’or some k. Further,

p.(ti)={(--1)k-i, j=l,’’ ",k,
(--1)j+l-k, j k + 1,’.., n + 1,

and p*(t) > 1 fOrtk <t<tk+a; hence tk max S I"1 [--oo, 0] and tk+l=minSlq[O, oo).
We pointed out earlier that P, p*/p*(O) could also be obtained as the error in

the Chebyshev approximation to 1 from the subspace {Y/3jti}. This subspace forms
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a Haar set on S as long as S does not contain 0. We could therefore have obtained
the above characterization from general criteria such as Kolmogorov’s criterion, but
the derivation would not have been any simpler. We note that, while Pn is in general
not (a multiple of) the Chebyshev polynomial for $, it is always a multiple of a
Zolotarev polynomial since its alternations over n points characterize it as the error
in a best approximation to Bnt + [3n_ltn-1 from 7/’n-2.

3. Remes algorithm for the extremal polynomial. We begin with a statement of
the algorithm. In it, we use the abbreviations

b := max S f-) (-oo, 0], c := min S [0, oo)

introduced earlier.
Remes algorithm ]:or the extremal polynomial.

f, ln+l1. Choose t I,ii= in S, strictly increasing, and with t b, t+ c for some k.
vn+l2. Set p :-
z.,i=x sign (li(O))li, with li(t):- l-Iii(t-ti)/(t-tg), all ].

3. Set to := min $, t/2 := max $ and construct s by
ti for]=k,k+l,

s := the first of the possibly two maxima of p(ti)p in [t-l, t/]$
for/’= 1,..., k-l, k+2,... ,n+l.

4. Choose from s as follows"
(a) if p(to)p(t)<-l, then := (to, s,. ., s), and increase k by 1;
(b) if p(t,+2)p(t,+l)<-l, then := (s2,..., Sn+l, tn+2), and decrease k by 1;
(c) otherwise, | := s.

5. Set t := |.

6. Iterate steps 2 through 5.
THEOREM 2. The sequence ofpolynornials produced by the above Rernes algorithm

converges to p*.
Proof. We first note that the algorithm is well defined at step 4 in that only one

of the alternatives (a) and (b) is possible. Indeed, if both (a) and (b) were to occur,
then p would alternate on to,"’, tk, tk+2,’", tn+2, and this is not possible for a
polynomial of degree n or less.

As to the convergence, denote by/5 the polynomial obtained from p after one
iteration, i.e., the polynomial constructed from the sequence i obtained at step 4. We
claim that 1 </(t) =< p(t) for any in (b, c) and that strict inequality holds here unless
i t. The first inequality we already observed earlier (for p*). As to the second, we have

(--1)i-k/(’i) 1 --< (--1)i-kp() for j 1, 2," , k,

(-1)i--1/("i) 1 <- (-1)i--lp(’i) for j k + 1,.. , n + 1

by construction. This implies that, for b < < c,

n+l

p(t)-(t)= , (p(’i)-/5(’))(t)= E ]p(’i)-/(’i)l ](t)l ->_ 0,
j=l

and equality occurs only if p =/ on the n + 1 points ’1," ", ’n+l, i.e., only if p =/5.
We conclude that the sequence generated by the Remes algorithm decreases

monotonically on (b, c), yet is bounded below there. Hence it converges, uniformly
on any finite interval, to some polynomial p. Since the map T in zr given by

is not everywhere continuous (a fact pointed out to us by Joe Grcar and Paul Saylor),
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we cannot use the standard argument which would now finish with the observation
that p must be a fixed point of T, hence equal to p*. Instead, we verify directly that
pOO= p., as follows.

We have to prove that, for some tl <" < tn+l, all in S,

and that

n+ t--ti
p Y (l(0))/j, with

i= iit --ti

IIpll ,
The first is easily seen to hold since p is the uniform limit of polynomials of the

same form (by step 2 of the algorithm). In particular, t <. < tn+ could be chosen
as limit points of the sequences t <. < t,/ used in steps 2-4 of the algorithm.

As to the second, we prove that the assumption [[PII > 1 leads to a contradiction,
as follows. To begin with, we claim that ?1--to or ?n+l "--tn+2. This is obvious in case
of alternative (a) or (b) in step 4. But if, under alternative (c), 71 > to and ?n+ < t,+z,
then Ap(ui) Ap(uj+l)--< 0, f 1," ’, n, for the strictly increasing sequence

(ui) := (to, Sl," ", Sk, Sk+2," ", Sn+l, /n+2),

which would imply that p’-0, hence n 1, a contradiction.
Thus we are free to assume that either t to, or else tn+ --tn+2. Further, since

p gonverges to pOO, the difference p-/ must go to zero, hence Ip(?j)l I/(’j)l 1. The
assumption IIpll > 1 then implies that, for some s S and some e > 1, eventually every
p satisfies the inequalities

max Ip(F)I < e _-< Ip(s)l.

We now consider various cases.
Case p(s)p(ti) > 0 for some j e {1,..., n + 1}\{k, k + 1} and with ti_l <-_ s <- ti or

ti _-<s _-< ti+a. Then p(s)l--> Ip(s)l > p(L)I for all i; hence either f n + 1 with alternative
(a) or ] 1 with alternative (b) must hold. Assume without loss of generality the
former. Then to<h; therefore t,+l =t,+2 and now Ap(ui)Ap(ui+x)<-O, j= 1,...,n,
for the strictly increasing sequence

(uj) := (to," ", tk, Sk/2, ", S,/I S, t/),

a contradiction.
Case p(s) > 0 and tk_ <- S <- tk. Then Ap(ui)Ap(Ui+l) <-- 0 for ] 1, , n, for the

strictly increasing sequence

(u) := (h, ", tk-1, s, tk, tn+l),

a contradiction.
Case p(s) > 0 and tk <= S <= tk+X is treated analogously.
Case p(s)p(tl) < 0 and to _-< s < tx. If p(to)p(tl) <-_ p(s)p(h), then

p(to)p(tl) <= p(s)p(tx) < -e < -1;

hence alternative (a) is chosen, which implies that [t(t0)l 1 while Ip(to)[ e e > 1. Since
p converges, this cannot happen eventually. Therefore, eventually p(to)p(tl)>
p(s)p(tl). But then Ap(ui)Ap(Ui+l) <-- O, ] 1, , n, for the strictly increasing sequence

(uj) := (to, s, ta, tk, tk+2, ", t,,+l),
a contradiction. Finally,

Case p(s)p(t,+a) < 0 and t,+l < s -<_ t,+2 is treated analogously.
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4. Efficient computation o| the parameters. We were led to study this problem
by the work of Rolott [1979], where estimates of the parameters are provided. A
result of Rolott’s states that, for sufficiently large n, the zeros of P, are approximately
distributed in S in a proportion which is independent of n. One might hope that this
proportion is determined by measure, e.g., a subinterval of S containing the length
of S contains about of the zeros of P,. We use this to obtain the initial guess (in
step 1) for the Remes algorithm, but we also note that this approximate distribution
of zeros of P, is not especially good. Rather, there is also a tendency for the zeros to
be distributed equally among the intervals which make up $ and the actual distribution
resulting from these conflicting tendencies is not easily predicted.

The Lagrange basis for 7r, is especially suited for the efficient and stable
implementation of the Remes algorithm because one can obtain the polynomial p
associated with the current point sequence t without any computation, because the
basis is well conditioned near the optimal t, and because, in the end, the zeros of
P, p*/p*(O) are particularly easily obtained from this form.

For efficiency in evaluating p away from t one should express p as

n+l n+l Ojp(t)= ]-I (t-ti) E
i=1 =1 t- t

where
p(t)

would be calculated once and for all. Also, the derivative of p at tm is efficiently
computed by

P’(tm) I-[ (tin--ti) Z
jm im tm

The interior local extrema of p are estimated by parabolic interpolation. As a
first step, the unique extremum x*, say, of the parabola matching p at ti, t and x is
found, with x ti_ or t/ depending on the sign of p’(t). The unique extremum of
the parabola matching p at ti, t, and x* is then taken as the suitable approximation
to the desired local extremum of p. This is a version of the standard technique for
locating local extrema for use in the Remes algorithm; it is sufficiently accurate for
quadratic convergence of the algorithm. Note that in our particular situation there is
no need to make a global search for extrema as we know exactly where all the extrema
must be.

Once the extremal polynomial p* is found sufficiently accurately, then its zeros
are found by the Modified Regula Falsi. The zeros are already bracketed by the ti,
except for one which is outside the interval [t, t+]. This one may be to the left or
right of It1, t,+] and may actually be at infinity. We make the transformation x 1/t
and then apply the same method to [x, x,+].

Maehly’s second method (see Maehly [1963]) is an alternative method for comput-
n+l

ing P,. Its attraction is that it operates directly on the representation of p as 1-Ii= (1-
yit) and thus does not need the second phase, the computations of the zeros. We
judge this approach to be less efficient overall because of the added work of solving
for the parameters zi of the new polynomial each time t is replaced by i. This work
involves the solution of n + 1 simultaneous equations with a full coefficient matrix.
We have not tried this approach; see Dunham [1966] for some remarks concerning
improved convergence of this method.
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5. Properties of the parameters and convergence rate of the iteration. An
examination of particular examples of the extremal polynomials shows that they do
not, in general, belong to orthogonal polynomial families and that they are not
generated by a three-term recurrence relation. It follows from a classical result of
Fekete (see Widom [1969]) that IIPI]/ converges as n tends to infinity. Consequently,
convergence of Richardson’s first order method with these parameters is geometric.
Of course, in practice, one is not likely to use the parameters from P,, P,/I, P,/2,
in sequence, but is likely to use the parameters for a fixed n cyclically. One still obtains
geometric convergence, but examples (such as seen below) show that n should be
rather large in order to exploit the method’s potential fully.

In order to judge the convergence rates one could expect, we present in Fig. 1
the graphs of p* on the interval [b, c] for the case $ =[-1, -8]U[.2, 1] and for
various values of n. Recall that P, =p*/p*(O), hence IIPII-l/p*(0). Further, it is
worthwhile at this point to realize that a linear change in the independent variable
leaves P, essentially unchanged. In other words, if this particular S is obtained from
some interval pair S*=[a*,b*]U[c*,d] by the linear change t=f(t*), so that
-l=f(a*), -.8=f(b*), etc., then the polynomial P for $* is simply P .f. In
particular, then IlPll 1/p*(f(o)), thus 1/p*(t)runs through the possible values of
such lIP2 as runs between 8 and .2. Thus as one moves from b 8 to c .2,
along one of the curves for fixed n, one sees the effect on the achievable error reduction
of the location of the origin between the two intervals comprising an interval pair.
Note that the rate of convergence becomes 1 and the linear system becomes (possibly)
singular as f(0) approaches b or c.
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Figure 2 shows the dependence of the rate of convergence on the relative sizes
of the two intervals which make up $. A contour plot is given of the maximum possible
rate of convergence as b and c vary while a 1 and d 1 remain fixed. This maximum
rate occurs at the point where p* is at a maximum (between b and c) which depends
on b and c. This rate approaches 1 as c- b approaches 0 and becomes quite fast as
b and c approach-1 and-1, respectively.

Figure 3 indicates the effect of near singularity of the linear system on the rate
of convergence. Again for $ an interval pair and for 10 parameters, we plot contours
of the logarithm of the slope of p* at c. The larger this slope, the less the rate of
convergence is degraded by the origin being close to c.

Both Figs. 2 and 3 exhibit somewhat erratic behavior due to the fact that the
number of tj’s in each interval is a discrete function of b and c. This suggests that it
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would be quite difficult to obtain accurate and simple approximation formulae for the
parameter distribution.
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SOLVING SYMMETRIC-DEFINITE QUADRATIC A-MATRIX
PROBLEMS WITHOUT FACTORIZATION*

DAVID S. SCOTT" AND ROBERT C. WARD

Abstract. Algorithms are presented for computing some of the eigenvalues and their associated
eigenvectors of the quadratic h-matrix Mh2 + Ch + K. M, C and K are assumed to have special symmetry-
type properties which insure that theory analogous to the standard symmetric eigenproblem exists. The
algorithms are based on a generalization of the Rayleigh quotient and the Lanczos method for computing
eigenpairs of standard symmetric eigenproblems. Monotone quadratic convergence of the basic method is
proved. Test examples are presented.

Key words, eigenvalues, eigenvectors, symmetric definite quadratic h-matrices, Lanczos algorithm

1. Introduction. Quadratic A-matrix problems consist of determining scalars
called eigenvalues, and corresponding n 1 nonzero vectors x, called eigenvectors,
such that the equation

(1) (MA 2 + CI +K)x 0

is satisfied, where M, C and K are given n n matrices. In addition, we assume that
M, C and K are real symmetric or Hermitian, M is definite (either positive or negative
definite) and the eigenvalues of (1) are real and can be divided into two equal disjoint
sets, and 6e, with the following properties:

P1) If Ai and Aj 5, then
P2) If Ai s (Se) and xi is its associated eigenvector, then Ai is the larger (smaller)

root of the quadratic equation (xMxi)A 2
/ (x*i Cxi)A + (x*i Kxi) O.

The eigenvalues in will be called primary eigenvalues, and those in 5e will be called
secondary. Their eigenvectors will be referenced similarly.

In this paper we present a basic method and algorithms for computing eigenpairs
of (1) when factorization of M, C, K or any combination of them is either impossible
or undesirable, such as might be the case if M, C and K are extremely large and
sparse. (See Scott [9] for alternatives when factorization is possible, and Ruhe [7] or
Lancaster [4] for a discussion of A-matrices in a more general setting.)

Problems of this nature occur in several application areas; we will briefly discuss
two of them. Lancaster [3] states that the determination of sinusoidal solutions to the
equations of motion for vibrating systems which are heavily damped results in such
a quadratic A-matrix problem. In these overdamped systems M, C and K are real
symmetric,M and C are positive definite, K is nonnegative definite, and the overdamp-
ing condition

(y *Cy )2 4(y*My)(y *Ky > 0

is satisfied for all vectors y 0. Proof that the eigenvalues for overdamped systems
are all real and obey properties P1 and P2 above can be found in Lancaster [3].
Problem (1) also arises in the dynamic analysis of spinning structures where the
gyroscopic effects cannot be ignored. (See Wildheim [12] and Lancaster [3].) In

* Received by the editors February 25, 1981. This research was sponsored by the Applied Mathematical
Sciences Research Program, Office of Energy Research, U.S. Department of Energy, under contract
W-7405-eng-26 with the Union Carbide Corporation.

f Department of Computer Sciences, University of Texas, Austin, Texas 78712.
Computer Sciences Division, Union Carbide Corporation, Nuclear Division, Oak Ridge, Tennessee
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gyroscopic systems M, C and K are real symmetric (Hermitian), M is negative definite
and K is positive definite. One can easily determine that all the eigenvalues are real,
that and 6e are the positive and negative eigenvalues, respectively and that properties
P1 and P2 are satisfied. In both overdamped and gyroscopic systems, the M matrix
is usually called the mass matrix and K the stiffness matrix. For spinning structures,
C is the Coriolis matrix. Thus, we have chosen the notation given in (1) rather than
the more standard mathematical notation using A, B and C for the matrices.

Due to the simplicity of the properties of gyroscopic systems, our model problem
for presentation and analysis of algorithms will be from this application area, except
where explicitly noted otherwise. That is, we will discuss algorithms for computing
eigenpairs of (1) where M, C and K are real symmetric, M is negative definite and
K is positive definite.

It can be easily verified that the eigenvalue-eigenvector pair (A, x) satisfies (1) if
and only if it also satisfies

0

Equation (2) is a generalized eigenvalue problem which will be denoted by (A AB)z
0. Also, the matrix A-IB is frequently referred to as the linear pencil (A, B). Note
that the A matrix is symmetric and the B matrix is symmetric and positive definite.

Scott [10] has developed and analyzed an algorithm for computing a few of the
smallest eigenvalues of generalized eigenvalue problems without factorization.
However, it would be inecient in time and storage to directly apply his algorithm
to (2) since the algorithm would be searching for an n-dimensional solution in a
2n-dimensional space. The method presented in this paper attacks the problem directly
in terms of (1).

In 2 we discuss generalizations of the Rayleigh quotient and present one which
is particularly attractive when working with quadratic l-matrices. Some theoretical
results on which the method is based are presented in 3. The basic vector algorithm
and its properties are presented in 4, with the block algorithm presented in 5. The
last two sections contain the numerical results of some test problems and conclusions.

2. Rayleigh quotient generalizations. Given any nonzero vector z, the Rayleigh
quotient for the linear pencil determines the "best" scalar using z as its associated
eigenvector which most closely approximates an eigenvalue. The definition of best is
based on the following theorem (see Parlett [5]):

THEOREM 1. For any nonzero vector z and scalar , there is an eigenvalue A of
the linear pencil (A, B) such that

(3)
Iluzll-,

where IIxlIu- xU-x,
The Rayleigh quotient p(z) minimizes the above bound over all scalars and

is given by

z*Az
(4)

z*Bz

Thus, in that sense, (p(z), z) is the best approximation to an eigenpair of the linear
pencil when z is given. We would like to extend this concept to the quadratic h-matrix
problem.
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Lancaster [3] has rewritten (4) in terms of an equation equivalent to (2) to produce
a generalization of the Rayleigh quotient for A-matrices of arbitrary order. For
quadratic A-matrices this generalization states that given any nonzero vector x and
a scalar a, the "best" approximation to an eigenvalue with x as its eigenvector is
given by

x*(M2 + Cot + K)x
pL OI, X OI

x*(2Ma + C)x

Best in this generalization means minimizing a bound similar to (3) when the scalar
a is used in the vector z in place of the eigenvalue A (cf. (2)). The main disadvantage
of pL(a, X) is this lack of freedom in choosing the scalar to use in the vector z.

Another generalization of the Rayleigh quotient can be obtained by combining
(2), (3) and (4) to form a new minimization problem. It will be helpful in describing
this generalization and for the remainder of the paper to make the following definitions’

k(x)=x*Kx, c(x)=-x*Cx, rn(x)=-x*Mx.

We know that given the vector z(o,)= [fx], the Rayleigh quotient for the linear pencil
is given by (4), which reduces to the following when considered as a function of r only’

2
o" c(x) + 2rk(x)

()
k(x trEm (x

Thus, a generalization of the Rayleigh quotient can be obtained by solving the following
problem for tro and using ’(tr0)"

II(A (o-)B)z (r)liB
min

IIBz()IIB-
The function to be minimized is a rational function with a sixth degree polynomial in
r in both the numerator and denominator, Also, some of the coefficients are dependent
upon M-1. Due to the factorization required to determine M-1 or to solve the
appropriate linear system, this generalization could not be used to solve our stated
problem. However, this approach was tried on some small test problems and appeared
to work quite well.

Given any nonzero vector x, potential eigenvectors z of the linear pencil (A, B)
would be linear combinations of the vectors [] and [0]. Using the Rayleigh-Ritz
procedure, the "best" approximation to two eigenvalues and eigenvectors using vectors
in this space can be determined. Best in this context means minimizing the Frobenius
norm of the 2 x 2 scaled residual matrix (see Parlett [5]). The characteristic equation
of the reduced linear pencil in the Rayleigh-Ritz procedure is the quadratic equation

2(5) o" m(x)+o’c(x)+ k(x) 0.

Thus, the approximations to two eigenvalues of the quadratic A-matrix are given by
its roots, which can be easily determined by

(6) p:(x)
c(x) + 4c2(x)-4m(x)k(x)

-2re(x)

Some observations concerning p:(x) are noted below:
(i) p:(x) may take on two different values corresponding to the choice of sign in

the quadratic formula. One value will always be positive and the other negative since
m(x) < 0 and k(x)> 0 for all vectors x. If an approximation to a positive eigenvalue
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(i.e., primary eigenvalue in the general problem) is desired, then the + sign should
be chosen, with the sign selected to approximate a negative (secondary) eigenvalue.

(ii) If x is an eigenvector of the quadratic A-matrix, one of the values of [92(x)
will be an eigenvalue. If x is a double eigenvector, that is, an eigenvector for two
different eigenvalues, both values of p2(x) will be eigenvalues.

(iii) pL(a, x) derived by Lancaster is just one Newton step from a for computing
a root of the quadratic equation (5). Since [92(x) computes the root directly, p2(x)
would be expected to outperform pL(a, x) and not suffer from the potential defects
of Newton’s method.

Due to the simplicity of its determination and to its properties presented above
and in the next section, we will use [92(x) as the generalization of the Rayleigh quotient
appropriate for the particular class of quadratic A-matrices under discussion in this
paper. The values [92(x) are identical to the primary and secondary functionals discussed
by Dufiin [1]. Dufiin establishes a minimax characterization of [92(x); however, he
does not present a theoretical basis for how and why the pair ([92(x), x) most closely
approximates an eigenpair of the quadratic A-matrix.

3. Eigensystem properties. For this section it will be convenient to denote the
positive value of [92(x) by [9 (x) and the negative value by [9 (x). The matrix Mr2+
Cr +K will be denoted by W(r) and the quadratic polynomial r2m(x)+rc(x)+ k(x)
by Qx(cr). Also, we refer to the eigenvalues of the quadratic A-matrix by Ai with
A-n<=h-n+l<’’ ’<h-l<0<hl<’’’<=An.

The next three theorems and two lemmas are similar to those found in Duflin
[1], Lancaster [3] and Rogers [6] for overdamped systems; thus, their proofs are
omitted.

THEOREM 2. MA + CA +K is a simple A-matrix.
LEMMA 1. For any x O, Q’x(p (x)) < 0 and Qx(p (x)) > O.
LEMMA 2. Let hi, hj be positive eigenvalues with eigenvectors xi, xj, respectively

and hi < hi. Then xi, xi are linearly independent, and if x is any linear combination of
xi and xi, then

THEOREM 3. Let AiI<Ai2<’’" <Ai,. be positive eigenvalues with eigenvectors
xil, xi2," xim, respectively. Then these eigenvectors are linearly independent, and if x
is any linear combination of them,

+(x)<XAil [92 ira"

Lemma 2 and Theorem 3 remain true if the word positive is replaced by negative
and [9z- (x) is replaced by [9 (x). Also, it can be easily shown that for every 3’ between
Ail and Ai, there exists a vector x which is a linear combination of the eigenvectors

/ (x) equalsXil, Xi2, Xira such that
THEOREM 4. The eigenvectors corresponding to the positive eigenvalues span the

space consisting of all real vectors ofdimension n, and so do the eigenvectors correspond-
ing to the negative eigenvalues.

When using vector-type iterations to converge to eigenpairs, schemes are
frequently employed to control the iteration so that convergence to previously deter-
mined eigenpairs or undesirable eigenpairs is prevented. From linear pencil theory
and (2), we can derive the following orthogonality relationship for eigenpairs (Ai, Xi)
of the quadratic A-matrix, when

(8)
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Unfortunately, the appearance of both hg and hj in this expression means that
the eigenvalue to which we are trying to converge, say hi, must be known to prevent
the vector iteration from converging to xi. In the algorithm presented in the next
section, the following theorem (Scott [9]) provides us with the ability to control our
iterative process"

THEOREM 5. The number ofnegative eigenvalues of W(tr) =-- Mtr2 + Co" +K equals
the number o[ eigenvalues o[ the quadratic eigenproblem between tr and O.

4. The basic algorithm and analysis. In 2 we have presented a generalization
of the Rayleigh quotient which determines the "best" approximation to an eigenvalue
given an approximate eigenvector. If a method for computing the "best" approximation
to an eigenvector given an approximate eigenvalue is determined, then the basis of
an algorithm would exist. We observe that if cr is an eigenvalue of the quadratic
A-matrix with x as its eigenvector, W(cr) has the eigenpair (0, x). Recalling Theorem
5 and that convergence to the eigenvalues of smallest magnitude is desired, the
appropriate eigenvector of W(cr) to choose for our iteration corresponds to the kth
most negative eigenvalue of W(cr) when convergence to the kth smallest positive or
negative eigenvalue is desired. The Lanczos algorithm (see Parlett [5]) does an effective
job in computing this eigenvector when k is not large with respect to n. This leads
to the following algorithm for converging to the m smallest positive eigenvalues:

THE QUADRATIC RAYLEIGH QUOTIENT (QRQ) ALGORITHM

I) Set the vector Xo to random numbers.
II) For k- 1, 2,..., m do 1) and 2),

1) For 1, 2,... until convergence do a) and b),
+ (Xi--1).a) Set tri p2

b) Set xi Yk where (0j, yj) are eigenpairs of W(tri) with 0a -< 02 <--" <-- 0,
and yi unit-length vectors.

2) Set Xo to the Yk+ computed in step lb.

An educated guess, if known, could be used for initializing x0 in step I.
Similar algorithms exist for converging to the other extreme positive and negative

eigenvalues of (1). To converge to the m smallest negative eigenvalues, p-(xi-1) in
step II.lb should be replaced by p (xi-1). To converge to the eigenpairs associated
with the largest positive or negative eigenvalues, Yk in step II.lb should be replaced
by Yn-k+l and Yk+l in step II.2 by Yn-k.

In our analysis of the QRQ algorithm, we will concentrate on convergence to A 1,

the smallest positive eigenvalue of the quadratic A-matrix, which may be a multiple
eigenvalue. The theorems and proofs for convergence to the other most extreme
eigenvalues in and S/’ are very similar. Comments concerning convergence to the
interior eigenvalues will be given at the end of this section.

THEOREM 6. The sequence {cri} determined by the QRQ algorithm converges
monotonically downward to A 1.

Proof. Theorem 4 states that the initial vector x0 is a linear combination of the
+eigenvectors corresponding to the positive eigenvalues. Therefore, crl--p2 (Xo)>--A1

by Theorem 3. For 1, 2,. W(cri) xi 01xg, and since xi is unit-length,

Ox,(O’i) m(xi)o’2i + c(xi)o’i q k(xi) O1,

with 01 =<0 by Theorem 5. Recalling that m(xi)<O and that O’i+1 is the positive root
of Qx,(tr), tri/l is less than or equal to O" with equality holding only when 01 0, that
is, only when O" "--O’i+1 -’-, 1. Thus, {tri} is a decreasing sequence converging to A 1. [-1



QUADRATIC A-MATRIX PROBLEMS 63

THEOREM 7. The convergence of the sequence {try} determined by the QRQ
algorithm to h is asymptotically quadratic.

Proof. The theorem could be proved by relying on perturbation theory for
quadratic polynomials; however, we shall present the straightforward proof which
does not rely on the theory of equations.

Let h cri e. For e less than the smallest nonzero eigenvalue of MA 12 + CA + K,
we can determine a bounded/ such that x ax + eflw, where (h 1, x) is an eigenpair
of the quadratic h-matrix; that is, x is unit-length and in the null space of MA + CA +
K, and w is unit-length and orthogonal to this null space. Note that a is also bounded.
We have

(9) x Mtr + Co’i --K x 01,

which implies

e2Bw*(Mh + CA +K)w + (ax + eBw)*[(2Mh + C)e + Me2](ax + eBw) 81.

Therefore,

(0) 01 aEx*(2MA -Jc" C)xe - O(E2).
From (6) and (9), we have

O’i+1 O’i +
4’C2(Xi) 4m (xi)k (xi) 42(xi) 4m (xi)[k (xi) 81]

-2m(xi)

Expanding the second term in the numerator of the above expression by a Taylor
series around the first term, which is never zero by Lemma 1, yields

81
o.i+ o-i -.. -.. 0 021)

4c2(xi) 4m (xi)k (xi)

and, from (6),

(11) O’i+1 O’i -{-
81 + O(012)"

-2m (Xi)O’i+l C(Xi)

Now, -2m(xi)o’i+l-C(Xi)=-x*i[2M(A1 -["te)’al-C]xi where _-> 1 by Theorem 6. Sub-
stituting for xi, we have

(12) -2m(xi)o’i+l-C(Xi) -a2x*(2gA1 + C)x @ O(e).

Using (10) and (12) in (11) results in
2 ga x (2MA1 + C)xe + O(e 2)

O’i+1 O’i- 2 O" E q- O(E 2) X + O(E2) []
a x*(2Mal+C)x +O(e)

Convergence of the basic algorithm to the eigenvalues other than the extreme
positive and negative eigenvalues cannot be guaranteed, as the following example,
similar to an example in Scott [10], illustrates:

-6 12+ 3 x=0.
-3 1

The eigenvalues of the quadratic A-matrix are +1, +(1/x/), +/-(1/x/), with eigenvec-
tors el, e2 and e3 respectively, for both of the + values. The vector ei is the ith column
of the identity matrix. W(tr) is a diagonal matrix with eigenvalues -tr2+ 1, -6o’2+ 3
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and --3o’2+ 1 down the diagonal and el, e2 and e3 as their respective eigenvectors.
Therefore, in the QRQ algorithm, after converging to the smallest positive eigenvalue
1/x/, the initial vector x0 for starting the iteration to converge to the second smallest
positive eigenvalue would be el. The sequence o.i for 1, 2,. would then alternate
between 1 and 1// (xi would alternate between el and e3) and would never
approach the eigenvalue 1/x/. This oscillation rarely happens in actual problems,
and convergence to these eigenvalues can be expected. However, an extension of the
basic algorithm, which incorporates a block of m vectors X instead of the single
vector x, guarantees monotonic quadratic convergence to the m extreme eigenpairs
as discussed in the following section.

5. The block algorithm. Comparing the above example of nonconvergence for
an interior eigenvalue to the theory for an extreme eigenvalue, it is clear that it is the
lack of monotonicity of the iterates that allows for the nonconvergence to interior
eigenvalues. Convergence will still be asymptotically quadratic if it occurs.

To recover global convergence for interior eigenvalues it is necessary to use a
block version of the algorithm. The block size must be at least as large as the distance
from the desired eigenvalue to an edge of the spectrum. That is, if the third smallest
positive eigenvalue is desired, then a block size of at least three is needed. In the
following discussion, we will use p to denote the block size.

Instead of computing just one eigenvector of W at each step, the block algorithm
computes p of them. It then uses these p vectors as columns of the n x p matrix X
to compute 2p approximate eigenvalues and eigenvectors of the quadratic problem
(1) by solving the reduced quadratic problem

(13) m(X)O2 + c(X)O + k(X),
where re(X)= X*MX, c(X)= X*CX and k(X)= X*KX. This reduced problem can
be solved by forming the 2p x 2p linear system

k (X) c (X) 0 -m(X)

and using a linear pencil solver. The appropriate eigenvalue of (13) is then used to
form the new W for the next iteration. At the termination of the algorithm, it is
necessary to form the proper linear combination of the columns of X to determine
the eigenvector of (1).

We give a summary of the algorithm for computing the m smallest positive
eigenvalues.

THE BLOCK QUADRATIC RAYLEIGH QUOTIENT (BQRQ) ALGORITHM
0 0I) Choose p _-> m and set Xo (x, x2," , xp) to random vectors.

II) Fork-l,2,...,mdol) to3),
1) For 1, 2,.. until convergence do a) and b),

a) Set o.i to the kth smallest positive eigenvalue of m(Xi_l)O2 + c(Xi-1)O /
m (Xi-1),

b) Set the columns of Xi to the eigenvectors associated with the p smallest
eigenvalues of W(o.i).

2) Compute Xk XiSk, where Sk is the eigenvector of o.i in step l a.
3) Use Xi as the new X0.

The Cauchy interlace theorem assures that the iterates in the BQRQ algorithm
will be monotonic. The convergence and the asymptotic quadratic convergence can
then be proved exactly as in the single vector version.
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6. Numerical results. A block algorithm has been coded to compute either the
smallest or largest m eigenvalues in or 5 for a quadratic A-matrix with the properties
discussed in the first paragraph of 1. This code solves for the Rayleigh-Ritz values
(step II.la) via the RGG algorithm found in EISPACK (see Garbow et al. [2]), which
is based on an extension of the QZ algorithm by Ward [11] and solves the inner-loop
eigenproblem (step II.lb) via the block Lanczos algorithm (see Scott [8]). Several test
problems have been run using a single-precision code (8 decimal digits) on a PDP-10
computer at the Oak Ridge National Laboratory. Sample results are presented below
with only the lower part of the symmetric matrices given.

Test case 1. Distinct eigenvalues.

-10 1
-11 2 1

M- 2 -12 C 1 2 0
-2 -1 -10 2 1 -2 2
-1 1 2 -11 1 3 -2 3 3

10
2 9

K -1 3 10
2 -1 2 12

-2 -2 -1 1 10

This test case was generated by inserting pseudorandom integers in the matrices,
making sure that the diagonally dominant M and K matrices were negative definite
and positive definite respectively. The eigenvalues to 3 decimal figures are -1.27,
-1.08, -1.00, -.779, -.512, .502, .880, .937, 1.47 and 1.96. The code was asked to
compute the three smallest positive eigenvalues using a block size of 3 by iterating
until the relative change in the eigenvalue was less than the machine precision. The
code was also used to compute the 3 most negative eigenvalues requesting the same
accuracy. Tables 1 and 2 present the results of the separate compute runs. The number
of Lanczos steps indicate the total number of such steps taken until convergence. The
number of Lanczos steps taken at any particular iteration varied.

TABLE

Actual Error in
eigenvalues Iterations Lanczos steps computed eigenvalues

.502415273 3 8 4 10-8

.879927281 3 8 x 10-8

.936550669 2 6 3 10-8

TABLE 2

Actual Error in
eigenvalues Iterations Lanczos steps computed eigenvalues

-1.27188510 3 7 10-7

-1.07716772 2 6 10-7

1.00483822 2 6 I x 10-7
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Test case 2. Multiple eigenvalues.

1 -2
2 0 -9

-3
0

-3
-6

-3
0
0

1
1 5
1 -1 2
2 -2 0 14

These matrices were generated by coupling two quadratic A-matrices of order 2 and
applying a symmetric transformation to the resulting block diagonal matrices. The
eigenvalues are -4-x/]-(= -8.36), -4- 3x/( -8.24), -2, -2, -4 + 3x/(.243),
-4 + x/-i-(.359), 1 and 1. Note that the problem has two multiple eigenvalues and
two eigenvalues very close for both the set of positive eigenvalues and the set of
negative eigenvalues. The results from the code requesting machine accuracy for
computation of the two smallest negative and positive eigenvalues are given in Tables
3 and 4, respectively. A block size of two was used in both runs. Note that multiple
eigenvalues caused no computational problems; in fact, the second copy of -2 was
determined after only one iteration. A consequence of using the block Lanczos
algorithm is that multiple eigenvalues will be determined at the rate one per iteration
as this example illustrates.

TABLE 3

Actual Error in
eigenvalues Iterations Lanczos steps computed eigenvalues

-2.0 3 7 0.0
-2.0 2 x 10-7

TABLE 4

Actual Error in
eigenvalues Iterations Lanczos steps computed eigenvalues

.242640687 5 12 x 10-8

.358898944 3 8 3 x 10-8

Test case 3. Sparse problem. The lower triangular part of the symmetric M matrix
contains -12’s down the main diagonal, l’s down the first subdiagonal and l’s down
each tenth subdiagonal (i.e., tenth, twentieth, thirtieth, ..., ninetieth subdiagonals).
The lower part of the symmetric C matrix contains l’s down the first subdiagonal
and -l’s down the first column below its second element. The symmetric K matrix
contains 4’s down the main diagonal and l’s down the fiftieth super- and subdiagonals.
Table 5 presents the results from requesting the computation of the 5 smallest negative
eigenvalues to an accuracy of 5 decimal digits. Note that the algorithm required a
fairly large number of Lanczos steps to converge to the second smallest negative
eigenvalue. This slow convergence is due to the cluster of eigenvalues near -.439; in
fact, there are eleven eigenvalues of the quadratic problem in the interval
(.4392, .4489). The third through the fifth eigenvalues were determined much quicker
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since the spectrum of W(tr) around tr .44 had been essentially resolved resulting in
better initial vectors for the iteration.

TABLE 5

Actual Error in
eigenvalues Iterations Lanczos steps computed eigenvalues

-.30231628 4 16 10-7

-.43926127 3 30 1 10-7

-.43951256 2 2 10-8

-.43992960 6 3 10-s

-.44051182 2 2 x 10-8

7. Conclusions. A basic method has been presented to compute some eigenvalues
and their associated eigenvectors of the quadratic A-matrix (1). Monotone quadratic
convergence to the extreme eigenvalues in and using the vector algorithm and
to any eigenvalue using the block algorithm has been proved. However, the cost of
computing the eigenvectors of W(tri) in the inner loop will limit the practical value
of either algorithm to determining only a few of the eigenpairs of (1).
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THE ADVANTAGES OF INVERTED OPERATORS
IN RAYLEIGH-RITZ APPROXIMATIONS*

D. S. SCOTT’

Abstract. Generalized eigenvalue problems are often solved by a combination of inverse iteration and
the Rayleigh-Ritz procedure. In this paper we show that significant advantages can be obtained in this
context by applying the Rayleigh-Ritz procedure to an inverted operator, either explicitly while using
subspace iteration or implicitly by applying the Lanczos algorithm to the inverted operator. Since the
Lanczos algorithm is much more powerful than subspace iteration it should be used whenever possible.

Key words, eigenvalues, eigenvectors, symmetric matrices, Rayleigh-Ritz procedure, Lanczos
algorithm

1. Introduction. In this paper we consider the problem of computing some
eigenpairs of the generalized eigenvalue problem

(1.1) (A-AM)z =0,

where A and M are symmetric (Hermitian) matrices and M is positive definite. To
be explicit we assume that all the eigenvalues lying in some given interval [a, b] are
to be computed along with the corresponding eigenvectors. Such problems occur in
the dynamic analysis of structures and in many other applications.

Notation. hi A2, -< An will be the eigenvalues of the pencil (A, M).
Section 2 describes subspace iteration, the most commonly used solution tech-

nique for (1.1), 3 describes two potential problems with its usual implementation and
4 shows that both problems can be eliminated if the Rayleigh-Ritz procedure is

applied to an inverted operator. Section 5 shows that the Lanczos algorithm can be
applied directly to the inverted operator without further modification. Section 6
discusses the important special case of M semidefinite, and 7 presents a numerical
example. Section 8 gives our summary and conclusions.

2. Subspace iteration. The most commonly used solution technique for general-
ized eigenvalue problems is subspace iteration (see Bathe and Wilson [1976] for
more details), which is a combination of inverse iteration to generate subspaces
and the Rayleigh-Ritz procedure to resolve the subspace into approximate eigen-
vectors.

Before starting the algorithm, a shift tr is chosen (in the desired interval [a, b ]) and
the triangular factorization (A- trM)= LDL* is computed. The number of negative
elements of D equals the number of eigenvalues of the pencil (A, M) which are less
than tr. This fact is particularly useful if a sequence of shifts is used since it insures
that no eigenvalue can be unknowlingly missed. The operator (A-o’M)-M has the
same eigenvectors as the original pencil (A, M) but the eigenvalues are transformed
to $i--1/(hi-tr). This means that the eigenvalue nearest tr (provided it is unique)
becomes the dominant one and the power method with (A- trM)-lM will converge
to the corresponding eigenvector.

* Received by the editors February 27, 1981 and in revised form September 15, 1981. This research
was sponsored jointly by the Mathematics Department, University of Linkoping, Sweden and the Applied
Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy under
contract W-7405-eng-26 with the Union Carbide Corporation.

* Department of Computer Sciences, University of Texas, Austin, Texas 78712.

68



INVERTED OPERATORS IN RAYLEIGH-RITZ APPROXIMATIONS 69

If more than one eigenpair is desired, then several vectors must be operated on
simultaneously. To prevent all the vectors from converging to the same eigenvector,
it is necessary to modify them at each step. In subspace iteration this is done by
applying the Rayleigh-Ritz procedure. Unfortunately the operator (A-o’M)-IM is
not symmetric, so it is unsuitable for the Rayleigh-Ritz procedure. In standard subspace
iteration the original pencil (A, M) is used instead. We give a listing of the algorithm.

SUBSPACE ITERATION

Initialize’ Choose r and an initial set of vectors Xo (x l, X2,’’’, Xj) and factor
A trM LDL*.
Iterate: For k 1, 2, 3,... until convergence
1. Solve (A -o-M) Yk MXk-1 for Yk.
2. Compute the reduced matrices Ak YAYk and Mk YMYk.
3. Solve the reduced problem AkGk =MkG,Ok for eigenvalues Ok

diag (01, 02,’ ’, 0j) and normalized eigenvectors Gk (gl, g2," ’, gj).
4. Set Xk YkGk.
The Ritz values (the O’s) converge to the /" eigenvalues closest to cr and the

columns of X converge to the corresponding eigenvectors. In practice it is found to

be cost effective to iterate with more vectors than are needed.

3. Error bounds and ghost vectors. One problem with subspace iteration as given
above is the lack of a guaranteed stopping criterion. Bathe and Wilson recommend
stopping when the change in the 0’s from one step to the next is less than the desired
accuracy. While this has been found to be sufficient for most practical problems, it

would be reassuring to have error bounds available in deciding when to stop. The

following theorem (Parlett [1980, p. 318]) gives the simplest bound. For any vector

THEOREM 1. For any vector x 0 and any scalar 0, there exists an eigenvalue A

of the pencil (A, M) with
The M-1 norm in the denominator of the bound is not of concern since the M

cancels, but evaluating the numerator requires solving a system of equations in M. If
M is not the identity matrix, this may be expensive or impossible (if M is only positive
semidefinite). All other available bounds also involve M- norms.

The other problem can occur when the pencil (A, M) has eigenvalues outside
both ends of the desired interval [a, b], that is, when the desired eigenvalues are
interior. In this case it is possible to have more Ritz values (0’s) in the interval [a, b]
than there are eigenvalues. This happens when a linear combination of eigenvalues
outside both ends of [a, b] is found to lie inside [a, b]. The mere existence of these
"ghost values" makes it difficult to monitor convergence of the desired eigenvalues
(see Taylor and Rollins [1978], for example), but (even worse) it is possible for ghost
vectors to prevent the discovery of a good approximate eigenvector which lies in the
subspace. We give a small example illustrating this phenomenon.

Example 1. Let e << 1, M I and

e e

0 1 e

2 2The eigenvalues of A are h E --41 e e 1, h 2 E and h 3 e + /i e e + 1.
There is only one eigenvalue near O, and one would expect to find it quickly using
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inverse iteration (tr =0). Indeed, if we take Xo (1 1 1)* (a common choice), then

Y A-Xo
1

and X1 with eigenvalue estimate e and residual norm e, which is quite satisfac-

tory. However, if the vector e3 (0 0 1)* is added to the initial subspace so that

Iil1 0
1 1

then

Y1 A-1Xo

1
-1

which leads to reduced matrices

and

M YY

and finally to 01 0 and 02 2e with

Xl 2-/2

Both 0’s are near 0, and neither column of X1 is near an eigenvector (each has
residual norm 2-1/2). Thus, the addition of e3 to the initial subspace has concealed
the good approximate eigenvector el.

We show in the next section that both of these difficulties can be eliminated by
applying the Rayleigh-Ritz procedure directly to an inverted operator.

4. Inverted operators. The eigenvalues of (A trM)-1 are equal to 1/(Ai tr).
Thus, the problem of finding all the eigenvalues of (A, M) inside the interval [a, b]
is transformed into finding all the eigenvalues of (A-trM)-lM outside the interval
[1/(a-tr), 1/(b-tr)]. Since these are the extreme eigenvalues, it is impossible for
,linear combinations of unwanted eigenvalues to lie in the range of interest. Therefore
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the problem of ghost values could be eliminated if the Rayleigh-Ritz procedure could
be applied to (A-trM)-IM. Unfortunately, as mentioned previously, the operator
(A- trM)-lM is not symmetric and so is unsuitable for the Rayleigh-Ritz procedure.

There are two ways to symmetrize the operator (A-trM)-IM, which are
equivalent if M L

1. Factor M =LL* and use L*(A-trM)-IL. The operator L*(A-trM)-IL is
symmetric and has the same eigenvalues as (A-(rM)-IM. Hence the desired eigen-
values are the extreme ones and no ghosts can occur. Furthermore, since this method
leads to a standard eigenvalue problem there is no need to compute M-1 norms of
residuals and it is possible to use the Lanczos algorithm. See Ericsson and Ruhe
[1980] for more details. The major drawback of the method is the required factoriz-
ation of M. There is also the nuisance of back transforming the computed eigenvectors,
since the eigenvectors of L*(A (rM)-IL are different from those of the pencil (A, M).

2. Use the pencil (M(A-trM)-IM, M). This pencil has the same eigenvalues
and eigenvectors as the operator (A- trM)-IM. Therefore, there are no ghost vectors
and no need to back transform the computed eigenvectors. Furthermore, the computa-
tion of the bound in Theorem 1 does not require the factorization of M since the
M-1 cancels in evaluating IIM(A trM)-lMx OMXlIM-’. The only apparent drawback
to method 2 is the inability to use the Lanczos algorithm. However, in the next section
we will show that it is possible to run the Lanczos algorithm on the pencil (M(A-
trM)-IM, M) without factoring M.

In either case it is necessary to back transform the computed eigenvalues using
the formula

where 0i is the ith computed eigenvalue. We now return to Example 1 and examine
the effect of applying the Rayleigh-Ritz procedure to the inverted operatorA- (tr 0).

1 -1
--s e -1 e -1

e -s 1 s -e 1
0-1 1 0 1 1

The eigenvalues of A-1 are approximately 1/(e- 1), 1/(e + 1) and 1/e. The desired
eigenvalue is now I/e, which is the dominant eigenvalue of A-1. The vector (1 e 0)*
is still a good approximate eigenvector (as before), but the addition of e3 to the initial
subspace does not obscure this good vector when the inverted operator is used for
the Rayleigh-Ritz procedure as shown below. Recalling from before that

1
7 -1

1 1
0 0

leads to

A Y*A-1 Y1

1 1 1
---+2- e ---5+ 2- 2e

_4+2_2e __1 4e
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and

liar1 Y* Y1
_--

Solving this reduced problem yields 01 1/e and 02 --e with

gl 2

Back transforming the 0’s yields - e and - 1/e, only one of which is near zero.
The first column of Y is still very close to the eigenvector of A. The addition of e3
to the initial subspace has not concealed this vector.

5. The Lanczos algorithm. In Parlett [1980, p. 323] it is shown that the Lanczos
algorithm can be run directly on the pencil (A, M) provided M is positi,e definite
and that certain systems of equations with M as the coefficient matrix can be solved.
The form of the equations is

(5.1) Mu+ Aq Mqo +Mq_fl.
If the pencil (M(A o-M)- M, M) is used, then every term in (5.1) has a leading
factor M and the vector Ui+l can be found by canceling the M’s. That is,

(5.2) ui+ (A o-M)-Mqi qioi + qi_iBi,

and the need to solve equations in M has disappeared. We give a listing of the
algorithm.

THE LANCZOS ALGORITHM ON (M(A- trM)-lM, M).
Pick rl rs 0, compute B x/r*lMr, and set q0 0.
For j= 1, 2,.. do 1 to 5. q=r/

2. u (A o’M)-lMq q-l
3. o qMu
4. r+ ll] qjolj

5. [3i+ x/r+ Mr +

if/i+x 0 Stop.

The above algorithm is not new; it has appeared in at least two technical reports
(Newman and Flanagan [1976] and van Kats and van tier Vorst [1977]) and probably
others, although it seems not to have appeared in the open literature. Newman and
Flanagan derive the above algorithm and then go on to describe an implementation
which in all other respects is seriously flawed, van Kats and van der Vorst give a
slightly more general derivation which allows the A matrix to be skew-symmetric but
make no mention of the possibility of using origin shifts.

The above algorithm can also be derived directly from the standard Lanczos
algorithm simply by observing that the operator (A-o-M)-M is selfadjoint with
respect to the M-norm. Thus the only required change is that the inner products
needed in the algorithm must be computed as M-inner products.

All the Lanczos theory goes through in this context. See Parlett [1980] for a
general discussion and Ericsson and Ruhe [1980] for the modifications needed in the
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context of inverted operators. In particular, no factorization of M is needed in
computing the residual norms and it is straightforward to incorporate Ericsson’s
perturbation of the Ritz vectors to improve the accuracy of the computed eigenvectors
with respect to the original pencil (A, M).

6. Semidefinite M. In structural vibration problems the M matrix is often
diagonal and only positive semidefinite. At first glance this would appear to invalidate
the use of the Lanczos algorithm since it was derived by "cancelling" M’s or by
invoking an M-norm.
M now represents only a seminorm which could lead to a ]+1 0 in step 5 of

the algorithm even when r/ # 0. Fortunately a zero/3 indicates that all the computed
eigenvalues are exact, and so a zero/ is something to be welcomed rather than feared.
In essence, the algorithm behaves as if the starting vector has been purged of any
component in the direction of the infinite eigenvalues, and thus it is restricted to the
finite subspace and can compute only the finite eigenvalues.

Viewing the process with respect to the pencil (M(A-o’M)-M, M) leads to a
similar conclusion. Each infinite eigenvalue has become a continuous spectrum. This
in turn could lead to a reduced problem with a continuous spectrum which is known
to cause numerical problems. However, the Lanczos algorithm generates a reduced
problem with the identity as the reduced mass matrix. The only effect of the continuous
spectrum is the eventual appearance of // 0 when r/ # 0. However, as noted
above, this occurs precisely when every finite eigenvalue represented in the starting
vector rt has been computed exactly.

Thus the above algorithm is only effective for computing the finite eigenpairs. If
the infinite eigenvectors are desired, it is necessary to compute the null vectors of the
pencil (M, I).

The final theoretical problem is the interpretation of the inertia of A-trM
LDL*, since infinite eigenvalues can be either "positive" or "negative" depending
on the matrix A. However, the difference in the inertia counts at two different values
of cr still gives the number of eigenvalues between them; which is the important
quantity.

7. Numerical example. The following numerical example was chosen to illustrate
the above version of the Lanczos algorithm. The particular implementation of the
code uses block Lanczos with no reorthogonalization and will be documented in a
future paper.

The A matrix is tridiagonal with

aii-" (-1)i+2, 1, 2,’ 100,

ai,i+l= 1, i= 1, 2,..., 99,

ai.i- 1 i=2, 3,..., 100,

while the M matrix is diagonal with

1
mii -7, 1 mod 3, m, 0, = 1 mod 3.

There are 34 infinite eigenvalues of (A, M), 17 of which are "positive" and 17
of which are "negative". The other 66 eigenvalues are given in Table 1. The code
computed all the eigenvalues of (A, M) in the interval [-100, 100] to four figures of
accuracy. A block size of 4 was chosen by the code.



74 D.S. SCOTT

TABLE
Finite eigenvalues of (A, M).

-308.255 7.40311
-289.244 14.1328
-270.185 21.4065
-251.127 32.4894
-232.070 34.9585
-214.675 48.3409
-213.014 51.3299
-201.392 61.7082
-193.960 70.2620
-188.102 75.0432
-174.909 88.3626
-174.810 89.2522
-161.517 101.673
-155.861 108.268
-148.223 114.978
-136.818 127.299
-134.927 128.278
-121.628 141.575
-117.782 146.339
-108.326 154.870
-98.7579 165.386
-95.0189 168.164
-81.7046 181.456
-79.7525 184.434
-68.3782 194.747
-60.7847 203.487
-55.0308 208.097
-41.9884 222.541
-41.5448 241.598
-28.2057 260.656
-23.2134 266.611
-14.5097 279.715
-5.46899 298.834

The code is designed to use a sequence of shifts to compute the eigenvalues but
the shifting strategy will not be discussed here. A total of six shifts was used, the first
two of which were at 100 and -100, to determine the number of desired eigenvalues.
The number o[ eigenvalues accepted or each shit are given in Table 2. Every
computed eigenvalue was accurate to at least 4 figures.

TABLE 2
History ofLanczos run.

100 62
-100 37 11 5
-48.9 44 10 8
22.07 53 4 5
58.35 57 4 5
89.34 62 2 2

Number of Lanczos Eigenvalues
Shift negative pivots steps accepted
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$. Conclusions. It has been shown that significant advantages can be obtained
if an inverted operator is used for the Rayleigh-Ritz step of subspace iteration.
Furthermore, the Lanczos algorithm presented here can be used whenever subspace
iteration is applicable and the same advantages are obtained. Since the Lanczos
algorithm is much more effective than subspace iteration (see Nour-Omid, Parlett and
Taylor [to appear]) it is always to be preferred. The algorithm given here is also
preferable to that based on the operator L*(A- trM)-lL, since no factorization of M
is required and no back transformation of the computed eigenvectors is needed. This
is especially true if M is semidefinite, since the factorization of M may involve
numerical rank determination and the back transformation of the eigenvectors is more
complicated.

Acknowledgment. The author thanks B. N. Parlett for pointing out the derivation
of the Lanczos algorithm based on viewing (A trM)-IM as selfadjoint in the M-norm.
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GLIMM’S METHOD FOR GAS DYNAMICS*

PHILLIP COLELLA"

Abstract. We investigate Glimm’s method, a method for constructing approximate solutions to systems
of hyperbolic conservation laws in one space variable by sampling explicit wave solutions. It is extended
to several space variables by operator splitting. We consider two problems. 1) We propose a highly accurate
form of the sampling procedure, in one space variable, based on the van der Corput sampling sequence.
We test the improved sampling procedure numerically in the case of inviscid compressible flow in one
space dimension and find that it gives high resolution results both in the smooth parts of the solution, as
well as at discontinuities. 2) We investigate the operator splitting procedure by means of which the
multidimensional method is constructed. An O(1) error stemming from the use of this procedure near
shocks oblique to the spatial grid is analyzed numerically in the case of the equations for inviscid compressible
flow in two space dimensions. We present a hybrid method which eliminates this error, consisting of Glimm’s
method, used in continuous parts of the flow, and the nonlinear Godunov method, used in regions where
large pressure jumps are generated. The resulting method is seen to be a substantial improvement over
either of the component methods for multidimensional calculations.

Key words, random choice method, gas dynamics, Glimm’s method

1. Introduction. The problem which motivates this study is the numerical calcula-
tion of time-dependent, discontinuous solutions to compressible fluid flow problems
in one or more space variables. There are three criteria which such approximate
solutions must simultaneously satisfy.

1) The approximate solution must be reasonably accurate in regions where the
flow is smooth. Continuous waves should move at the correct speed, have the correct
shape, steepen or spread at the correct rate.

2) Discontinuities which are transported along characteristics should be modeled
in the approximate solution by sharp jumps which are transported at the correct speed.
Examples of such discontinuities are" contact discontinuities (across which the density
and temperature have jump discontinuities while the pressure and velocity remain
continuous); the interface between two different materials, or between two different
thermodynamic phases of the same material; lines or surfaces across which the solution
is continuous, but some derivative of the solution is.not.

3) Nonlinear discontinuities should be computed stably and accurately. Such
discontinuities occur, for example, when there is mass transported across the discon-
tinuity, as in the case of shock fronts in an ideal gas.

The main method used for computing such solutions has been to solve a set of
finite difference equations which approximate the differential equations of motion.
However, it is difficult to construct difference methods which satisfy all three of the
above criteria simultaneously. For example, it is well known that a high order difference
method may generate oscillations behind a shock. A first-order method will generally
treat the same shock correctly, but numerical diffusion will cause it to give low-
resolution results in continuous parts of the flow.

We will be examining an alternative approach to computing discontinuous flows,
known variously as Glimm’s method, the random choice method, or the piecewise
sampling method. This method was first used by Glimm [10] as part of a constructive

* Received by the editors September 3, 1980, and in final form April 15, 1981.
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existence proof of existence of solutions to systems of nonlinear hyperbolic conserva-
tion laws. It was developed by Chorin [3], [4] into an effective numerical method in
the case of gas dynamics. In the first reference Chorin also introduced a multi-
dimensional version of the scheme; in the second, he applied the method of reacting
gas flow in one space variable. Since that time, the method had been used to compute
compressible flow in cylindrical or spherical geometry (Sod [20], [22]), and in applica-
tions to some problems in petroleum engineering (Concus and Proskurowski [7],
Albright, Concus and Proskurowski 1 ], Glimm, Marchesin, and McBryan [10], Glimm,
Marchesin, Isaacson, and McBryan [11]).

Although one computes solutions on a grid with Glimm’s method, it is not a
difference method. Rather than computing a weighted sum to arrive at the value of
the solution at a grid point, one samples values from an explicit wave solution.
Thus, the method has built into it an approximate form of wave transport and
interaction, without the smoothing of such information inherent in averaging.
The introduction of such a sampling technique as a numerical method is quite recent,
compared to the length of time difference methods have been in use, and has not
been subject to the extensive scrutiny and application from which the latter has
benefited. One of the purposes of this study is to indicate some of the features of
Glimm’s method which might make developing it worth the effort, as well as a few
of the directions in which the development might go.

We consider in this study two fundamental problems.
1) We introduce a more accurate form of the sampling procedure for the one-

dimensional method than that used in [3], based on the van der Corput sampling
sequence. We compare the performance of the van der Corput sampling and the
previously used random sampling schemes.

2) We investigate the operator splitting procedure by which Chorin constructs a
multidimensional scheme from the one-dimensional method. A source of error stem-
ming from this procedure, not noticed in [3], is analyzed here and a method for
eliminating it is proposed and tested.

In one dimension Glimm’s method, with the appropriate sampling, is seen to be
superior to any difference method in meeting the three criteria given above. The final
method obtained for multidimensional calculations, although it does not share the
special properties of the one-dimensional method, has a number of interesting features,
and is worthy of further investigation for its own sake.

This paper is divided into three sections. In 2 we discuss Glimm’s method as
applied to gas dynamics in one space variable. We define the van der Corput sampling
sequences, and compare the van der Corput and random sampling strategies. In 3
we describe the operator splitting technique. In 4 we compare Glimm’s method to
some difference methods and give some conclusions, and suggestions for future work.

2. Gas dynamics in one space variable. We want to construct approximate
solutions to the initial value problem for Euler’s equations for the motion of a
one-dimensional, compressible, inviscid gas with a polytropic equation of state:

OU OF(U)
-t- O,
Ot

U(x, t)= U’R [0, T]-->R 3, U(x, 0)= u(x)

U= F(U)= m2/o+p
(E+p)m/p

given,
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where p is the density, rn is the momentum, and E is the total energy per unit volume
of the gas. We can express in terms of these variables the more familiar quantities
v the velocity, and e, the internal energy of the gas"

2m E u

The pressure p which appears in the equation is a function of p, e p (y 1)pc Ap v,
where the constant y > 1 is the ratio of specific heats for the gas. Another quantity
of interest is the entropy, S, defined (up to an additive and a multiplicative constant)
S log (pp-V) log A.

The system (2.1) is a first-order, hyperbolic system of conservation laws; i.e., the
3 3 matrix A(U), the Jacobian of F, has three real eigenvalues,

Xl(U) b/-c, /2(U) --/./, /3(U) b/--C,

where c /yp/p is the adiabatic sound speed. Ai, 1, 2, 3 are the characteristic
velocities associated with the three modes of wave propagation for (2.1).

Since we are dealing with piecewise smooth solutions, we interpret (2.1) in the
sense of distributions. That is, if U(x, t) is discontinuous along a piecewise smooth
curve (l(t), t), then dl/dt s(t) must satisfy

(2.2) s(t)(U(l(t), t)- U(l(t), t))=F(UL(l(t), t))-F(U(l(t), t)),

where

UL.R(I(t), t)= lim U(l(t)+e, t).
?O,,[,O

The discontinuity must also satisfy the entropy conditions (Courant and Friedrichs
[8]). Discontinuities calculated using any of the numerical methods discussed in this
paper satisfy the entropy conditions if they satisfy (2.2).

The simplest initial value problem for which discontinuities appear is one for
which the initial data is constant on either side of the origin, where it has a jump
discontinuity:

UL, x<O,
UL, UR R 3,/,(x)

U, x > 0,

where we denote

UL,R mL R PL,RIgL,R

EL, PL,e/(Y- 1)+PL,Rt’tL,R

This problem is known as the Riemann problem; its solution is a fundamental
component of Glimm’s method. The special case of the Riemann problem in which
UL UR 0 is often referred to as the shock tube problem. The solution of the
Riemann problem is discussed extensively in Chorin [3], Courant and Friedrichs [8],
Godunov [12] and Sod [21] and van Leer. [23] In [3] and [21] detailed instructions
for constructing solutions numerically are given; thus we will describe only qualitatively
the structure of the solution.

Two general properties of the solution to a Riemann problem are that it is
self-similar, i.e., U(x, t) h(x/t) for some piecewise continuous h :R R 3, and that



GLIMM’S METHOD FOR GAS DYNAMICS 79

it has the following additivity property" if U(:, t:)= UM E R 3 for some R, then the
function

I U(x, t),
Ul(x, t)

UM,

X

7<,
x

is the solution to the Riemann problem with left and right states UL, UM. Similarly,
the function

Uz(X, t)= I UM,
U(x, t),

x

x

is the solution to the Riemann problem with left and right states UM, UR. Geometri-
cally, this says that the solutions U1, U2 fit together to form U.

One can divide the (x, t)-plane into four regions, I, II, III, IV, where U(x, t) is
constant (Fig. 1). These four regions are connected by three waves, each associated
with one of the characteristic speeds. These are" a backward facing sonic wave
(associated with u -c A I(U), between ll,b and 12,b; a contact discontinuity (associated
with u A2(U), occurring across the line Is; and a forward facing sonic wave (associated
with u +c A3(U) between l,f and lz,f. The pressure and velocity are continuous
across the line ls so they are equal to some fixed values p*, u* in II and III. Only the
density changes across l(t)= u’t, from at* to p.

t

FIG. 1. The Riemann problem for gas dynamics.
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As is discussed in [8], the hydrodynamic waves are uniquely determined by
knowing the state of the gas on one side of the wave, and only the pressure on the
other. For the backward facing wave, for example, there are two possibilities. If p* > PL
then u * < uL, p > p, ll.b 12,b and the wave is a shock associated with the characteristic
velocity u- c. If p*<p, then we have a backward facing centered rarefaction wave:
ll,b < 12.b, p(x, t) and u(x, t) are continuous strictly monotone decreasing functions of
x/t, and u(x, t) a continuous strictly monotone increasing function of x/t, for (x, t)
between ll.b and 12.b. The description of the forward facing wave is the same, replacing
U by UR, U by -u, and u + c by u- c.

In Fig. 2 we show the solution at a fixed time to the shock tube problem

p 1.0, PR 0.1,

(2.3) pL 1.0, PR 0.125,

The waves which occur are a backward facing rarefaction wave (A), a forward facing
shock (B), and a contact discontinuity (C).
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0.2
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(B)-I,,,

PRESSURE DENSITY

(B)

VELOCITY

3.0
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2.0

1.5

(A)

e;
INTERNFL ENERGY

--(B)

FIG. 2. Solution at fixed time to shock tube problem (2.3).
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We can now describe Glimm’s method for solving approximately the initial value
problem (1.1). Let Ax be a spatial increment, At a time increment. We assume that,
at time n At, the approximate solution is constant on intervals of length Ax.

(2.4) U(aX)(x, nAt)=U ER3(f-)Ax<x<(f+1/2)Ax, f=0,+l,+2,....

We wish to compute an approximate solution which at time n At has the same property:

U(ax) (x, (n + 1)At)= U’+1.
The procedure is given as follows’

(1) Define U, (x, t)nAt < < (n + 1)At to be the exact solution to the initial value
problem for (1.1) with initial data given by (2.4). The initial data consist of intervals
where the solution is constant, separated by jump discontinuities; i.e., we have a
succession of Riemann problems. If At is sufficiently small, then by finite propagation
speed the waves from adjacent discontinuities do not intersect each other and the
solutions to the adjacent Riemann problems fit together to given U, (Fig. 3). A
condition on At which guarantees that the waves do not intersect is

At 1
Ax

A < sup [u (x, t)l + c (x, t).
xR

(n+l)At>t>nAt

j-3/2 )AX j-l/2 )Ax j+l/2 )AX (j+3/2 )AXn n n
Uj_ Uj Uj+

(n+l)At

nat

FIG. 3. Local exact solution to piecewise constant initial-value problem.

When doing calculations, one usually uses the more easily verified

(2.5) =At h <tr sup ]u(aX(x, nht)l+c(aX(x, nat) tr sup
AX xeR

where o- is a constant, 0 < o-< .
(2) Choose a+ e [0, 1) and take

U7+ ue,((i-1/2+a "+) Ax, (n + 1) At).

See Fig. 4.
Thus we obtain a solution at time (n + 1) which depends on a sequence a ,

a ,...; much of the remainder of this section will be devoted to determining the
best choice for the sequence 6.

At first glance, this method might look complicated, but in fact it requires the
evaluation of the solution to a Riemann problem once per zone per timestep. Let

(n -(i-1/2)Axhi-’" t-;A-- ]
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Un+l :ue((j-I/2+an+l)Ax (n+l)At)n

(j-I/2+an+l )Ax, (n+l)zt)
/

L/
; /

;

/ "/
I nat< t< (n+l)At \

//

(j=ll2)Ax n
Uj (j+ll2)Ax

FIG. 4. Sampling the local exact solution.

(n+l)Zlt

nat

be the solution to the Riemann problem with left and right states Uj"-l, U’ and let

OJ"- h-1/2,. (( a"+l )At)
Then

U?+, { Oi"-1/2,_. a"+1> 1/2,
U x .+I 1"

The procedure given here is slightly different from that used previously, in that
the mesh is fixed, rather than shifting by Ax/2 every timestep. Sampling back to a
fixed grid shows that the relation to Godunov’s method is immediate: in Godunov’s
method, U’/1 is taken to be

Ax 3(j-)ax
U, (x, At) dx,

in Glimm’s method, one chooses a representative point value of the local exact solution.
The mechanism by which Glimm’s method models wave propagation in a gas is

most easily demonstrated by the following example. Let UL, UR be the left and right
states of a Riemann problem whose solution consists of a single discontinuity propagat-
ing at speed s > 0. The exact solution for this problem is

U(x, t)= I UL, x < sT,
UR, x >sT.

We will solve this initial value problem using Glimm’s method. First, it is obvious
that, for any time step n there is an l(n)= o-1/2, o an integer, such that

IUL, j<l(n),
Ui Ug, ]> l(n).
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l(n) is the location of the shock in the approximate solution, and satisfies

/(n) if a+>hs,
l(n + l)=

l(n + l) ifa +<As, l(0) =1/2,
so that

l(n)=/(0)+N{] 1,..., n; ae[0, As)},

where N{] nl + 1,.. , n2, a I} denotes the number of ], n < ] -<- n2 such that a
is contained in/. We say that a sequence d is equidistributed if the proportion of
times that a is contained in I is asympotically equal to III, the length of I; i.e., if we
define

1
N{l’=ne+ 1,’’’, n2; a eI}-lI[=8(d, nl, n2, I),
n2-nl

then is equidistributed if lim_,, (, nl, n2, I)=O for each fixed nl, /. Given
this notation we write

l(n)Ax =/(O)Ax + AxAsn + t(, O, n, O, As))n Ax

( )=/(0)Ax + nat 1 +- 8(, 0, n[(0, As))

If is equidistributed, then l(n)-> sT in the limit n -oo, InAt- Tl<+/-t, At/Ax ;t >0.
Thus the shock in the approximate solution at each time step either moves by

Ax or does not move at all. Over many time steps, the cumulative displacement is
close to that of the exact solution, the leading term in the .error being proportional
to 6(i, 0, n, [0, As)). In general, a piecewise continuous flow will be represented by
O(1/Ax) waves of strength O(Ax), all having differing speeds, as well as an O(1)
number of discontinuities of strength O(1). Furthermore, the speeds and strengths of
the waves will be changing in a piecewise continuous fashion as a function of time.
In order to model such a flow correctly by the above mechanism, one needs to choose

such that 6 is as small as possible, uniformly in/, n for nz-nl large relative to
1, but (n2-nx)At small relative to the characteristic times in which the wave speeds
change. The sampling procedure given below seems to be optimal from the point of
view of these requirements.

The simplest form of this sampling sequence is due to van der Corput (see [14]).
Let

n= Y’. ik2 k, ik=0,1
k=0

be the binary expansion of n 1, 2,. . Then

-(k+l)a ik2
k=0

The easiest way to see how the sequence is constructed is to write down the first
few elements in it:

1 12, a= .5 .12,
2 102, a2= .25 .012,
3= 112, a3= .75 .112,
4 1002, a 4--- .125 =.O01z,
5=1012, a5=.625 =.1012,
6= 1102, a6=.375 =.Ollz,
7 1112, a7= .875 .1112,
8 lO00z, a8= .0625 .0001:.



84 PHILLIP COLELLA

So

k+leven, k<ai< if i=-](k) mod4,ai<>.5 if is
[odd, = 4

k 0, 1, 2, 3, where ](0)= 0, ](1)= 2, ](2)= 1, ](3)= 3. In general, if one divides the
unit interval into the subintervals (r2-s, (r + 1)2-S)r 0,..., 2- 1, then for each r
there is exactly one q for which q0 < q < qo + 2 such that a q e Jr2-, (r + 1)2-).

We will have need of a variant of this procedure for use in multidimensional
problems. Let kl, k2>0 be integers, kl > k2 relatively prime. The (kl, k2) van der
Corput sampling sequence t is given by

a" (/+1)q’ k-
/=0

where

qt=--k:zil modkl and itk n
/=0

is the base k expansion of n. Thus the binary van der Corput sampling sequence
given above is the special case k 2, k2 1.

All the van der Corput sampling sequences are equidistributed. In fact
6(,n,n2, I)<-(Clogkl(n2-nl)+C2)/(n2-n), where C, C2 are constants
depending on kl, k2 but not on n, n2 or L For the binary van der Corput
sequence C1 3, C2 1. In the example given above, this gives an error bound of
O(Ax log Ax

In previous computational work for gas dynamics using Glimm’s method, random
sampling was used; i.e., the values were drawn from a random number generator
implemented on the computer, usually with some variance reduction technique, such
as stratification for random sampling, for which O(1/x/), giving an error bound
in our simple shock example of O(x/.

Lax [17] proposed the use of a nonrandom equidistributed sequence due to
Richtmyer and Ostrowski, defined by a x/,mod 1, where r is an integer which is
not the square of another integer.

We shall not discuss the Richtmyer-Ostrowski sampling sequence in detail here,
save to note that in numerical experiments, and in simple analytical examples, one
obtains results using the Richtmyer-Ostrowski sequence similar to those obtained
using van der Corput sampling. However, the bound on 8 is stronger for the van der
Corput sequence than that obtained for the Richtmyer-Ostrowski sequence, as well
as being explicitly uniform in I and n 1; uniformity in I and n 1, does not hold explicitly
for the Richtmyer-Ostrowski sequence. Also, van der Corput sampling has some
special properties which guarantee that certain qualitative features of the continuous
part of the solution preserved in the approximate solution, at least for simple waves
(see [5], [6]). Finally, van der Corput sampling has several straightforward extensions
to two or more dimensions which guarantee good distribution properties in the square,
even for finite sample sizes. In contrast, it has been pointed out by Maltz and Hitzl
[18] that such an extension of the Richtmyer-Ostrowski sequence can give rise to
poor distribution in the square for finite sample sizes.

In an effort to understand the errors introduced by the interaction of the sampling
and variations in time in the wave speeds, we consider the following class of test
problems. The initial data consist of two discontinuities located at x and xr, separated
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by constant states"

Ul, X < Xl,

U(x, 0)-- Urn, Xl<X <Xr,
Ur, x > Xr,

Pl,m,rUl, m,r

Pl, m,r/ 1 AF 1/2[l,m,rU 12,m,r/
We choose UI, U,, Ur such that Ut and U,, can be connected by a forward facing
shock and that U, and Ur can be connected by a forward facing centered rarefaction
wave (Fig. 5).

The shock overtakes the rarefaction, the cancellation between them weakening
both (Fig. 6, (A)). The nonlinear coupling between the modes produces waves of the
other two families in back of the shock and moving to the left, away from the shock.

20

10

-5

, I & ...4
PRESSURE DENS TY

VELOCITY ENTROPY

FIG. 5. Waves initially generated in 1D test problem.
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FIG. 6. Computed solution to 1D test problem, van der Corput sampling, Ax .0025.

These are, a backward facing compression wave (Fig. 6, (B)), and a strong
entropy/density wave (Fig. 6, (C)) advected passively by the velocity field u(x, t).

In Figs. 7-9 we show the calculation of such a problem using Glimm’s method
with, respectively, a random sampling sequence, a stratified random sampling, and
the binary van der Corput sampling sequence. The initial data are’

pt 28.68, p,, 1.39, pr 10.0,

Pl .6878, Pm .146, pr .6,

Ul =.0181, u,, =-11.9, Ur =--5.98,

Xl .4, X, .9, 1" 1.4.

All calculations were done on the spatial interval [0, 1], with boundary conditions
at 0 and 1 obtained by assuming the solutions satisfy O U/Oxlx=o.1 0. The various
solutions being compared were computed with Ax .01, and are represented graphi-
cally by circles for the computed values at mesh points, interpolated by a dotted line.



GLIMM’S METHOD FOR GAS DYNAMICS 87

20

1.2

1.0

0.8

PRESSURE DENS TY

-2

-q

-6

-8

3.5

VELOCITY ENTROPY

FIG. 7. Computed solution to 1D test problem, random sampling, Ax .01.

Also plotted on each of the graphs, with a solid line, is a solution obtained using
Glimm’s method, with van der Corput and Ax .0025. Having compared the latter
solution with a similar one done for Ax .005 we found that the two results differed
by less than .5%, so that the method has converged for Ax .0025. For the purposes
of comparing the various Ax =.01 solutions, we treat the Ax =.0025 solutions as
exact, against which the Ax .01 solutions can be compared.

The sampling governs the rate at which the shock and rarefaction interact. If
S q/l/2 is the speed ot the shock, located between zones q and q + 1 at time step n,
and A u + cq/l then the shock will cancel with a piece of the rarefaction wave,+ q+l

and produce more wave of the other two families, at time step n + I, if and only if

+1 [At At )a e max ( +,0), -x-x sq+

Thus the loss of gradient information observed in the randomly sampled solution
(Fig. 7) is a result of random fluctuations in the rate of interaction between the shock
and rarefaction which is producing the wave. The use of stratified random sampling
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FIG. 8. Computed solution to 1D test problem, (7, 3) strat(fied random sampling, Ax .01.

(Fig. 8) produces smoother profiles than those obtained with the unmodified random
sequence, but the shape of the entropy wave is incorrect; in particular, there is a
sizable deviation in the density profile, a failure to conserve mass. The profile obtained
using van der Corput sampling (Fig. 9) is in much closer agreement with the Ax .0025
result, the rate of wave production being modeled much better than in the other two
cases. In fact, if one uses van der Corput sampling, one can use a much coarser mesh
and still get good results for this problem. In Fig. 10 we present the results obtained
on this problem with binary van der Corput sampling, and Ax =. The absolute
locations of the waves, and their locations relative to each other, are correct to within
Ax; more important, the size and shape of the waves, which are more sensitive to the
cumulative error introduced by the sampling, are in very close agreement with the
Ax .0025 result. In all the calculations, the shock discontinuity is sharp, as guaranteed
by Glimm’s method.

3. Operator splitting. In [3], Chorin proposed a method for computing multi-
dimensional unsteady compressible flow using Glimm’s method by means of
operator splitting. We can write the equations of motion for an ideal gas in two space
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dimensions as

+-- (F(U)) + (G(U)) 0,
Ot Ox

U(x, y, t)= U" R2 x [0, T]--> R 4,
U(x, y, O)= b(x, y)b" R2R4,

m2/o+p
U= F(U)

mn/o
G(U)

\(m/p)(E + p)/

n

mn/p
n2/p + p ]"

(n/o)(E+p)/

Here O is the density, m is the x-component of momentum, n is the y-component
of momentum, and E is the total energy. We can express the velocity 6 and the
internal energy e in terms of the above variables: Vx m/p is the x-component of
the velocity, vy nip is the y-component of the velocity, and e E/p __1/2(/)2 -t" f)2y).
The pressure p is a function of O and e: p (3’- 1)pc, where y, the ratio of specific
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heats, is a constant assumed to be greater than 1. Thus, as was the case for one space
variable, the value U at a given point is uniquely determined by the values of p, p
and tJ at that point.

We wish to construct approximate solutions

Uax’ay (x, y, n At) uin, E R 4,
(i ) Ax < x < (i + 1/2) Ax, (f 1/2) Ay < y < ( + 1/2) Ay,

where x, y are spatial increments, is a time increment, and i, j, n are integers, n _-> 0.
Assume we know Ui.i and want to find U.j the procedure is as follows.
1) For each/" perform one time step of Glimm’s method for the equation

V
+-- (F(V)) O.
at Ox

taking as initial data V/ Ui, Set the results VI rr"/ (we denote this procedure---ij

IT"+by (La,U )i.i . ).
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2) For each fixed perform one time step of Glimm’s method for the equations

0V
--+-- (G(V)) 0,
8t y

taking as initial data V + +Ui,i tme step t. Set the result V. Ui,i (we denote
n+ Tfn+lthls procedure by (LAtU

The solution thus derived at time (n + 1) At is interpreted as being the piecewise
constant function

Uax’ay (x, y, (n + 1) At)= Un+l
i,i

(i-)Ax<x<(i+)Ax, (-) Ay < y < (j+1/2) Ay.

A necessary condition on the time step is that it must satisfy (1.4) for each of
the one-dimensional calculations

At
<r max (Iv,i,il + c ia),AX i,j

(3.1)
<o’ma.x(lvy,i,i[/ci, O<tr<
Ay

The above procedure is formally the same as is done to construct multidimensional
difference methods from one-dimensional ones. However, the mechanism by which
Glimm’s method propagates the solution to the equation in one dimension is rather
different from that of different methods, as it requires many time steps for the
cumulative effect of the sampling to give the correct wave speeds; therefore the actual
justification of the splitting procedure, currently unknown, is likely to be quite different
than the usual truncation error analysis for difference methods.

The Riemann problems in question are easily solved, given the solution for
one-dimensional gas dynamics. For example, to solve Riemann’s problem for

OV
+-- (F(V)) 0
Ot Ox

( P +(gx+)V p, pVx, pry,
Y_ 1

take the solution p(x, t), p(x, t), u(x, t) in 2 with

PL,R L,R, PL,R PL,R, UL x,L,

#(x, t)= p(x, t), (x, t)= p(x, t), Ox(x, t)= u(x, t),

and tTy(x, t)= Ty,L if (X, t) is to the left of the contact discontinuity l, Ty(x, t)= Ty.R if
(X, t) is to the right of the contact discontinuity l. Thus in the x-sweep, we have
ordinary one dimensional gas dynamics, with the discontinuity in vr passively advected.
To solve the Riemann problem for V/Ot + O/Oy (G(V))= 0, interchange the roles of
vx and Vy.

To test the validity of this procedure, we looked at the simplest two-dimensional
test problem possible. We took our computational domain to be the unit square with
the computational mesh aligned with the x- and y-axes, and took the initial conditions
to be

UR, x < y,
U(x, y)=

U, x>y,
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UL OLVx,L UR PRDx,R

pLUy,L DRI)y,R
2 2 2(Vx. + v.)p,/(, )+(p,./2)(v,,_+v,,_) p,/(’r )+(,/2)

This is the Riemann problem, for which we have an analytic solution. Computationally,
it is a two-dimensional problem, since the initial discontinuity is at a 45 angle to the
mesh directions.

We denote by v, the component of the velocity normal to x y, vt the component
parallel to x =y:

Vx Vy l)x +/2y
lg

4"
Vt= 4-

Ux,R l)y,R 1.)x,R "}- 1.)y,R
Un,R 4" Vt,R 4"

l)x,L l)y,L l.)x,L -" Vy,L
l’) L 4"

V L 4"
Throughout these test calculations we will set vt,_ Vt,R 0; i.e., we will be looking
at problems for which there is no slip line in the exact solution. Unless otherwise
indicated, the calculations shown were done on a 50 x 50 grid’ ix iy .02. The
results of the calculations are displayed by plotting the profiles of various quantities
along the line y 1- x, and comparing them with the exact solution. In these plots,
the computed values at the mesh points are graphed as circles, interpolated by a
dotted line: the exact solution is plotted as a solid line. When boundary conditions
are required, we assume the solution is constant on lines parallel to the initial jump.
This was quite effective in preserving the symmetry of the solution, and enabled us
to run for long times without noise from the boundary affecting the results.

The one-dimensional calculations using Glimm’s method in the x and y directions
require sampling sequences x, y which we took to be two independent van der
Corput sampling sequences" ax was the (3, 2) van der Corput sequence, and dy was
the (5, 3) van der Corput sequence. This insured optimal distribution in the square
[0,1)[0,1).

In Fig. 11, we show the results for the following problem"

p_ .353, PR .1, 3’ 1.667.

(3.2) Pr 14.0, PR .5,

VN,/_ 1.78, VrV,R 11.6,

The exact solution is a strong, right facing shock. It is almost stagnant (after 175
time steps, the exact shock point has moved only two zones). By this time, the
oscillations (80% of the exact post-shock value in the pressure) have begun to make
themselves known by a three-zone error in the shock location, the shock moving a
distance more than two times greater than it should have. We see substantial values
(60% of Iv,,i.- V,.R I) for VT (X, y, t), the tangential component of the velocity appearing.
Finally, the density profile shows a substantial deviation from conservation of mass.

The fundamental reason why large errors occur in this problem is that, although
each half-step L, Lt models the resulting one-dimensional gas dynamics well, the
problem it is modeling is O(1) incorrect from the point of view of the two-dimensional
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FIG. 11. Diagonal Reimann problem (3.2) computed using Glimm’s method, tr .5.

flow. For example, consider the problem one solves (one for each value of f) in the
first x-pass in the test problem (3.1). They are each the same Riemann problem for
a one-dimensional gas flow, with the jump taking place along the diagonal. The left
and right states

PL,R

VL R L’RIL’R
L.R(y)L,R

-2 .-2PL,R/ (’)/ 1) + U L,R + I.) y L,R (L,R/2

for the one-dimensional problem are

ffL,R PL,R, PL,R PL,R,

f)n,L 13n,R f)n,L I)n,R

=47’ ’=,/7’ "=4’ "= 4"
The jump in the velocity, uL-UR, is less than V,.L--V,,.R SO a weaker forward

facing shock than that of the original two-dimensional problem is produced, as well
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as a backward facing rarefaction wave. If we sample anywhere in the fan other than
the left or right states, we get (vx)u > uL, uR. The new values

n+ n+ +(l.)x)i,j, [gi,j, Did

depend only on the sampling value ax and the ratio zt/zx but not on At and zx
separately. So the difference between these and the exact answer is an O(1) quantity
relative to the mesh spacing. In particular, there is an O(1) contribution to the
tangential component of the velocity. Since there has been an O(1) change in the
thermodynamic variables p and p, there is no reason for the y-pass to produce a
tangential velocity to cancel the one produced by the x-pass, and in fact it does not.
Similar phenomena occur for a shock tube, (Fig. 12) or a Riemann problem whose
solution consists of two centered rarefaction waves.

The above failures in the splitting procedure in situations when there are discon-
tinuities in p, 3 can be viewed as a consequence of an invalid interchange of limiting
procedures. Analytically, shock solutions are obtained as limits of viscous solutions
as some set of diffusion coefficients go to zero. One might try to obtain the shocked
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FIG. 12. Shock tube problem (2.3) computed as diagonal Riemann problem using Glimm’s
method, r .5.
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solutions by using an operator splitting method to solve the viscous equations; the
splitting procedure is then known to converge as At--> 0. Then, in the inviscid limit,
the viscous solutions converge to the physically correct shocked solutions. In a
difference method, the two limiting procedures take place simultaneously, with the
coefficients multiplying the numerical diffusion approaching zero with At. The use of
operator splitting with Glimm’s method corresponds to letting the diffusion coefficients
vanish for nonzero At. This interchange of limits is valid for continuous solutions, or
near contact discontinuities, but near discontinuities in p or the two limiting
procedures are singular with respect to each other, and cannot be interchanged freely.

In order to correct this problem, we replace Glimm’s method at discontinuities
in p and 3 with a conservative finite difference method; the method we use in the
nonlinear Godunov method (Godunov [2], Richtmyer and Morton [19]) adapted for
Eulerian coordinates (Godunov et al. [13]).

We describe the procedure for advancing this hybrid Glimm-Godunov method
by one timestep, in one space dimension; the extension to two space dimensions, is
achieved by an operator splitting procedure like the one described above. First, one
calculates the exact solution to the initial value problem to (1.1), as before. At those
mesh points where one uses Glimm’s method, one samples as before. At those mesh
points (fAx, (n + 1) At) where one wishes to use Godunov’s method, one sets

f(i+)Ax ue(x, (n + 1) Zkt) dx.
1(U/n+l )Godunov m’- .(j-)Ax

By integrating the conservation law over the rectangle [(/’-1/2) Ax, (j +1/2) Ax][n At,
(n + 1) At] we obtain, using the notation of 2,

(U7+l)Godunov Ui +(F(hi-.n(O))-F(hi+1/2.n(O))) A-’
where F is the vector of fluxes for the conservation law being integrated. Finally, we
need a prescription for deciding whether to use Glimm or Godunov. Let

p max (p p_), -ko <= k -] <= ko + l,
rain n* k ]<-ko+ 1,p min (p, p_a), ko <-

where p’__* is the pressure in the region separating the two sonic waves which come
from the Riemann problem centered at ((]-1/2)Ax, n At) (see [3], [21], and the
appendix to this paper). Then the prescription for choosing Glimm and Godunov is

rain

U + )Goduno,, if
p

min CoU+
hybrid P

Uj +
Glimm otherwise.

Here Co, k0 are constants to be set at the beginning of the calculation. Roughly, Co is
a measure of the strength of the weakest sonic wave in the problem that must be
treated as a discontinuity, and k0 + 1 is the effective width of a discontinuity. For weak
problems (excess pressure ratios-<_ 5), it suffices to set k0 1. For stronger shocks, it
appears to be necessary to set k0 2. In all the calculations presented here, .05 <- Co <-
.2. The consequence of the nonoptimal choice of parameters is a loss of accuracy, not
of stability: failing to detect a pressure jump results in noise; using Godunov’s method
unnecessarily results in the smoothing of relevant wave structures.

One can make several minor modifications of the method described above. The
fact that we are using Godunov’s method near strong pressure jumps makes it possible
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to introduce some approximations into the solution of the Riemann problem. Another
consequence of sampling only if the sonic waves are weak is that, by accounting
approximately for the interaction of those waves, one can use a larger time step,
allowing tr < 1 in (3.1), which is the time step restruction for Godunov’s method. We
have implemented both of these changes in the method for the examples computed
here; in an appendix to this paper, we describe the details of the algorithms used.
Finally, we noticed that the first-order splitting algorithm described above can lead
to errors near very strong shocks (excess pressure ratios greater than 100) computed
using Godunov’s method. In particular, large tangential components of velocity are
generated behind the shock. We found that the use of the Strang splitting algorithm

Un+2=r ryry rx UAt.,At-,AtX.,At

reduced this error to the level found in regions where the flow is continuous.
In Fig. 13, we show the results for the problem (3.2) using the hybrid method.

Since the solution is a shock discontinuity separating two constant states, this calcula-
tion is mostly a test of how well the nonlinear Godunov method computes a strong
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shock. The dip in the density behind the shock is a starting error, common to most
conservative difference methods; it comes from starting a strong shock as a jump
discontinuity. Since there is no numerical viscosity away from the shock the oscillation
is not damped, but flows downstream unchanged.

Figure 14 shows the results obtained for the shock tube problem (1.3) calculated
as a diagonal Riemann problem; Fig. 15 shows the result for the same problem using
Godunov’s method alone. The hybrid method treats the shock correctly, as opposed
to the Glimm’s method alone (Fig. 12). The hybrid method is also an improvement
over Godunov’s method alone: the three waves are clearly resolved; in particular, the
contact discontinuity is spread over only three zones. We have found that, in general,
the hybrid method spreads any discontinuity over a small (1-4) number of zones,
independent of the zone size, regardless of whether the discontinuity is a shock, contact
discontinuity, or slip surface.

In order to test this method on a more complex problem, we computed a
two-dimensional Cartesian shock reflection problem used by van Leer [23] as a test
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FIG. 14. Shock tube problem computed as a diagonal Riemann problem using hybrid Glimm-Godunov,
method tr .5, Co .1, ko 1.
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FIG. 15. Shock tube problem (2.3) computed as a diagonal Riemann problem, using Godunov’s method,
.5

problem; see also Woodward and Colella [24]. The computational domain is a channel
of unit length, open at both ends. For x < .2, the channel has width 1/2; at x .2, the
lower side of the channel is constricted, so that the width of the channel is for
x > .2. Reflecting boundary conditions are imposed on the upper and lower sides of
the channel, and on the segment x =.2, 0 <- y =<. The solution is assumed to be
continuous at both ends. The initial conditions for this problem are those of uniform
flow throughout the tube:

p(x, y, O)= l, p(x, y, O)= l.4, Vx(X, y, O)= 3, vy(x,y, 0)=0, y=1.4;

with these initial conditions, a detached shock reflects off the constriction, and reflects
off the upper side of the channel, having formed by time =- a three-shock Mach
reflection configuration. According to Woodward [24], the correct location of the
Mach stem along the side of the channel is right above the constriction at x =.2;
the Mach stem should extend about one-fourth the distance across the left end
of the channel.
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We show results obtained using Godunov’s method.by itself (Fig. 16), and the
hybrid method, with two different zone sites (Fig. 17, 18). The solution obtained using
Godunov’s method alone has the shock slightly in back of the step with the Mach

KIN ENERGY INT ENERGY DENSITY PRESSURE

80 80 80 80

tl IIl’iiiiiii tl8 I//
120 / 20 [20 20

MIN 2.80E-02 MI.N 1.79E+00 MIN 6. IIE-01 MIN 6.62E-01
MRX 3.00E+00 MRX 5.13E+00 MRX 6.78E+00 MRX 1.21E+01

FIG. 16. Wind tunnel problem at time } computed using Godunov method, x , .9.

KIN ENERGY INT ENERGY DENSITY PRESSURE

60 60 60 60

MIN 0. MIN 1.79E+00 MIN 5.5E-01 MIN .?E-01
MX 3.00E+00 MX 5.28E+00 MRX 8.63E+00 MRX i. 81E+01

io. I?. Wind runnel problem at time } computed using hybrid Glimm-Godunov method, x- }o,
.9, Co 1.2, ko 2.
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2 20 20 20

30 30 30 30

5 5 5
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>-’-’ 9090
MIN 2,5E-03 IN 79E 00

90
MIN OE 01

90
MIN 10E 01

MRX 3.OBE+O0 MRX 5.20E+00 MRX 6.8E+00 MRX I. 18E+01

FIG. 18. Wind tunnel problem at time computed using hybrid Glimm-Godunov method, x- o,
.9, Co 2., ko 2.
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stem about half the correct length. The slip line emerging to the right of the triple
point is spread over four or more zones, except right at the shock. The solutions
obtained with the hybrid method both have the shock in the correct position to within
one zone length, and the length of the stem differs from the correct length by two
zone lengths. Both of the hybrid calculations have the slip line spread across two
zones for its entire length.

4. Discussion and conclusions. In one space variable, Glimm’s method has built
into it an approximate form of linear and nonlinear wave propagation along characteris-
tics, without the smoothing of such information, as occurs in difference methods, and
without any complicated bookkeeping; the sampling procedure determining the
weakest wave or wave interaction to be resolved. The motivation for using van der
Corput sampling is that one obtains the best possible representation of the wave
propagation in Glimm’s method, independent of the speed of the waves. This is
essential for the correct representation of continuous waves, particularly those pro-
duced by nonlinear wave interactions.

We would like to compare the performance of Glimm’s method to that of
difference methods. Sod [21] performed such a comparison, using a one-dimensional
shock tube problem. The results obtained there svere not the best possible, due to
the use of stratified random sampling. On the other hand, comparing difference
methods to Glimm’s method on this problem is not entirely fair, either. As is pointed
out in [4], it follows from the additivity property for solutions to the Riemann problem
that the only values taken on by the computed solution are ones taken on by the
exact solution, as well. In any ease, we present in Fig. 19 the calculation done with
Glimm’s method, but using van der Corput sampling. The result obtained here is
dearly superior to any of those in [21].

We compared the performance of Glimm’s method to that of two difference
methods on a shock and rarefaction interaction problem (Fig. 20) like the one described
in 3, but with the waves an order of magnitude stronger:

p =473.9, p,, 1.077, Pr 100,

O 23.27, p,, 3.930, pr 100,

u 6.0, u,, -4.0, ur -1.181,

Xl .3, Xr .9, y 1.4.

The solution has the same qualitative features as those of the weaker problem, except
that the backward facing compression wave produced by the shock-rarefaction interac-
tion has itself steepened into a shock at the time the solutions are compared. Otherwise,
the waves are all much stronger; in particular, the passively advected density wave is
a spike, two zones in width for the hx =.01 cases. The two difference methods
compared are the version of Godunov’s method (Fig. 21) discussed in the previous
section, and the MUSCL code written by Paul Woodward of Lawrence Livermore
National Laboratory, based on the scheme of van Leer [23] (Fig. 22). These two
methods represent, respectively, one of the most accurate of the first-order methods,
and a state-of-the-art representative of the adaptive or hybrid difference methods.
(For other examples, see Boris and Book [2], Harten [15], Harten and Zwas [16],
Zalesak [25].) As before, we compare all three results with the answer obtained using
Glimm’s method, van der Corput sampling with hx -.0025. All three methods obtain
reasonably good answers for the pressure and velocity profiles, modulo the varying
widths for the shock transition region. However, neither of the difference methods
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FIG. 19. Solution to shock tube problem (2.3) in one dimension, computed using Glimm’s method with
van der Corput sampling, Ax .01.

are able to get the correct peak value of the density, nor the correct width for the
density spike; Glimm’s method, by virtue of its direct simulation of the wave interaction
process without averaging, gets the correct answer.

The original proposal in [3] for using Glimm’s method with operator splitting
was seen to give incorrect results for flows in which there occur large jumps in the
pressure and velocity along surfaces oblique to the mesh directions. By coupling
Glimm’s method with Godunov’s method, we lose many of the special properties of
the Glimm’s method with respect to its treatment of shock interactions. However, the
resulting method has a number of attractive properties. Of all the first-order difference
methods, Godunov’s method produces the narrowest shocks (2-3 zones wide). Both
Glimm’s method and Godunov’s method are extremely stable, even in the strongly
nonlinear region (the problem with Glimm’s method at shocks is a loss of accuracy,
not of stability). Finally, Glimm’s method has no numerical diffusion, so that the
hybrid method has no numerical diffusion away rom regions where large pressure
gradients are generated.
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FIG. 20. Solution to strong 1D interaction problem, computed using Glimm’s method.

For the purpose of comparison with the results of Sod [21], obtained by the
various difference methods, we computed the shock tube problem (2.3) as a diagonal
Riemann problem (Fig. 23), but on a 100 x 100 grid (Ax Zky .01); results for this
problem compted using the MUSCL code are also given in [23]. In principle, the
problem solved here is more difficult than the one solved in [21], since the latter is
solved as a one-dimensional problem. But the answer is the same for both, and the
results are worth comparing.

The calculation of the rarefaction, and the width of the shock transition in the
results obtained with the hybrid Glimm-Godunov method, compare favorably with
those obtained by any of the difference methods. The treatment of the contact
discontinuity is clearly superior to that given by any of the difference methods in [21],
and comparable to that obtained in [23]. The difference methods in [21] either spread
the contact discontinuity over 6-10 zones, with the number of zones increasing as a
function of time, or introduce substantial oscillations near the contact discontinuity.

The major weakness of the hybrid method is that it computes shocks which are
2-3 zones wide. This puts the method at a disadvantage compared to the methods
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FIG. 21. Solution to strong 1D interaction problem, computed using Godunov’s method.

which have narrower shocks, in computing problems such as the Mach reflection
problem discussed in the previous section. The number of timesteps required after
the time of reflection for the Mach stem to form increases as does the width of the
shock; consequently, the MUSCL code having shocks which are 1-2 zones wide
obtains, on coarser meshes, results comparable to those obtained here.

There are several directions in which further work is indicated. For one-
dimensional flows, Glimm’s method with van der Corput sampling is quite effective
in modelling the interaction of discontinuities with smooth parts of the flow, without
introducing unacceptable errors in the latter. The fact that the solutions to the Riemann
problem we use in the numerical scheme satisfy exactly the conservation laws is
probably not essential to the accuracy of the method, since much of that information
is lost in the sampling. What is essential is that the solution which is sampled has built
into it the physically correct waves and wave speeds to some reasonable order of
accuracy. Thus it is feasible to try to model with Glimm’s method the dynamics of
other media than an ideal gas in Cartesian coordinates: for example, gas dynamics
with source terms or unusual equations of state, or elastic-plastic flow.
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FIG. 22. Solution to strong 1D interaction problem, computed using MUSCL.

The central advantage of the hybrid Glimm-Godunov method is that it has the
simplicity and stability of a first-order method, with substantially less numerical
diffusion than is usually seen in first-order methods. As the method is currently
engineered, it seems to be more accurate thanthe nonadaptive first- and second-order
methods, but not as accurate as some of the adaptive methods. The main question to
be answered is the determination of a set of optimum engineering decisions. One
problem is that we have seen that the criterion for whether to use Glimm’s method
or Godunov’s method at a point is different depending on the strength of the waves;
the distinction between strong and weak waves should be made locally, by the
algorithm. More generally, although the general principle for switching between the
two methods is clear, the actual details of the procedure are still determined in a fairly
ad hoc, problem-dependent fashion, and a more systematic algorithm is needed.

Appendix. Calculation of approximate solutions to the Riemann problem. In this
appendix, we present a detailed description of the procedure used to calculate approxi-
mate values to the solution to the Riemann Problem in the two-dimensional hybrid
Glimm-Godunov calculations described in 2. The approximations introduced here
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FIG. 23. Shock tube problem (2.3) computed as a diagonal Riemann problem using hybrid Glimm-
Godunov method, Co .05, ko 1, o" .9.

are designed to give sufficiently accurate answers for the minimum computational
effort in the two situations which arise in those calculations" 1) the sonic waves are
weak, or 2) the sonic waves are strong, but the values calculated are used only for
computing fluxes in Godunov’s method. The algorithm given here is also better suited
for efficient implementation on a vector processor, such as the Cray-I, than those
given previously.

The first step is an iteration to calculate p*, the pressure of the gas between the
two sonic waves. We use the Newton’s method algorithm given in van Leer [23], with
one important modification: we assume that the formulae for W.,R, the mean
Lagrangian wave speeds, are the same for both shocks and rarefactions:

WL,R p*) CL,R ! 1 -t
y + 1 (p*--PLR)
23/ Pt,,R

CL,R 4"pL,RflL,R PL,RCL,R.
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Then the iteration proceeds as follows’

,,o C,pi +C(p- C(Ul u))
p

,l-1WL,R WL,R(p ),

ZL,R
2( 3WL,R)

2 W )2,CL,R + L,R

p,,l-1 --PL ,l p,,l-1 --PR
bl ’l’-- UL- WL

U UR nt- wlR

p,,l p,,l-1

One criterion for terminating the iteration is to terminate if

[p ,,l P*’-1

where e > 0 is some predetermined tolerance, and set p*= p*’t. In programming this
procedure for the Cray-I, we iterated a fixed number of times lo, i.e., set p*= p*’l,
independent of the left and right states. We obtained more than adequate accuracy
using lo 4, for even the strongest problems; it appears to be sufficient, for a wide
class of problems, to set lo to be 1 or 2.

Having obtained p*, we calculate the other quantities we will need:

WL,R WL,R (p*), u * PL-PR + ULWL + blR WR
WL + WR

If, at any point in the iteration, p,,l< 0, we reset p* to be equal to some floor
value 1 >>Pmin > 0. If p,.t< 0 for two iterations in a row, we terminate the iteration
(or ignore the results), setting p* Pmin.

The second part of the procedure is to calculate the value of the solution at some
given point (x, t); we denote the values of the pressure, density, velocity, and passive
component of the velocity at that point by p, O, u, v. We follow the procedure given
in [3], but use explicitly the reflection symmetry of the equations to consolidate some
of the formulae.

Let O=x/t and s =sgn (O-u*). Then we define

(UL, PL, PL, WL, CL, UL) if s -1,
(Uo, Po, Po, Wo, Co, Vo)

(UR, PR, OR, WR, CR, VR) if S 1;

We then compute

ao= SUo, 4’ sO, * su*.

(
ho, h * =/rTo + Co, rT* + c

rio+W
Po

if p* < Po,

if P* >Po.
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We evaluate p, p, u as follows"

=lp*,o*,u* ifO_-<A*,_P,O,u
tpo, oo, uo ifO >Ao.

If Ao > > A*, then the solution is being evaluated inside a centered rarefaction wave,
and we have

u=s(4,-c), p= po, p=.--5*+y-i] y+l y
c=

One can replace the expression for p inside a rarefaction fan by the formula
2 21-a 1 Co-C

2,p =po
l+a y-1 C2o +c

which does not require evaluation of a rational power.
If the iteration is carried out to convergence, all the approximations introduced

here are correct to third order in the pressure jump across the strongest rarefaction
wave present. If one of the waves is a strong rarefaction, we will be using the results
to calculate fluxes for Godunov’s method, and the error committed by using the
rarefaction shock formula in the iteration is lost in the averaging. However, it is
essential to evaluate the solution inside the rarefaction fans, rather than treating the
waves as jump discontinuities, as is done in [13]. Otherwise, sampling would not
spread weak rarefactions; nor would the averaging in Godunov’s method spread strong
rarefaction shocks into rarefaction waves, if the speed of the rarefaction shock is close
to zero.

Using approximations similar to those used above in computing the solution to
the Riemann problem, we extend the sampling procedure to the case where the time
step satisfies (3.1) for 1/2<o-< 1, assuming that the sonic waves in the solution being
sampled are weak. The procedure described below accounts correctly for the possible
interpenetration of waves from successive Riemann problems to first order in the
strengths of the sonic waves, and reduces to the previous sampling procedure when
the waves do not intersect.

To update the solution at zone/’, we first evaluate at ((]-1/2+a "+a) Ax, (n / 1) At)
the solution to the Riemann problems on either side of the zone"

+,’ hj_,n a

-,j hi+1/2,. (a n+l 1)
Ax

]r 7-n+l+,j UI-1 or UI or ._,j UI or Uj+I.

Then we can assume, since the sonic waves are weak, that the waves from the Riemann
problem at ((j- 1/2) Ax, n At) and ((/" + 1/2) Ax, n At) do not intersect, and set

]r/-n+lUn+,j1_,. if +.. Ui,(U7+1 )Glimm’- rr,+l
/.i otherwise.

/- }rn+l ]rTn+lIf /.i Ui, Uj_I and _.i Ui, Ui/x, then we assume that the waves con-
-Tn+ltained in the jump (,-" +d Uj have reached and interacted with the waves contained
U,1). Using again the assumption that the sonic waves are weak,in the jump (Ui, _..

we see that the waves which intersect are" a part of a backward facing sonic wave,
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from the Riemann problem at ((/+.)Ax, n At); a part of the forward facing sonic
wave from the Riemann problem at ((j- 1/2) fi,x, n At) and at most one contact discon-
tinuity, which might come from either one of the Riemann problems (Fig. A1). In
that case, we calculate (p/l ,/1 ,/ ,/

p/" //" Uj )Glimm as follows:

..,.n+l n+l nl

n+l
Pi
n+l

Ui

(wRpn+l n+l n,,_,; + w,(p+,; w,. x (u_,. u_,. )))/(w + w,),
n+l n+l n+lu+. + W(p -p+. ),

n+l n+l -1 ]

PJ P+.i )-

n+l n+l
1) V+,

n+l n+l.)-1 1Pi P-,i

n+l n+l
Vj V-,j

za. .,,,
if (a /

1)-< u.+

otherwise.

n+l )&x,(n+l )At)((j-I/2+a

(j-I/2)&x Un. (j+I/2)Ax

(n+l)At

nat

FIG. A 1. Interaction of waves from adjacent Riemann problems.

rn+l rzn+lHere w,.,+, w ;+R,-, U are the mean Lagrangian wave speeds and the
velocity of the gas between the two sonic waves for Riemann problems centered at
((/+-}) Ax, n At).

The above scheme can be implemented in such a way that almost all the calcula-
tions are vectorizable. For the test problems discussed in 4, a program run on the
Cray-I at the LLNLCC, compiled using the CFT compiler, took about 14 ixs/zone/time
step/space dimension, or about 35,000 zones/second for a two-dimensional problem.
The iteration scheme for computing p*, u* is done once per zone, independent of
whether one is sampling or averaging in that zone, and takes (1.7 + 1.15 10) zs 4 #s
for lo 2, or less than one third of the time per timestep. A good deal of redundant
work is performed because of the limited number of vectorized logical operations
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available at the Fortran level using the CFT compiler. As more of the Cray-I’s
capabilities become accessible, such as vectorized gather/scatter operations and bit-
vector logic, the timing should improve substantially.
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A COMPUTATIONAL APPROACH FOR CONSTRUCTING
SINGULAR SOLUTIONS OF ONE-DIMENSIONAL

PSEUDOPARABOLIC AND METAPARABOLIC EQUATIONS*

ROBERT P. GILBERTf AND JARL JENSENt

Abstract. In the present work a computational approach is developed for constructing singular solutions
of the one-dimensional pseudoparabolic and metaparabolic equations. Recursive schemes are developed
to determine expansion coefficients for the singularities. It is shown, furthermore, that the coefficients are
themselves special solutions of ordinary differential equations. Closed form expressions are obtained for
these coefficients using a symbolic and algebraic manipulation language. Several examples are provided to
indicate the usefulness of this new approach to construct fundamental solutions.

Key words. Pseudoparabolic equations, metaparabolic equations, fundamental solutions, Riemann
functions, FORMAC, symbol manipulation.

1. Fundamental solutions of metaparabolic equations. As has been pointed out
in [3], [8] pseudo- and metaparabolic equations occur in the modeling of a variety of
physical problems such as the velocity of a nonsteady flow of a viscous fluid, the theory
of seepage of homogeneous fluids through fissured rock, hydrostatic excess pressure
during the consolidation of clay and the stability of liquid-filled shells. We consider
metaparabolic equations in one space variable. These are equations of the form

(1.2)

M[u]:=L[u]+M[ut]=O,

ao=- 1,

mn.

The coefficients ak, k may be taken to be arbitrary functions of x and t; however,
since we will be interested in developing a function theoretic approach we usually
require some amount of regularity.

Equation (2.1) may be rewritten in the form

Ox"
u (x, t) + (x- y

k=O k----- ak+lU(y, t) dy

fx (x y)"-’+k-1
+ E Jo : )’k=0 (n rn

(1.3)

which by integrating n times becomes

ak+l(y, t)u(y, t) dy

(1.4)
1 Io (x

u(x, t) +
k=o k!

bkut(y, t) dy] 0,

IO (X y)n-m+k-1
+ E (n rn+k 1)k=-O

n-1

bk(y, t)ut(y, t) dy E dk(t)x k := (x, t).
k=0

Here the bk(t) may be determined by prescribing suitable boundary conditions.

* Received by the editors February 18, 1981.

" Applied Mathematics Institute, University of Delaware, Newark, Delaware 19711.
Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark.
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A procedure which is useful for constructing solutions for metaparabolic equations
is based on determining a fundamental solution. See in this regard Colton [4], [5], [6],
Gilbert-Hsiao [8], Brown-Gilbert-Hsiao [3], Gilbert-Roach [9], Gilbert-Schneider
[10, [11] and Gilbert [7]. The methodology developed in these works suggests we
seek a fundamental solution S of the form

S(x, t; , "r):= ’. st(x, :)/!(--1)/+1
i--o (t- ’)+x

in the instance where the coefficients ak, bk are functions of the space variable alone.
For what follows we shall make this assumption.

Upon substituting the series for S into the differential equation (1.1)-(1.2) we
obtain a recursive scheme for the st(x, ), namely

(1.6) LEs0] 0, L[Sl+l] -MEsl], l= O, 1,....

Rewriting these in integral form, much in the same way as we did above for (1.1) and
(1.2), we obtain

st+l (x, ) +1 [ y
ak+1(Y)St+I(y, s) dy

k=O ., k!
(.7)

[ (X y)"-m+-
+ kYO= .Ie (n m + k 1). bk (y)st(y, s) dy t+l(x, so), 0, 1,....

For convenience, we choose t- 0, 1, 2,. and the first coefficient So(X, s) as

(1.8) So(X, ):= G(:, x),

where Gffj, x) is a Riemann function for L[u]=0. That is, G(,x) satisfies
Lx[G(, x)] 0, and also the initial conditions

(1.9)
WG(,x)

In order to simplify some of our expressions it is useful for us to introduce the
functions -- (x-y)

p(x, y):= Y ak+l(y),
k=O k!

(X y)n-re+k-1
q(x, y):= Y bk(y)

k=O (n-re+k-I)!"

Let P(x, y) be the resolvent kernel corresponding to the Volterra integral equation
with kernel p(x, y), i.e.,

(1.11) (x) + p(x, Y)4(Y) dy 4,(x).

Then s+l(x, :) may be represented in the form

(1.12) st+l(x, )= O(x, y)s/(y, :) dy, /=0, 1,2,...,
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where

Q(x, y):= q(x, y)- q(z, y)P(x, z) dz.

For the purpose of analytical computations it would be useful to have a closed-form
expression for P(x, y), and hence Q(x, y). With this in mind we note that the Riemann
function may be written in the form

(x )- (z )-
(1.13) G(f, x):=

(n 1)! Je (n 1)!
P(x, z) dz,

which may easily be verified by checking the initial conditions and observing that
G(f, x) is the solution of (1.11) when the nonhomogeneous term is given by

(x-y)"-
if:= (n- 1)!

Along with the Riemann function we introduce a set of associated functions,

(x _)k It:" (Z--)kp(x, Z) dz(1.14) Gk(, X):= k------ k-----.
(k =0, 1, 2,..., n 1), G,,-I(, x)=-G(, x). In terms of these functions Q(x, y) may
be represented as

(1.15) Q(x, y)= bk(y)G,-,,+k-(y, X).
k=O

Formulae (1.12) and (1.15) indicate that iterated integrations involving products
of the functions Gk(x, y) must be performed. In practice, analytical calculations of
this type would prove extremely tedious if not impossible to do by hand. It is with
this obstacle in mind that we develop the next section, where it is shown how closed
forms may be obtained for the coefficients st(x, ) by making use of a symbolic and
algebraic manipulation language. The language used here is an interactive and exten-
ded version [12] of FORMAC, based on the object-time library routines of FORMAC
[3], [].

2. Metaparabolic equations with constant coefficients. In this section we restrict
our attention to the case where the coefficients ak are constants. This leads to some
simplification in the representation formulae, which for purposes of exposition is
helpful. Indeed, we shall show that the associated Riemann function Gk (:, x) may be
uniquely determined from knowledge of the roots of the polynomial x"p(1/x, 0).
Indeed from these roots we obtain a fundamental system of solutions for the differential
equation satisfied by the resolvent kernel P(x, y). The resolvent can then be determined
from its initial data, which in turn, is related to the initial data satisfied by the given
polynomial, x"p(1/x, 0), at x =0.

We recall that p(x, y) and P(x, y) satisfy the identity

P(x, y)= p(x, y)- p(x, z)P(z, y)dz.

Since for the constant coefficient case p(x, y), as defined by (1.10), must be a function
of (x- y) alone, (2.1) dictates that P P(x- y) also. Hence (2.1) becomes

x
P(X) p(X)- | p(X o’)e(o’) do’.(2.2)
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By differentiating (2.2) with respect to X n times, it is seen that P satisfies an ordinary
differential equation

(2.3) P(") + a1P(n-l) 4-. 4- a,,_IP’ + a,,P O.

Hence P(X) must have the form

(2.4) P(X) ciX’- e n’x,
i=1

where Ri are the roots and li is the corresponding multiplicity of the algebraic equation

(2.5) X" + aX"- +.. + a,,_lX + a,, O.

The coefficients ci may be uniquely determined from the initial condition on Pk)(0),
(k 0, 1,. , n 1). Differentiating (2.4) successively we obtain

(2.6) cig _li_ k! P(’)(O), k O, 1,..., n 1.
= F(k -/.)

The coefficient matrix of the equation system (2.6) may for any vectors Ri and be
generated by the FORMAC commands:

PROC COEFFICMAT:
/* Generate the coefficient matrix of (2.6) */
FNC(RPGAMMA) STEP(0,$(1),10**25)/FAC(STEP(0,$(1),10**25)
*$(1));
DO K=0TON-1;

DO ] 1 TO N;
COEFMA(K,J) R(J)**(K- L(J)- 1)*FAC(K)*RPGAMMA(K- L(J);
END;

END;
PROC_END;

A relation between P()(0) and p((0) is obtained by differentiating (2.2) with respect
to X; namely, we obtain

P(0) p(0),
(2.7)

k

P)(0) p(0)- p-l(0)P-k)(0), k 1, 2," ’, n 1.
n=l

From (1.10) we have p)(0) a+, (k 0, 1,. ., n 1). Therefore by using (2.7) we
have P(0)=/(a, ak_, .., a). Since the a are easily obtained from the roots Ri,
P)(0) may be expressed in terms of the roots. The FORMAC commands generating
the expressions for P)(0) are for any n:

/* Generate the coefficients A(K) of (2.5) */
A(0)= 1;POL= 1;
DO J 1 TO N; POL= POL*(X-R(J)); END;
POL POL*X;
DO K= 1 TO N; A(K)= COEFF(POL,X**(N+ 1- K)); END;
PROC RIGHTHANDS:
/* Generate the right hand side of (3.6) */
PO(0) A(1);
DO K= 1 TO N-l;
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PO(K) A(K+ 1);
DO I 1 TO K;
PO(K) PO(K)- A(I)*PO(K- I);
END;

END;
PRO_END;

The results of the symbolic manipulation show that

it+1= ik=ik+l i2=i3 i1=i2

The determinant A of the coefficient matrix of (2.6) is given by

k=0,1,...,n-1.

(2.9) A ri l-I (ri- rj) K’’ (j- i)!
]= i=/’+1 i=1

where ri, (] 1, 2,..., M) are the distinct roots of (2.5) and i are their respective
multiplicities.

The solutions Ck Of the equation system (2.6) are given by

(2.10) Ck --r’+lk-fk(n, M, r./, tv (ri ri) ’+’-, k=l,2,...,n,

where the relations among k, and Ik are given by

i-1

(2.11) k= Y_ Ki+lk, i=1,2,’’’,M, Ik=l,2,’’’,Ki
i=1

and fk are polynomials in rv.
If there are no multiple roots then fk 1. In the case of one n-double root, fg is

given by

(n) 1
[=

k (k-l)!"

In the case where ri is the only double root,

fl fr’-iC(f),
i=2

.-1
(x- r) andwhere C(A) is defined as the coefficient of x "-x in the product I-I=2

for k 1. In the general case of several multiple roots f is more complicated.
From (1.14) we obtain the following expressions for the associated Riemann

functions:

I0O,(X)= 1-X P(X(1-h))dh =0,1,...,n-1.

Using (2.4) we have

i0RkX lk--1 e-RkXh1-X ckXl-le A (l-A) dA(2.12) G(X)= k=l
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which after integrating by parts becomes

G(X) =-. 1 + , cR kl(lk 1)!(--1)-1
k=l

k=l =0

+ Ck R-+,X- (7 + lk 1)!
k= = 7!(’--)!

or

(2.13)

(-1)

11 +l)x/k_l_ (Ik 1) ( + )
G,,(X) c ex R-(’+

k= v=0 7!(/k--1--7)! U!
(-- 1)v"

By calculating the G(X) using the FORMAC procedure SL, it may be seen that the
G(X) have the form

M

(2.14) G(X) E r7-’+t-’-xt’-I er’Xbk(n, M, r,, v, ) l-I (r ri) -’-’+.
k-- 1=1,1i

-AHere the Ck are polynomials in rv, and contain the factor v when A
n--,+tk--I <0. The dependence of k on and lk is given by (2.11).

If there are no multiple roots then bk 1, and in the case of one n-tuple root bk
is given by

(n- 1-,)!
bk (k-1)!(n-k)!F(k-,)’

when r is the only double root we obtain the special form

(j-- v)r-C(]),
i=2

with k 1 for all k 1.

From (1.15) we have, in the case where the coefficients ak are constants,

n--1

(2.15) Q(x, y) Y’. b+,,+_(y)G(x y).
P=----I

Substituting G(x- y) from (2.14) into (2.15) we obtain

M
n+lk--Ki--1 lk--1 e ri(x -y)O(x, y) Y. ri (x y) 1-I (ri ri

k= j=

n-1. b,,+,,+-,(y)r"k(n, M, rv, r,v, ,).
=n-m--1

The st(x, ) are calculated using the recursive scheme (1.12)where the initial coefficient
is seen from (1.8) to be

(2.16) So(X, tj) G(tj, x)= G,,_(, x)= G,_(x j).

If the coefficients bk are constants, (1.12) yields with X x :
x

(2.17) Sl+l(X) Io Q(X-z)st(z) dz.
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The calculation of the coefficients s(x, ) given the coefficients ak and bk may be
performed by the FORMAC procedure SL given below:

PROC SL;
/* Calculate the roots R(J) of (3.5) and */
/* the vector L(J) */
CALL ROOTS;
/* Print_out the R(J) and L(J) */
DO II 1 TO N; P(R(II), L(II)); END;
/* Generate the coefficient matrix of (3.6) */
CALL COEFFICMAT;
/* Generate the right-hand side of (3.6) */
CALL RIGHTHANDS;
/* Change index by 1 in the coefficient matrix and the */
/* right-hand side */
DO K=N TO 1 BY-1;

DO J 1 TO N;
COEFMA(K,J) COEFMA(K- 1,J);
END;

RIGHTS(K) PO(K 1); END;
/* Solve the linear equation system (3.6). DET means */
/* the determinant of the coefficient matrix */
C LIEQU(N,1,COEFMA,RIGHTS,DET):
DO K= 1 TO N; C(K)= C(K)/DET; END;
/* Compute G(K) using (3.12) */
DO II 0 TO N- 1;
/* F and H are variables for intermediate results */
H =0;

DO K 1 TO N;
F- INTGR(T**II*(1- T)**(L(K) 1)*E**(-R(K)*X*T),T);
F EVAL(F,T,1)- EVAL(F,T,0);
n n+ C(K)*X**(L(K)- 1)*E**(R(K)*X)*F;
END;

G(II) X**II/FAC(II)*(1 X’H);
P(G(II));/* Print_out G(II) */
END;
/* Compute Q using (3.15) */
Q=0;
DO II =N-M- 1 TO N-l;
Q Q-B(II +M/ 1 N)*G(II);
END;
/* Define S(0) using (3.16) */
S(0) G(N 1);
/* Compute S(L) using (3.17) */
DO L 0 TO LMAX;
S(L+ 1) INTGR(REPLACE(Q,X,X- Z)*REPLACE(S(L),X,Z),Z);
S(L/ 1)= EVAL(S(L+ 1),Z,X)-EVAL(S(L+ 1),Z,0); P(S(L+ 1));
END;
PROC_END;
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As an example of use of the procedure SL we may calculate the first ten coefficients
s(x, ) in the case n =4, ao= 1, al =-19, a2 121, a3=-309, aa=270, m =2, bo 1,
bl 2, b. 5.

So the following FORMAC commands:

N=4; M=2; LMAX 8;
A(0)= 1; A(1)=-19; A(2)= 121;
A(3) =-309; A(4)= 270;
B(0)= 1; B(1)=2; B(2)= 5;
CALL SL;

result in

R(1) 2 R(2) 3 R(3) 5 R(4) 9
L(1) 1 L(2) 1 L(3) 1 L(4) 1

G(0) 243/56 E
9 X

125/24 E
5 X X X

+9/4 E
3

-8/21 E
2

G(1) 27/56 E
9X

-25/24 E
5 X

+3/4 E
3X

-4/21 E
2X

G(2) 3/56 E
9 X

_5/24 E5 X X
+ 1/4 E

3
-2/21E

2X

G(3) 1/168 E
9 X

1/24 E
5 X X X

+ 1/12 E
3

1/21 E
2

S(1) =-13/3528 XE
9 X

-5/72XE
5X

5/36 XE
3 X

13/441 XE
2 X

+ 253/74088 E
9 X

+13/216 E
5X

+ 127 E
3 X

-932/9261 E
2 X

S(5)= -1/8233547616(371293/10X5-3113149/7 X4

+393867175/168X
3

47538551645/7056X
2
+517466976247/49392X

_4846859564003/691488)E
9 X_ 1/85766121(371293/120 X

5

+3627247/21X
4

X
3

+255642920/63 +66381192280/1323 X
2

+112027632314/343 X+58041810204344/64827)E
2X

1/34992(625/2X
5

X
3

X
2

+138125/6 -292625/9 +11313175/36 X

2548219/9)E
3X

1/69984(625/2X
5

3125X
4

X
3

+475625/24

-10692875/144 X2+7887775/48 X-47303981/288)E5 X

S(9) -(.22787383E 04X
9
/ .54689721E 04 X

8 7
+ .01009754 X

-.01440624 X
6

X
5 4 3

+ 1.43530921 -4.82332329 X + 76.978372 X"
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-246.409924 X2+ 1129.54984 X- 1478.40995) E
3 X

(.11393691E 04X
9

32130211E-03X
8 7

-. + .00561686 X

-.06703802 X
6

X
5

X
4

X
3

+.58885924 -3.83654649 + 18.2915172

-60.8249909 X2+ 126.974505 X- 125.934703) E
5 X

(.17520003E- 08 X
9

+.23247604E- 04 X
7

+ .29826362E 06 X
8

+.00108914 X
6

X
5 4

X
3

+.03380729 +.72111122 X + 10.5703344

+ 102.676988 X2+ 599.691297 X+ 1604.34494) E
2 X- (.21900004E

09X
9

.76168696E-08X
8
+.12520753E-06 X

7
-.12716743E-05 X

6

+.87641229E 05X
5

.42374496E-04X
4
+.14335005E-03 X

3

.32640295E- 03 X
2
+.45294103E-03 X-.29128482E- 03) E

9 X

Here for brevity S2, $3, S4, S6, S7 and s8 have been omitted and the coefficients of
s9 have been transformed from rational numbers into real numbers.

The results obtained for Sl(X, ) may be verified by substituting the series for the
fundamental solution S given by (1.5) into the differential equations (1.1)-(1.2). This
is done in the procedure CONTROL"

PROC CONTROL;
/* Generate the fundamental solution S(x,t,z,tau) using
/* (2.5)
S=0;
DO L 0 TO LMAX/ 1;
S= S+ S(L)*FAC(L)*(-1)**(L+ 1)/(T-TAU)**(L/ 1); END;
/* Test the solution S using (2.1) and (2.2)
NUL 0;
DO K 0 TO N; NUL NUL/A(N- K)*DERIV(S,X,K); END;
ST DERIV(S,T);
DO K 0 TO M; NUL NUL/B(M- K)*DERIV(ST,X,K); END;
PROC_END;

,/

3. Pseudoparabolic equations. We consider here the case of pseudoparabolic
equations, namely, equations having the form

(3.1) p[u]:=L[ut]+M[u]=O,

where L and M are the operators defined by (1.2). As noted earlier, the fundamental
singularity of a metaparabolic equation resembles that of a parabolic equation; indeed
it is a perturbation of one. The pseudoparabolic equations on the other hand have
singularities of quite a different nature; they resemble more closely those of an elliptic
equation.
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For the present development it is of interest to first investigate the singular
solutions of the ordinary differential equation

(3.2) L[u]:=
k=o Ox-- (a,,-kU) 6(X ),

where x, sc [0, l] and where t(x-) is a delta function having its source point at
x sc. Given a fundamental family of solutions to L[u] 0 a fundamental singularity
may be constructed in terms of the Wronskian W(&I, 2, n)(x),as

1
(3.3) K(x, so): D(x, ), x >=,

a, (so)W(1, ,)()

K(x, sc) =- 0, x < , x, : [0, l],

where D(x, ) is defined as

D(x, ) :=

(3.6)

where
1, x>:,

0(x-:):=
0, x-<:

is the Heaviside function. Substituting this expression into (3.2), using the Leibnitz
formula, and reordering the resulting summations yields

(3.7)
1 (k) ok-alo(x-lL[a](x,)+-- 6(i-)(x-) a,,-k k_i+L[B](x,)=(x-).

n n = k= ] Ox

If, in addition, we wish the fundamental singularity to satisfy the boundary
conditions

(3.4) U.[u]:= [M.kuk-1)(O)+Nikuk-1)(1)]=O, j= 1, 2,’’’, n,
k=l

this may be accomplished by adding to K(x, ) a linear combination of the solutions
{1,""’, ,} choosing the coefficient cj(sc) such that

G(x, ):=K(x, :)+ c();(x)
j=l

satisfies (3.4). When det IUk[i]} 0 then the system

(3.5) ci(:)Uk[i] -Uk[K](:), k 1, 2,..., n
j=l

may always be solved for the ci(:), (] 1, 2,..., n).
For our purposes another way of constructing a fundamental singularity is actually

more convenient. As before we consider the case of constant coefficients, taking ao =- 1.
A fundamental singularity is sought in the form

1
S(x, ) :=- O(x )A(x, ) + B(x, ),

n
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If the an-k are constants, or analytic functions of x on (-, o), then A(x, ) and
B(x, ) are locally analytic about each x (-, ); A(z, ) and B(z, ) could be
continued, for example, by formal powers or other standard methods. As the Heaviside
function, and the derivatives of 6-functions have the continuations [2, pp. 68-69]

(X )kO(x )- --1-- (Z )t’ log (-- Z),
2i(3.8) (_l)(j_ 1)!i-)(x-)

2i(z )i
equation (3.7) has the continuation

_!L[A](z,e)log(_z)+ (-1)’(-) a_ _,
n i= n(z -)I k=] OX

1
+ L[.](z, ) + 0.

z-$

The singularity due to the logarithm gives rise to a multivalued function, and this
singularity cannot be cancelled out by the polar singularities due to the terms (z )-i.
Hence, in order for the right-hand side to be identically equal to zero we must have

(3.9) L[A]=0,

i.e., A(z, ) is a solution of the homogeneous equations. In order that the polar
singularities cancel we must impose initial conditions on the A(x, $); these are given
by

n ]
a_ Ox_ -, atx , ] 1,2, ,n.

The conditions may be satisfied by requiring that

(3.10)
OA(x’ ) _,, ] O, 1,. ., n 1.

OX x=

Comparing (3.9), (3.10) with the equations for G(, x) as given by (1.8), (1.6), and
(1.9), we notice that A(x,) G(, x); that is, A is the Riemann function associated
with the operator L. The function B (x, ) is seen to satisfy

L[a](x,):(x-)-e (]-l)(x-) () ok-iA
# j=l k=i j

a.-k axk_.

However, since the 8-functions are cancelled by zeros of the coefficients etc. we might
continue this into the whole complex plane and solve it analytically.

Having obtained this representation for a fundamental singularity of (3.2) we
seek a singular solution to (3.1) in the form

1
(3.11) $(x, t; , z):=-O(x-)A(x, t; , )+B(x, t; , ).

Substituting this into (3.1), we obtain

1 ( ) ak-iAt O(X
(3.12)

1 "-a O-iA
+- 2 8(- (x ) b__

_
+M[B] (x ).

n i= k =i OX
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Assuming that the coefficients A and B have the form

a(x, t; , -):= Y. ai(x, ) (t-’)i------
(3.13)

i=o (j+l)!

(t- -)i+1
B(x, t; , -):= Y B(x, )

;=o (j + 1)!

we obtain equations for the Aj, Bj, by substituting these expressions into (3.12) and
collecting like powers of (t-r). The zeroth order term is

k Ok-Ao1 t(/_l) an-k(3.14) O(x-)L[Ao]+- E (x-) /

n n = = j ox’’+L--=’(x-)

As before, this implies Ao(x, )--G(, x), Bo(x, j) may be found as any solution of
the resulting equation having set L[Ao]-= 0. The terms of order are seen to be

1 () Ok-iAt LOLO(x-j)L[A,]+- 8(’-’)(x-J) L k
n n i=1 k=i j

a,-k OXk_i +L[Bt]+n (x-)M[At_I]

(3.15) +_ 8(i-1 (x ) b_k_ _------- +M[B_] 0.
ni=l k=i ] aX

Equating the coefficients of O(x-) identically to zero yields the recursive relation
for the Al (l 1, 2,...),

(3.16) L[AI] -M[At_I],

whereas the initial conditions are arrived at by requiring that the coefficients of the
individual 6(i)(x c), (j O, 1,. , n 1) vanish at x . They are given by

k=i ]
an-k axk_J --k=j / aX k-j 0

We notice that, when 1, the
atx =, j=0,1,...,n-1.

A]/): j=O, 1 n-1
OX

are related to Ao, A,..., Ao"-2 at x . Since these derivatives all vanish at x ’,
(3.17) implies for 1 that

(3.)
"-A

k=i j
an-k axk_i O, ] O, 1, ", n 1.

As ao 1, the system (3.18) may be uniquely solved by setting

=0 atx=, ]=0,1,...,n-1.
Ox

In a similar manner one verifies inductively that for 1, 2,..

JAI
0 atx $, ] 0, 1 n-1(3.19)

Ox

The Bt may be chosen as any solution to the equation

LIBel =-F(x, ),
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with

(3.20)

Fl(x, ):= Z (X S) a,-,
n =1 k=

ln-1 1( ) ok-JAl_l
+- y. 8(j_1)(x_) k

bn-k-I k-j -M[Bt-I].
n 1=1 k=] ] OX

It is interesting to note at this point that the coefficients At computed here for the
pseudoparabolic system are exactly the same ones we computed for the metaparabolic
system; hence, the program given earlier has a further application to our present case.

That we obtain the same recursive system is not at all surprising, as the Laplace
transform of the fundamental solution of the pseudoparabolic equation is the funda-
mental solution for the transformed (elliptic) partial differential

pL[u]+M[u]=8(x),

where p is the transformation parameter. The fundamental singularity of this equation
may then be sought in the form

1g(x, ):=- O(x-)A(x, , p)+B(x, , p).
n

A(x, , p) is the coefficient of the normalized singular term, hence it must be the
equation’s Riemann function. Now the coefficients A(x, , p) and B(x, , p) also depend
upon the parameter p, and if we expand A(x, :, p) in negative powers of p this gives
us the above recursive system.

Before concluding this section we remark that it would have been possible to
construct a fundamental singularity in the form

(t- .)+1
(3.21) S(x, t; , ’):= Z KI(X, )

/=o (I+ 1)!

where K0(x, :):-K(x, ) as given in (3.3). We then obtain the recursion formulae

(3.22) Lx[Kl+ (x, :)] -M[Kl(X, :)]

which integrate to

Kl+(x, )= M[Kl(rl, sC)]Ko(x, r/) dr/

kZO= (-1)k (bm-kKo(x, l))Kl(?, ) dl

[m ix.3. E E (-1)]KIi) (1, )b.,-p(Ko(x, r/))()
p ]+i =p--1 0

],i>=O

We can normalize the terms Kt(x, :), l-> 1 such that

c3kKl(X, )
Ox k =0, k =0, 1,2,... ,n-1.

x=0

However, we must compute the derivatives

jKo(x,?) atr/=x, ]=0,1,...,n-1.
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CLAIM. K(oi) (x, x-) 0 for O, 1,. ., n 2, and

K(o-) (x, x-)=
(--1)n-1

bo

This may be seen by differentiating the determinant D(x, ) by rows and noting that
whenever two rows coincide as x x- this term does not contribute to the evaluation.

We obtain finally that

Kt+x(x, )=-Kt(x, )- M*, [Ko(x, r/)]Kt(r/, ) dn.

It is easy at this point to construct a fundamental singularity satisfying the
boundary conditions (3.4). Defining

Ol(X, ) :-- Kl(x, )[- Cl]())](x)
]=1

and substituting this into (3.4) yields the condition (3.5) for each 0, 1, 2, , namely

] Cl(y)u[4,]=-u,[](),
]=1

k=l,...,n.

The generalized Green’s function is then given by

(t-r)k+l
G(x, t; , z):= E G(x, )

k=o (k + 1)!

We notice that Go(x, )= G(, x) is the Green’s function associated with L. Alterna-
tively, the successively defined G(x, ) might have been defined by the recursive
scheme

O+l(X, )= Mn[Ok(r/, :)]O(x, r/) dr/, k=0,1,...
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STEADY SHOCK TRACKING, NEWTON’S METHOD, AND THE
SUPERSONIC BLUNT BODY PROBLEM*
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Abstract. The steady shock tracking method, which combines shock tracking and Newton’s method,
is applied to the axisymmetric supersonic blunt body problem. The formulation is in conservation form
and uses the constant total enthalpy condition to reduce the number of unknowns at each finite difference
mesh point. On a transformed computational grid where the bow shock is a coordinate line, the discrete
physical shock loca-tions appear explicitly as unknowns in a set of finite difference equations which couples
them to the other unknowns. The space-time characteristic compatibility conditions for the associated
time-dependent problem are used in formulating the boundary conditions for the steady problem. The
resulting system is solved using various modifications of Newton’s method. Experiments are repeated with
three linear system solvers whose efficiency is compared. The computed results for flow over a sphere are
economically obtained and agree well with experiment. Continuation of the solutions with respect to some
physical parameters is explored, and multiple solutions of one variation of our finite difference system are
displayed.

Key words, blunt body flow, Newton’s method, shock tracking, multiple solutions, continuation

1. Introduction. In [1] we presented an accurate and efficient method called
"steady shock tracking" for solving certain inviscid steady flow problems with shocks,
and applied this method to one-dimensional duct flow. This approach combines the
desirable aspects of shock tracking (also known as shock fitting) with the rapid
convergence of Newton’s method in a way that is easy to implement. Recently, several
papers have appeared concerning the application of Newton’s method to fluid dynamics
problems [2], [3], [4], with that of Gustafsson and Wahlund [4] also combining
Newton’s method with shock tracking for the supersonic blunt body problem. We
have independently extended our steady shock tracking method to handle the blunt
body problem. Our approach differs considerably from that of [4].

The physical problem is described in 2A; for details see [5]. The most common
technique for obtaining steady solutions of such problems is the "time-asymptotic"
method wherein the time-dependent equations of fluid dynamics are used to proceed
from some initial guess of the flow field to a steady state. This method tends to reduce
errors in the initial guess rapidly at first, but then converges rather slowly, often with
waves propagating through the computational domain. Explicit finite difference
schemes require little work per time step but have stability restrictions which limit
the time step size. Implicit schemes are often stable regardless of time step (in practice
this step size is limited [6]), but require more work per step. In either case, the time
asymptotic process can be inefficient if the criterion for achieving a steady state is
somewhat exacting.

For approximating the shock wave one must choose either "shock capturing" or
"shock tracking" methods. Shock capturing methods which do nothing special at
shocks are very easy to implement, but they smear the computed shock over several
finite difference mesh points, or they introduce computational oscillations. Alterna-
tively, shock tracking methods which explicitly treat the shock as a moving free surface

* Received by the editors October 9, 1980, and in final revised form May 27, 1981. This work was
funded by NSWC Independent Research funds and by the Reentry Technology Program Office.

5" Applied Mathematics Branch (R44), Naval Surface Weapons Center, Silver Spring, Maryland 20910.
Current address: Exxon Production Research Co., P.O. Box 2189, Houston, Texas 77001.
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give excellent results at the shock but are relatively complicated to implement. Moretti
[7] applied his explicit time-asymptotic shock tracking procedure to the blunt body
problem and obtained results which agree well with experiment. Since then, the time
asymptotic shock tracking method with either explicit or implicit interior finite
differencing (but always an explicit shock treatment) has become a standard technique.
Various modifications have also been devised to handle a wider variety of body
configurations (e.g. [8], [9]) and to accurately treat low free stream Mach numbers
10]. Finally, a very different approach to the blunt body problem is to iteratively solve
the "inverse problem" (specify the shock shape and compute the body shape
until the desired body is obtained). This procedure can yield useful results but is ill-
conditioned [11 ].

In steady shock tracking we first consider an unsteady shock tracking formulation
in which a time-dependent transformation maps the unknown shock location into a
constant computational coordinate and the physical region of interest into a rectangle.
We then drop all time derivative terms to obtain a time-independent system of
differential equations governing the steady flow problem. Discretizing these differential
equations in computational coordinates yields a system of nonlinear difference
equations (with the discrete shock locations appearing explicitly as unknowns) which
is solved using a modified Newton’s method.

In 2 we present the finite difference computational method, discussing the
continuous problem, the discrete problem, boundary conditions and the solution by
Newton’s method. We also consider continuation of the solution with respect to several
parameters, and the possibility of multiple solutions or no solution. In 3, we give
computational results for a sphere showing good agreement with experimental data.
We also present timing comparisions for some overall computational strategies employ-
ing three different linear system solvers, and exhibit multiple solutions to our nonlinear
system. We use continuation to proceed from the solution for the sphere to a solution
for an ellipse at a different Mach number.

2. Problem formulation.
2A. Continuous problem. The physical problem is depicted in Fig. 1 a. An incom-

ing supersonic stream with Mach number Moo > 1 and known density poo and pressure
poo impinges on an axisymmetric blunt body and a bow shock forms separating the
undisturbed flow to the left of the shock from the disturbed "shock layer" between
the body and the shock. We want to determine the steady flow in the shock layer and
the position of the bow shock. This steady flow is of mixed type, the governing
equations being elliptic in the subsonic region (Mach number M< 1) and hyperbolic
in the supersonic region (M > 1). For indented body shapes, embedded shocks may
appear in the shock layer; here we consider only sufficiently smooth bodies for which
this does not occur.

We first introduce the unsteady problem described in spherical coordinates (r, 0, b)
with axisymmetry assumed (0/0b 0). See Fig. la. This time-dependent problem is
hyperbolic with physical time being the time-like direction. The flow is described by

where
U +Fr + Go +H O,

P

U r2 sin 0
pu r2
pv

F sin 0

E

pu2+p

I I
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.o [ 0

-(2p + pv2)r sin 0puv
HG =r sin 0 01)2 +P I--r(P cos O--puv sin 0

v(pE+p) o
p is density, u is r-velocity, v is 0-velocity, E=e +(u2+v2)/2 where e is specific
internal energy and p is pressure (subscripts t, r, 0 indicate partial differentiation). For
simplicity, the equation of state is taken here to be that of a perfect gas

(2) p=(r-1)pe,

OUTFLOW BOUNDARY

BOW SHOCK $10)

/ SONIC LIN". BODY b (0)

FREESTREAM
Moo>

ii. ,
SYMMETRY LINE
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where y 1.4 for air. We shall continue to use the symbol p with the understanding
that it is to be replaced by (2).

In the steady state (Ut 0) the energy conservation equation (component 4 of
(1)) can be replaced by the condition of constant total enthalpy

/,/2+/)2 2 2

(3) l=e+p+=ye+U
p 2 2

where fLo is evaluated at the known freestream conditions (i.e., 1) equals the same
constant both inside and outside the shock layer). This simplification reduces the
number of unknowns from four (p, u, v, e) to three (p, u, v). We note that (1) is
identically satisfied on 0 0 by virtue of the factor sin 0. We have found this to be
unsatisfactory in computation as it seems to "decouple" the flow on 0 0 from that
at 0 > 0. For this reason we rewrite the steady state version of (1) as

E+Oo+H=O,(4)
where

r2 flU
2 + _r r pUV I7I r Ipuv cot 0-- 2p--p/)2

pUt) PV2 +P 1 /3/)
2 cot 0 +puv

Equations (2), (3) and (4), together with boundary conditions to be specified in 2B,
comprise the continuous problem which is to be approximated. Our choice of the
weak conservation form (4) was made in preference to the "non-conservation form"
(e.g., [4], [7]) in anticipation of extending this work to flow fields with captured internal
discontinuities such as embedded shocks.

Defining the known body as r b(O), the unknown shock as r s(O), and the
outflow boundary as 0 0max, the transformation [7]

r-b(O) 0
(5) x Ys(O)-b(O)’ Omax
maps the physical shock layer of Fig. la into the computational rectangle of Fig. lb.
Equation (4) transforms to

(6) [J(XrF +XoG)]x + [YroG]g +JH O,

where J O(r, O)/O(X, Y)= Omax($-b) is the Jacobian of the inverse transformation
[12], and subscripts X, Y indicate partial differentiation.

2B. Boundary conditions. Computational boundary conditions must be specified
at each point along the boundary of the computational rectangle, namely along the
symmetry line Y 0, the outflow boundary Y 1, the body X 0, and the shock
X 1. At the symmetry line, v 0 and the unknowns p, u are even functions of 0.
The third component of (4) or (6) is thus identically satisfied. Using L’Hospital’s rule
to evaluate lim0_.0 H and combining with Go gives the first two components of

( 2rpvo
(7) Fr +H 0, H

2rpuvo 2rp/

as two equations holding on 0 0, to be solved for the two unknowns p and u.
Transforming using (5) gives

(8) [J’SrP]x "1" JI 0

as the equations which govern the flow on Y 0 in computational space.
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For the other three boundaries, our approach to deriving computational boundary
conditions makes use of the time-dependent formulation, especially the theory of
characteristics for hyperbolic systems. From our point of view, the steady state solution
is just a special kind of unsteady solution, and the concept of information being
propagated along space-time characteristics is retained. From this perspective, the
characteristic compatibility equations which hold along characteristics in the time-
dependent problem still hold in the steady state, only they transmit the particular
information that the solution is not changing in time. This would be the situation, for
example, when a steady state is reached in a time-dependent method characteristics
solution.

The characteristic ray directions and characteristic compatibility conditions for
the time dependent problem (which has four unknowns since fl is not constant) are
derived in the Appendix. Considering the body and the shock, the qualitative nature
of these characteristics, as projected on a Y constant plane, is depicted in Fig. 2.
At the body, one characteristic (shown dashed) comes from outside the computational
interval 0 =<X -< 1, and is replaced by the physical boundary condition that the normal
velocity at the wall is zero"

vbo(9) u ---- 0.

This leaves three admissible compatibility conditions (i.e., those associated with
characteristic rays reaching the boundary from inside the computational domain). As
outlined in the Appendix, it is possible to identify one of these admissible conditions
as being identically satisfied in the steady state due to the simplification of constant
total enthalpy; this condition is then discarded. The two remaining relations holding
at the wall are (dropping time derivative terms)

(10) --ppy + p2ey O,

pcX Yo ( v b_)--XrDbPx + pcXrux + b Vx +-- -+ pY

(11)
pvY e( bv p
bD----Uy+___c +-] Vy+-(c(2u +v cot 0) +/)qtan) 0,

where D 1 +(bo/b)2, qtan=(ubo/b +v)/Db, and the speed of sound c =(/p/p)l/2.

I
I

I
I

I

o
BODY SHOCK

\ \, x

FIG. 2. Behavior of characteristics at the body and the shock, projected on Y constant plane. Solid
characteristics are admissible, dashed characteristics are inadmissible.
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Defining the entropy as S In (p/poo) y In (p/poo) where poo and Ooo are the freestream
pressure and density, (10) can be rewritten as Sy 0 or

(12) S constant.

Summarizing, three independent conditions holding on the body r b(O) are (9), (11)
and (12).

At the shock r s(O), one characteristic compatibility condition is admissible and
three are not (Fig. 2). The admissible condition is (dropping time derivative terms)

4- lrDs Px + P cXr 4- Ux +- clo So Vx + py
s s

(13)
+

sD, u + c
sD] vg-[c(2Us + v cot 0) + vOt.] O.

whereD 1 + (So/S), Ot. (uso/s + v)/D. and uX + vXo/s. The boundary con-
ditions holding at the shock are the Rankine-Hugoniot jump conditions

(14a)

(14b)

(14c)

pQ,., constant across shock,

p +pQ] constant,

e +-P+ Q2,,
p -- constant,

(14d) Qtan constant.

Here Q,, (u-vso/s)/Ds is the velocity normal to the shock, and the constants are
evaluated at some particular values of s, so by using the known freestream conditions.
Equation (14c) is equivalent to the statement of constant total enthalpy, (3), and is
therefore not an additional condition. Summarizing, the independent conditions hold-
ing at the shock are (13), (14a), (14b), and (14d). Note that there are four conditions
at the shock, whereas only three were needed at the body. The "extra" shock equation
serves to determine the unknown shock location r s(O). This matter is discussed
more fully in 1]. Gustafsson and Wahlund [4] closed their system in a different manner.

The outflow plane Y 1 is assumed to be in the supersonic region (Fig. la). In
this case, all four compatibility conditions are admissible, and no physical boundary
conditions are required. The four conditions are, of course, equivalent to the original
differential equations and we therefore use (6) in the computational space for determin-
ing the flow on Y 1.

Finally, the point X 0, Y 0 (i.e., r b, 0 0) is a stagnation point where
u v 0. Additionally, the density and specific energy attain the stagnation values
corresponding to a steady normal shock with upstream Mach number Moo. Specifically,
these stagnation values are obtained by solving (14) with so 0 for the flow values
behind the shock, and using (3) and the fact that the entropy S has the same value
at the shock and at the stagnation point.

2C. Finite difference equations. A uniform mesh is used in the computational
rectangle. The mesh points (Xn, Y.) are given by Xn (n 1)AX, n 1, 2, , N with
AX=I/(N-1) and Ym=(m-1)AY, m=I, 2,...,M with AY=I/(M-1). The
unknowns at each mesh point are Pn, Un, and v.. where pn,,. represents p(X., Y,,,)
and similarly for u and v. The specific internal energy e is defined in terms of these
unknowns by the total enthalpy relation (3), and the pressure is then given by the
equation of state (2).
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Second order accurate differencing is used at "interior" points; both first and
second order accurate approximations are considered at the body, shock, and outflow
boundaries. At interior mesh points n 2, 3, ., N- 1 and rn 2, 3, , M- 1, (6)
are approximated by the centered difference equations

(nm+l-- nm--l"J-n O,(15) .+,m-- .-,.,
2AX 2AY

where J(XF+XoG), JYoG, and JH.
On the symmetry line, (8) is approximated by

(16) :,,+l,m--,-1.,,,+, =0,
2AX ’"

where vo in (7) is given by Yo),.v,./A y (this is second order by virtue of the oddness
of v about O 0).

At the body n 1, m 2, 3,... ,M, (9), (11) and (12) hold. Equation (9) is an
algebraic equation where b and bo are given functions defining the body shape which
are evaluated at the discrete body points. In (11), X-derivatives are approximated by
a one-sided two-point (first order) formula, e.g., Px (p:., -p.,,)!AX, or a three-point
(second order) approximation, e.g., px (--3p.m + 4p2,,, --P3,m)/(2Z(). Y-derivatives
are approximated by centered differences along X 0 except at the outflow body
point n 1, rn M where two or three point backward Y-differences are used. All
other terms are evaluated at the body point itself. At the shock, the Rankine-Hugoniot
equations (14a, b, d) are algebraic equations holding at the shock points n=N, m
1, 2,..., M, where so remains to be defined as finite differences of s. The terms in
compatibility equation (13) are evaluated in the same manner as those in body equation
(11), with the simplification on m 1 that v Uy py so Xo 0. The differencing
of Vy is the same as for the symmetry line equations. At the outflow boundary, (6)
is differenced with centered X-differences and two or three point backward Y-
differences.

It remains to discuss how the shock slope so=syYo is related to the discrete
(unknown) shock locations r= s, s((m- 1)AY) at rn 1, 2,... ,M in computa-
tional space. We investigate the effect of two different approximations, namely centered
differencing

(s.,+-s,._)(17) (So)m (Yo)m
2AY

(with 2- or 3-point backward differencing at m M), and a four-point formula

(Sm-2--6Sm-1 + 3s,, + 2Sm+l)(18) (SO)m (Y0),
6AY

(with appropriate simplification at m 2 using evenness of s, and a different four-
point backward formula at m M). This latter approach appears to yield a "smoother"
shock than does (17).

Counting three unknowns (p, u, v) per mesh point (although the stagnation values
are explicitly known) andM unknown shock locations, these finite difference equations
constitute K =M(3N+ 1) equations in K unknowns. This system of equations is
solved by a modified Newton’s method.

2D. Solution by Newton’s method and continuation. For a nonlinear system of
K equations in K unknowns written in the form T(x) 0, a damped Newton’s method
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defines an iteration for the approximate solution x by the linearization

(19) T’(x)(x+-x ") -aT(x), 0<a =< 1,

where T’ is the Jacobian matrix associated with the mapping T, i.e., Ti
e3T/Oxi, (i,]= 1,2,... ,K). If x* is a solution to T(x)=0, then for a 1 (usual
Newton’s method) and an initial guess x sufficiently close to x* the iterates x converge
quadratically to x*. A less accurate initial guess can often be improved by taking
a < 1 (giving linear convergence) until the damped Newton iterates are close enough
to x*. For complicated problems such as those addressed here, the Jacobian matrix
T’ may be fairly complicated to compute analytically. We therefore form T’ using
forward difference quotients

T(x + eei)- T(x),(20) T

which when used in (19) still yields quadratic convergence under certain restrictions
on T, T’, x, and e, and linear or superlinear convergence otherwise [13, p. 360]. It
is interesting to note that some implicit schemes for solving Ox/Ot T(x) formally
reduce to the damped Newton’s method (19) in the limit At o [14], [15].

The two primary difficulties which may be anticipated in applying Newton’s
method to a very large system of nonlinear equations are (i) to efficiently solve the
large linear system (19) and (ii) to generate a sufficiently good initial guess. We
concentrate first on the question of efficiency.

The primary reason why Newton’s method can be efficiently implemented on the
present and similar problems is that the Jacobian matrix T’ is sparse and has a good
deal of structure, leading to efficient solution of the linear system (19). This structure
depends on the ordering of the unknowns and equations, and also on the particular
difference approximations used. We consider the mesh points in the order ((n
1, N), m 1, M) where the "implied loop" notation borrowed from FORTRAN
means that n goes from 1 to N for each increment of m. We order the unknowns as
((p,,,,,, un,,,, vn,,,,, n 1, N), s,,, rn 1, M) and the equations as (3 body equations, (3
interior equations, n 2, N-1), 4 shock equations, rn 1, M). With this ordering
and with first order accurate Y-differences at rn =M and centered So, the structure
of T’ (illustrated for a coarse mesh in Fig. 3) is M M block tridiagonal with square
blocks of size 3N + 1. For the four point approximation (18) of So, some stray columns
appear outside the block tridiagonal structure. For second order (3 point backward)
Y-differences at rn =M, a stray block appears on the last row of T’. The use of three
point X-differences at the wall and the shock does not alter the block structure but
only complicates the blocks themselves.

Seeking the best method, we investigate array storage and computer time require-
ments in solving the linear system (19) using three different methods: (i) LU decom-
position with partial pivoting and storage of the full matrix, (ii) the Harwell sparse
matrix package [16], and (iii) a block tridiagonal solver [17]. An LU decomposition
which takes advantage of the banded structure of T’ would save storage but require
essentially the same running time as (i). In the Harwell package, only nonzero entries
ot the Jacobian are stored, and pivoting is done using the strategy of Markowitz [18]
with the constraint that the pivots are not less than some specified quantity. For
method (iii) the subsystems are solved using (i). We remark that in-core solution of
the linear system may become prohibitive for excessively fine computational meshes,
necessitating an out-of-core solution.
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FIG. 3. Typical structure ofJacoban matrix T’.
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In addition to solving the linear system efficiently, there are several modifications
of Newton’s method itself which may be employed as computational strategies aimed
at solving the nonlinear system T(x)= 0 more economically. First, by not updating
the Jacobian at each iteration (keeping T’ fixed), the same factorization of T’ may
be used to define several successive iterates (we call this "repeated backsolves"). This
strategy circumvents the most costly part of the linear system solution, and in the case
of one extra backsolve per iteration (two solves per new Jacobian), can yield cubic
or better convergence [13, p. 315]. Second, some part of T’ may be set to zero in
order to obtain a matrix with a specific structure which is easy to factor. An example
of this is the present problem with so approximated by (18), leading to the nearly
block tridiagonal T’ described above. By "zeroing out" that part of T’ which is not
block tridiagonal, we obtain a linear system which can be solved by the block tridiagonal
solver, but the iterative method that (19) represents is no longer Newton’s method
and hence quadratic convergence is lost. Another example is the use of Newton’s
method on successive sweeps of columns or rows in the finite difference mesh, rather
than for the full problem of all unknowns and all equations considered at once.
Although not investigated here, this is related to splitting for implicit methods and is
equivalent to zeroing out part of the Jacobian for the full problem. Third, the nonlinear
iteration might be made more efficient by using "quasi-Newton" methods [19] in
which the Jacobian matrix (or its inverse or factorization) is advanced by rank-one
updates. We have not explored this last approach and, to our knowledge, its application
to fluid problems remains uninvestigated.

For the problem we have considered here, our initial guess was adequate to insure
convergence. In general, the difficulty of constructing an adequate initial guess for
the blunt body problem is to some extent dependent on the values of the physical
parameters y and Mo and the body shape b(O). For example, the convergence of
iterative methods becomes more difficult when M is near 1 [20], for larger values
of y (e.g., modelling nearly incompressible flow), and for more irregular body shapes.
For these more difficult problems our computations indicate that continuation with
respect to parameters and/or body shape is an effective procedure. Briefly, we start
with a value of the parameters or given body shape for which we can solve the problem,
and then solve a succession of problems, each time incrementing the parameter until
the final problem is solved. If the increment is small enough, the solution of each
problem is an adequate guess for the next problem. This type of continuation is related
to Davidenko’s method (see, e.g., [21]) where in general a homotopy parameter is
used. More sophisticated continuation methods may also be employed [22], [23].

2E. Existence of solutions and convergence behavior. In general, a system of
nonlinear algebraic equations T(x)=0 may have a unique (real) solution, multiple
solutions, or no solution. In the case where T(x)= 0 represents a physical problem
and multiple solutions exist, sometimes only one solution is a good approximation of
the physics, and other times the solutions may be very "close" to each other and it
is difficult to choose the best approximation. The question of multiple solutions to
model fluid dynamics problems has been investigated in [24], [25]; in the latter the
bifurcation of such solutions is considered. The particular solution that is obtained in
computation can depend both on the iterative method and on the initial guess. In our
experience, a time-asymptotic method which is a consistent approximation of the
time-dependent physics is less likely than Newton’s method to find multiple solutions
to fluid dynamics problems (since some of these solutions may be unstable). Indeed,
as presented in 3D, our computations with Newton’s method reveal multiple solutions
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to the difference equations formulated above; we have seen no reference elsewhere
to such multiple solutions for blunt body flow.

A significant advantage of Newton’s method over the time-asymptotic method
is that its iterates clearly indicate whether convergence is or is not occurring. This is
true whether or not a solution to T(x)= 0 exists. When a solution does exist, the
quadratic convergence of Newton’s method near the solution clearly identifies it. The
time-asymptotic method may have very small iteration error while still quite far from
a solution [26, p. 174]. When no solution exists or when near a local minimum, the
Newton iterates exhibit oscillatory behavior clearly showing no convergence. Alterna-
tively, the time-asymptotic method may have steadily decreasing iteration error over
many time steps before eventually diverging (no solution), or have oscillatory iteration
error before converging to a solution. Depending on the convergence criterion, one
could erroneously infer the existence of a solution near a local minimum or even
when one doesn’t exist. We have seen most of these types of behavior when the
present Newton method and time-asymptotic shock tracking methods are applied to
some formulations of the blunt body problem.

3. Results. In this section we investigate the accuracy, convergence, and efficiency
of the above outlined technique, discuss continuation with respect to some physical
parameters, and exhibit multiple solutions of our finite difference system. In all cases
we take e 10-5 in (20) and 3’ 1.4. Our convergence criterion for Newton’s method
is maxi [x’-x’- < 10-6.

3A. Accuracy. We first discuss flow over a sphere at incident Mach number
M=5.017 and compare our computed results with experimental data [27]. The
initial guess for this computation is obtained as follows. A shock shape r s is assumed,
and the shock jump conditions (14) are solved for the flow values behind the shock.
At the body, the known stagnation point conditions, the assumption of isentropic flow
along the body surface, and a modified Newtonian pressure distribution [28] are used
to get the flow variables. The interior flow variables are obtained by linear interpolation
along Y constant lines between the body and the shock, after which an adjustment
is made to satisfy (3). Convergence of the Newton iteration starting from this guess
is described in 3B.

Using an N 6, M 10 mesh with 0max 60, second order boundary and outflow
conditions, and the four point so approximation (18), results comparing computed
shock shape and density contours (isopycnics) with experimental data are given in
Fig. 4. The computational plots use linear interpolation. We remark that experimental
isopycnics (though not frequently available) appear to provide a more stringent test
of computational accuracy than does either shock shape or surface pressure. This
point is illustrated in [29]. However, for the sake of completeness, we have included
in Fig. 5 a comparison of the computed surface pressures on 6 10 and 11 14 meshes
with the results obtained using the code described in [6].

For the above problem, second order accurate boundary conditions (shock, body,
and outflow) yield results which are virtually indistinguishable from those obtained
with first order accurate conditions. However, if 0max is increased to -100, the
computation with first order accurate outflow conditions behaves as though there is
no solution to the nonlinear difference equations (see 2E), whereas with second
order outflow conditions the computation converges normally.

The particular approximation used for so influences the smoothness of the com-
puted shock. When the four-point approximation (18) is replaced by centered differenc-
ing (17), the computed shock is oscillatory, with the magnitude of the oscillations
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FIG. 4. Computed and experimental isopycnics forM 5.017 flow over a sphere.
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becoming smaller at higher incident Mach numbers. Such oscillatory shock solutions
will be shown in 3D.

3B. Efficiency and convergence. We now consider the questions of efficiency
and convergence. We are concerned with both economical solution of the large linear
system and overall computational strategies such as choosing damping factors a and
using repeated backsolves. Several computations have been made for theM 5.017
sphere with varying mesh sizes, so approximations, accuracy of outflow conditions and
repeated backsolves. In each case the three linear system solvers (see 2D) were
tried. Results showing computer times for the various runs are given in Table 1. These
times refer to computations made on the Lawrence Berkeley Laboratory CDC 7600
using the FTN4 compiler with normal optimization; the times include all overhead
(e.g., printing) except the generation of the initial guess which is done separately. For
a 1 (except where marked by * in Table 1) and using the Jacobian formed with
forward difference quotients, quadratic convergence was obtained starting at the
above-mentioned initial guess. At the first iteration this guess gives maxj T-- 300 and
an iteration error of ---0.3.

TABLE

7600 seconds

Number Harwell Full-"
Outflow solves Block sparse LU

Mesh Case so accuracy per tri- matrix decom-
(N x M) order Jacobian diagonal package position

5 6 a Centered 1 1 .71 .65 .87

6xlO b 1 Centered 1 2.22 2.02 3.65
c 1 Centered 2 1.20 1.30 1.97
d Four-point 1 1 3.29* 2.47 3.92
e 1 Centered 2 1 3.75* 2.20 3.92

8 14 (i) Centered 1 9.12 10.08 36.09
g (ii) Centered 1 1 7.28 8.21 27.82

* Corresponds to modified Newton method--see text. In cases and g, see text for choice of a

In general the block tridiagonal and Harwell solvers require about the same
amount of time (except *), whereas LU decomposition of the full matrix without
provision for sparsity requires considerably more. For the Harwell package there is
a trade off between the amount of storage required and its efficiency. For the most
efficient case it requires about twice as much storage as the block tridiagonal solver,
but it is more versatile in its ability to handle more general matrix structures. For
example, in cases d and e of Table 1, the Jacobian T’ is not block tridiagonal, so that
those runs marked * represent a modified Newton’s method in which part of the
Jacobian is ignored (and convergence is not quadratic). When two solves per Jacobian
was tried in case c, the convergence Was better than cubic. In cases f and g, Newton’s
method with a 1 failed to converge from the initial guess. We therefore employed
a strategy (i) of starting at a .2 and increasing a linearly toward 1 as maxi T. decreased
from its initial value to some preset lower value. It is also possible to keep a fixed
until maxj T. is small enough, but this is generally slower. If, in addition to strategy
(i), we provisionally try a 1 at each iteration and override strategy (i) with an a 1
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step if maxj T is reduced to at least 90% of its previous value, the savings in case g
(strategy ii) result.

It is very difficult to compare the timings in Table 1 with those of time-dependent
methods reported elsewhere. This is due to differences between computers, optimiz-
ation, initial guesses, convergence criteria, Mach numbers, mesh sizes, etc. The
interested reader is referred to [6] where times (on a different CDC 7600) are given
for some explicit and implicit finite difference methods.

For a very rough comparison we have run the implicit code of 16] on a Moo 5
sphere using a 6 10 mesh and an initial guess similar to ours. This computation takes
16 seconds (including generating the initial guess and all overhead) to run 600 iterations
and achieves a maximum shock speed of 1.5 10-7 (2.4 10-4 after 300 iterations)
and a maximum total enthalpy error of 0.9%.

312. Continuation. Beginning with a solution on a 6 10 mesh for the Moo 5.017
sphere, the method of continuation was used to first alter the body shape to an
ellipsoid, and then to increase the Mach number to 6.8. We arbitrarily used five
continuation steps in body shape and four in Mach number. The results, shown in
Fig. 6, agree well with experimental data [30] for shock shape (no isopycnic data

Moo 6.8

1.0 .5

5.5

FIG. 6. Computed isopycnics for Moo 6.8 flow over an ellipsoid.

could be located). In other experiments, we have used continuation with respect to
% and foresee no difficulty in continuing to a different equation of state.

Some attempts were also made to obtain low Moo solutions via continuation.
Beginning with a 6 10, Moo 5.017 solution with 0max 75 and second order boun-
dary conditions, the Mach number Moo was decreased in steps of 0.5 to 2.517, then
in steps of 0.1 to 1.817. This smaller step size was taken because the 0.5 step down
from 2.517 led to divergence. Further attempts to get to smaller Moo failed, with the
computation behaving as though there was no solution to the difference equations
(see 2E). Attempts to interpolate this solution onto a finer mesh and proceed also
failed. At present, the authors are investigating changes in methodology which would
enable the computation to reach very small values of Moo.
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3D. Multiple solutions. We have found two solutions to our finite difference
system for flow over a sphere using first order accurate boundary conditions and the
centered approximation for so. These two solutions are displayed in Fig. 7 form 3.

SHOCK

2.25
2.5 2.5

2.75 2.75
3.0

3.0

Moo 3.25
3.25

3.5 3.5

3.75 3.75

2.25

1.75

FIG. 7. Two different solutions to the same system of finite difference equations for Moo 3 flow over a

sphere.

Notice that the shock is oscillatory in opposite senses in the two solutions. These
solutions were obtained by starting from the same initial guess and using different
numbers of backsolves for each new Jacobian evaluation. Multiple solutions have also
been obtained for higher Moo (though the oscillations in the shock are less pronounced)
and when starting from different initial guesses. In all cases the solutions found were
"close together," though many other solutions may also exist.

Appendix. Derivation of characteristic compatibility conditions. Some back-
ground on characteristic compatibility equations may be found in [31]. For their
application to fluid dynamics, see [32]. Consider equations (1) and the time-dependent
transformation X X(r, O, t), Y Y(r, O, t), " t. Let

Then, using the chain rule, (1) becomes

(A.1) Or +B1Ox + C1Qy +Do. 0,

where B1 XtI +XrBo +XoCo, C1. YtI + YrBo + YoCo, Bo A-1B, Co A-C, Do
A-l(H+2F/r+cotOG) and A=[OU/OQ], B=[OF/OQ], C=[OG/OQ]. (Here
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subscripts ’, X, Y, t, r, 0 indicate partial differentiation.) Specifically,

u p 0 0 v 0 p

0 u r p 0 v

pip 0 0 pip

and

O(2u + v cot 0)
1 __/)2

0
r

(p/p)(2u + v cot 0)

where kl (Op/Op)e, k2 (Op/Oe)o.
The characteristic matrix for (A. 1) is

A* A 1I +A2B + A3C1

o" A2O A3p/r 0

kA2/o cr 0 k2A2/p

[k Ao3/pr 0 o" k2A2/prA2p/p A3p/or

where

o" Ax +A2u +A3 -v A1--AI+A2Xt+A3Yt, A2-’A2Xr+A3Yr, A3--A2Xo+A3Yo.

The characteristic condition is det A* o-2(tr2- (A22 + A/r2)c2) where C
2 kl + k2P/O2

is the square of the speed of sound. Corresponding to the four characteristic con-
ditions trl.2 0, cr3,4 +/-(A22+A/r2)/2c are four independent left null vectors
(defined by lA* O) (0, a3/r, -a2, 0), l-2 (-p, 0, 0, 02), l-3,4 (-ktr3.4,
/9 A2cz,/9 A3c2/r, k20"3,4). The four characteristic compatibility conditions are obtained
by left multiplying eqns. (A.1) by li, 1, 2, 3, 4. These conditions are rather compli-
cated and thus are not written out. The conditions for 1, 2 correspond to the
particle path while those for 3, 4 are associated with the Mach conoid. The ray
directions on the particle path are given by dX/dr A and dY/d-= B and those on
the Mach conoid by

dX
fi cZ(A-Xr + A3X/rZ)

and
dY c2(A2 Yr + A3 Yo/rz)

d--;=
where ft Xt + UXr + vXo/r and Yt + u Yr + v Yo/r. These directions play a crucial
role in determining the computational boundary treatment, as various choices of A2
and A3 will correspond to rays reaching the boundary in the positive time direction
from either inside or outside of the computational field. Those from inside are called
"admissible" and provide compatibility conditions which are used to advance the flow
variables at the boundaries. Those from outside the field are "inadmissible" and must
be replaced by boundary conditions. The total number of admissible compatibility
conditions plus the number of boundary conditions equals the number of unknowns
[321.

At the body r= b, the choice A2 =-1, A3 bo renders the 1, 2, 4 conditions
admissible. The 3 condition corresponds to a ray coming from outside the computa-
tional field and is replaced by the boundary condition of flow tangency at the wall. It
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can easily be shown that the 2 condition is a statement that entropy is conserved
along particle paths. Also, using the definition (3) of the total enthalpy f, the 1, 2
conditions can be combined to give an equation for lq which may be used to replace
the 1 condition. This equation for f is identically satisfied in the steady state.

At the shock r s, the choice A2 1, A3 =-so gives the =4 condition as the
only admissible one. The other compatibility conditions are replaced by the Rankine-
Hugoniot jump relations.

Acknowledgment. The authors are grateful to John B. Bell for several helpful
discussions.
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SMOOTH REGRADING OF DISCRETIZED DATA*

JAROSLAV KAUTSKYS" AND NANCY K. NICHOLS

Abstract. Methods for producing nonuniform transformations, or regradings, of discrete data are
discussed. The transformations are useful in image processing, principally for enhancement and normaliz-
ation of scenes. Regradings which "equidistribute" the histogram of the data, that is, which transform it
into a constant function, are determined. Techniques for smoothing the regrading, dependent upon a
continuously variable parameter, are presented. Generalized methods for constructing regradings such that
the histogram of the data is transformed into any prescribed function are also discussed. Numerical
algorithms for implementing the procedures and applications to specific examples are described.

Key words, image processing, image enhancement and normalization, histogram modification, discrete
transformations, regrading, equidistribution, mesh selection

1. Introduction. Digitized images are produced by grading the data points, or
"pixels", of the image into a finite site of "gray levels", or grades. Similarly other
experimental and statistical data are frequently graded into a finite set of classes. Each
class, or grade, is represented by an integer value, and to each data point the value
of its grade is assigned. The histogram of total occurrences of data points belonging
to each grade may be formed, and with each grade we associate a weight equal to its
number of occurrences.

In practical applications, a regrading of the data is frequently required, for
example, for purposes of image display, enhancement or normalization. A regrading
is essentially just a transformation from one set of integers into another. The most
natural transformation is a linear regrading, in which the original grades are divided
as equally as possible among the new grades. In this case, the histogram of the regraded
data is basically just a scaling of the original histogram. In some situations, however,
it is advantageous to determine a nonlinear regrading, such that the histogram of the
regraded data is as fiat, i.e., constant, as possible [1], [2], [3]. In this case the total
occurrences of the old grades are as equally distributed over the new grades as possible,
and such a regrading is called equidistributing. It is well known that of all transforma-
tions, the equidistributing regrading is optimal in the sense that it maximizes retained
information [7]. The linear regrading, however, preserves quantitative relations
between grades which are often significant for interpretation. Obviously we may also
consider a range of "smoothed" regradings between these two extreme cases: linear
and equidistributing. In this paper we present efficient numerical procedures for
determining such regradings explicitly. The smoothed regradings are particularly useful
for image enhancement when the histogram of the image data is extremely unevenly
distributed.

Linear and equidistributing regradings are specific examples of histogram
modification [2], [3]. Weighted regradings of the data, such that the histogram of the
transformed data matches other prescribed reference functions, are also valuable, for
example, for calibration of image data for multitemporal analysis. Generalized pro-
cedures for obtaining such weighted regradings are also presented.

2. Statement o[ the problem. We consider a set of grades represented by the
integers {1, 2, , n} and a set of nonnegative weights {fl, f2, ", fn} associated with

* Received by the editors July 2, 1980, and in final revised form October 26, 1981.

" School of Mathematical Sciences, Flinders University, Bedford Park, S.A. 5042, Australia.
Department of Mathematics, University of Reading, Whiteknights, Reading, RG6 2AX, England.
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these grades. We define a regrading to be a nondecreasing map from the given set of
integers into another set. In particular we have:

DEFOrmaTiON 1. If 77k {1, 2,"’ ", k} is the set of integers from 1 to k, and if m,
n are integers, then

is a regrading if 1 =< < -< n implies

l <= -i <= rj <= m Vi, j.

(We represent the mapping .r by the integer-valued vector (’1, ’2," ’, ’,).)
For each regrading , a new (transformed) set of weights {gl, g2," , g,} defined

by

(1) gi Y. f, i=l, 2,...,m
jgrj=i

is associated with the new grades {1, 2,..., m}; that is, the new weights gi are the
sum of all the 1 for which -j i. Denoting

(2) N= . 1) and M=maxf.,
j=l

we observe the following obvious relations"

(3) N= E

(4) M <_-M.-= max gi,

(5) N <- mM,.

l<jn

We wish to determine a regrading in which the transformed weights are equally
distributed over the new grades. In that case, we must have, by (3),

N
(6) gi Vi 1, 2,. ., m.

m

Unfortunately, because of the discrete character of our transformations, we cannot
expect such a regrading to be possible, except in rare cases. In particular, if M> N/rn,
it follows from (4) that (6) cannot be satisfied. We could, for example, consider
regradings ,r for which M, is minimal, which would give the required equidistribution
when possible. In this paper we introduce, instead, another concept of equidistribution,
which corresponds to the theory discussed in [4] for continuous weight functions. In
3 we define a regrading which is "approximately" equidistributing, and give a

procedure for its construction. In the following section we consider methods for
smoothing the regrading, dependent upon a continuously variable parameter. In 5
we describe the implementation of such procedures and give results for specific
examples. A more general concept of weighted regrading is discussed in the final
section.

3. Equidistributing regradings. The grades {1, 2,..., n} and the corresponding
weights {f,f2,...,f,} can be represented graphically on the region [0, n] by a
piecewise constant function taking values ]) on the intervals (j-1, ), j 1, 2, ...,
n. (This is the histogram associated with the grading.) This function may be
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equidistributed over m points, as in [1], simply by finding subintervals (xj-1, xj),
1, 2,..., rn such that the integral of the function over each subinterval is equal

to a constant (given by the total integral divided by rn). Then by associating each of
the old grades with a specific subinterval a transformation is defined which gives a
regrading of the discrete data. We construct the transformation explicitly as follows.

Given integer n and weights {fl, f2, ", fn}, ’>0, f, let F(t) be a piecewise
linear continuous function for e [0, n ], such that

(7) F(0) 0, F(f) ., f, /= 1, 2,..., n,
k=l

with corners at points 1, 2, ..., n-1. Obviously F is nondecreasing and F’ is a
piecewise constant function such that

F’(t)=f. forte(f-l,]), ]=l, 2,...,n.

Thus F’ represents the weights . and we consider the midpoints t ]- 1/2 of the intervals
(]- 1, ]) as points representing the grades ], ] 1, 2,. ., n. Now we define breakpoints
Xk, k O, 1, , rn as the largest values such that

(8) F(Xk)= kF(n).
m

Obviously Xo 0, x,, n, and the other breakpoints Xk, k 1, 2, ", m 1, can easily
be determined by inverse linear interpolation, as the function F is piecewise linear.

By simple inspection, a regrading which equidistributes the weights exactly is
possible if (and only if) x, X2, , Xm-1 are all integers. To satisfy (6) it is then
necessary and sufficient to choose

(9) r k, ] such that Xk-1 < ] 1/2 < Xko

Although the cases where the exact equidistribution is possible are expected to be
very few, (9) leads to a general procedure for constructing a regrading which is exact
whenever possible. We make the following definition"

DEFINITION 2. Given integers n and m, and nonnegative weights {f, ]2, "’’,

f}, let the breakpoints Xo, Xl, ’’’, Xm be given by (8) where F is the piecewise linear
function specified by (7). The regrading "r satisfying

-i k for all ] such that Xk-1 <]- <- Xk

is said to "equidistribute" the weights f., ] 1, 2, ..., n.
Remarks. We note that another regrading where -i k, for all ] such that Xk- <----

] < Xk, could equally well be defined, and our choice is somewhat arbitrary. Similarly,
if some weights f. vanish, F(t) may be constant over some interval and (8) need not
have a unique solution. In our definition we have explicitly specified the breakpoint
to be the largest solution of (8); however, this choice is essentially irrelevant, since
the original grades in this case have no weight attached to them and hence have no
effect on the transformations anyway.

Also of interest is a linear regrading, in which the old grades are evenly distributed
among the new grades. Such a regrading arises from equidistributing the weights f. --f,
’] 1, 2, ..., n, where f is an arbitrary positive constant. In this case, a simple
calculation leads to an explicit formula for the regrading constructed by Definition 2.
We obtain

(10) rj= 1+ ]=l,2,...,n,
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where [[x]]’ denotes the largest integer less than x. We observe that in the case rn n,
the regrading given by Definition 2 thus gives

zj=j, j=l, 2,...,n,

as we would expect. Similarly, in the case n kin, we find that exactly k old grades
are mapped into each new grade by this definition. Finally, in the case n m + 1, we
obtain a "symmetric" transformation, which maps each old grade into one new grade,
except at the center of the region, where two old grades are joined to form one new
one. We thus verify the suitability of our definition and conclude that the behavior
of the equidistributing regrading given by Definition 2 is reasonable in these special
cases.

4. Smoothing the regrading. Problems where the weights are extremely unevenly
distributed are difficult to regrade sensibly, and any attempt to equidistribute the data
merely shifts the largest weights fairly arbitrarily into new grades. Therefore it is
natural that we now examine procedures which smooth the data in the extreme cases,
in order to produce consistent and reasonable regradings. The methods we aim to
produce will depend continuously on a parameter p, 0-< p-< 1, which determines the
amount of smoothing to be applied. At one end of the scale, say p 0, the method
will give the equidistributing regrading of Definition 2 without smoothing, and at the
other end, p 1, it will give a linear regrading. To realize such procedures, we use
the concepts developed in [4] and [8] for constrained equidistributing meshes.

There are essentially two approaches for smoothing the regrading"
1) For some K1 -> 1, enforce the restriction

maxk (xk xk-1) _<(11)
mink (xk xk-1)

giving a quasiuniform distribution of breakpoints.
2) For some K2 -> 1, enforce the constraint

1 Xk+ --Xk(12)
K2 Xk--Xk-1

giving a locally bounded distribution of breakpoints.
Obviously, K 1 implies the linear distribution of the breakpoints in either case

(i 1, 2), and thus a linear regrading. On the other hand, very large Kg implies no
constraint on the breakpoints. In both cases, the required constraints are enforced by
a suitable change in the data, called padding (see [4]), which is essentially a smoothing
of the weight function. We state here the necessary results and derive two basic,
parameter dependent procedures for the padding.

Smoothing procedure 1. Let the vector represent the weights {fl, fz. , f}. To
enforce restriction (11), the given weights are replaced by new (padded) weights Pp (),
defined by

(3)

where c(p) is taken to be

(P(t))j max (]), c(p)),

1 1
m/ax f/.(14) c p -11M =- -1

For a gradual smoothing we may choose, for example,

c(p)=pM.
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However, when the average value N/n of the data is high or low, this choice may
not achieve the required result. Therefore we use, instead, an alternative definition,

which takes into account both the maximal weight and the average weight. We consider
this choice to give a more natural dependence of the smoothing on the parameter p.

Smoothing procedure 2. In [4] it is shown that constraint (12) is enforced by
replacing the given weights f by new (padded) weights Pp (t) defined as

(16) (Po (t)) =max

where hp satisfies

(17) m log K2 A (P (f)).
1--1

It is not difficult to see that for hp sufficiently large, (16) gives

while, for hp 0 (or sufficiently small)

(P (f))i max fi -= M.

To obtain a gradual smoothing, as in procedure 1, we may define hp as a function of
p by replacing K2 in (17) by 1/p. However, as the sum of the (Pp(t))j is not available
until after ho has been chosen, we also replace this sum by N Y4-1 f. The effect of
this replacement is merely to shift the parameter inside the interval [0,1]. The padded
data is then defined by (16) with h given by

rn 1
(18) hp =log-, 0<p<_-l.

P

This padding procedure takes into account both the maximum of the weights, through
(16), and the average weight, through (18). We observe that this padding is of a more
sophisticated form than that of procedure 1, and we expect the resulting regrading
to be essentially smoother.

5. Some examples. In this section we present and discuss numerical results of
the equidistributing and smoothing procedures for several examples. Smooth regrad-
ings are obtained by padding the given weight function using smoothing procedure 1
or 2 described in 4, and then equidistributing the padded weights by the method
described in 3. Solutions are obtained for values of the padding parameterp belonging
to [0, 1]; when p- 0, the equidistributing regrading of Definition 2 is produced, and
when p 1 a linear regrading results. The algorithms are implemented in a simple
FORTRAN subroutine. The program code is given in [5].

In Tables l a, b, c we summarize the results of regrading data from 20 grades
into 8 grades, where the original grades have a V-shaped weight function given
explicitly by

j= 1, 2,. ., 20.
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The regradings obtained with the two padding procedures and various values of p are
shown in Table la. We observe that the regradings change gradually from the
equidistributing (E) to the linear (U) distribution of grades. The linear grading (U)
is as uniform as possible, given that 20 old grades cannot be equally divided among
the 8 new grades. (We note that the particular solution obtained is a consequence of
the inequalities specified in Definition 2, and that if these are altered as discussed in

3, then a different "uniform" solution is produced, namely: {1, 1, 2, 2, 2, 3, 3, 4,
4, 4,...}.)

The new transformed weights for the regradings of Table la are presented in
Table lb, and the breakpoints used to define the regradings are shown in Table l c.
The weights of the equidistributing regrading are seen to be as constant as possible
in this discrete case, while those of the linear regrading remain approximately V-
shaped. (It should also be noted that, except in the linear case, the choice of inequalities
in Definition 2 is irrelevant, since none of the breakpoints is equal to - 1/2 for any j.)

In Table 2 the results of another application are summarized. For this example,
the weight function is such that the equidistributing regrading from 20 to 8 grades is
exact. We observe that the weights of the new grades are all equal and that the
breakpoints are indeed integer-valued.

To demonstrate the difficulties in equidistributing extreme weight functions, we
consider some examples where the histogram of the original grades contains large
separated peaks. In the case of a single peak, where the weight function is/ CSjk,
C >0, /" 1, 2, "’’, n for some k, a direct application of Definition 2 shows that
’k "--m/2; that is, the regrading always places the old grade k in the middle of the
new scale, regardless of its original position. Similarly, equidistributing a weight
function with a few large peaks produces a regrading dependent only on the relative

TABLE a

New grades

9.0
2 8.0 2 2
3 7.0 2 2 2 2 2 2 2
4 6.0 3 3 2 2 3 3 2 2
5 5.0 3 3 3 2 3 3 3 2
6 4.0 3 3 3 3 3 3 3 3
7 3.0 4 4 3 3 4 4 3 3
8 2.0 4 4 4 3 4 4 4 3
9 1.0 4 4 4 4 4 4 4 4
10 0.0 4 4 4 4 4 4 4 4
11 1.0 4 4 4 5 4 4 4 5
12 2.0 4 4 5 5 4 4 5 5
13 3.0 4 5 5 5 5 5 5 5
14 4.0 5 5 5 6 5 5 5 6
15 5.0 5 5 6 6 5 5 6 6
16 6.0 6 6 6 7 6 6 6 7
17 7.0 6 6 7 7 6 6 6 7
18 8.0 7 7 7 7 -"T- 7 -’if-" 7
19 9.0 7 7 8 8 7 7 --if" 8
20 10.0 8 8 8 8 8 8 8 8

Smoothing procedure Smoothing procedure 2
Old E U

grades Weights p 0 p p p p , p p p
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TABLE lb

New
grades

E
p=0

9.0
15.0
15.0
12.0
9.0

13.0
17.0
10.0

New weights

Smoothing procedure

1p = p = p =
17.0 17.0 17.0
7.0 13.0 18.0

15.0 1.2.0 9.0
9.0 4.0 1.0

12.0 9.0 6.0
13.0 11.0 9.0
17.0 15.0 21.0
10.0 19.0 19.0

Smoothing procedure 2

3p =z p = p =
U

p=l

TABLE lc

9.0 17.0 17.0 24.0
15.0 7.0 13.0 11.0
15.0 15.0 12.0 9.0
9.0 9.0 4.0 1.0

12.0 12.0 9.0 6.0
13.0 13.0 18.0 9.0
17.0 17.0 8.0 21.0
10.0 10.0 19.0 19.0

E
p=0

Smoothing procedure

p= p= p=

Breakpoints

Smoothing procedure 2

p = p = p=
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.44 1.54 1.83 2.34 1.49 1.55 1.70
3.17 3.44 4.25 4.95 3.32 3.46 3.86
5.63 6.31 7.38 7.56 5.96 6.35 6.88

12.67 11.50 10.50 10.17 12.07 11.56 11.94
15.42 15.01 13.63 12.78 15.19 14.97 14.29
17.25 17.05 16.39 15.38 17.14 17.03 16.69
18.72 18.63 18.38 17.93 18.67 18.63 18.49
20.0 20.0 20.0 20.0 20.0 20.0 20.0

U
p=l

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

TABLE 2

Old
grades Weights

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

13.0
7.0
6.0
5.0
4.0
4.0
4.0
4.0
3.0
2.0
1.0
2.0
3.0
3.0
4.0
6.0
7.0
6.0
7.0

13.0

New
grades

New
weights Breakpoints

13

13

13

13

13

13

13

1.0

3.0

6.0

10.0

15:0

17.0

19.0
8 13
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TABLE 4
PW padded weights, NG new grades.

Old
grades

2
3
4
5
6
7
8
9
10

Weights

20.0
0.0
0.0
0.0
0.0
4.0
0.0
0.0

20.0
0.0

Smoothing procedure

PW NG

20.0
2.9 2
2.9 2
2.9 3
2.9 3
4.0 3
2.9 3
2.9 4

20.0 4
2.9 5

PW NG

20.0
7.2 2
7.2 2
7.2 2
7.2 3
7.2 3
7.2 4
7.2 4

20.0 5
7.2 5

PW NG

20.0
12.9
12.9 2
12.9 2
12.9 3
12.9 3
12.9 4
12.9 4
20.0 5
12.9 5

PW NG

20.0
4.82 2
2.74 2
1.91 3
2.45 3
4.00 3
2.74 3
4.82 4

20.00 4
4.82 5

Smoothing procedure 2

PW NG

20.0
7.77 2
4.82 2
3.49 3
3.04 3
4.00 3
4.82 3
7.77 4

20.00 4
7.77 5

PW NG

20.0
12.09 2
8.67 2
6.75 2
5.53 3
6.75 3
8.67 3

12.09 4
5

12.07 5

size and order of the peaks, but independent of their particular positions. Illustrations
are shown in Table 3, which summarizes the results of equidistributing 10 grades,
with a variety of simple extreme weight functions, into 5 grades. For a single peak
the regrading always shifts the peak weight into grade 3, and for two equal peaks,
the peak weights are always regraded into grades 2 and 4. If there are two unequal
peaks, their new positions depend on their relative sizes, but not their original positions.
Similar results are seen to hold in the case of weight functions with three peaks.

In Table 4 we show the effect of smoothing an extreme weight function containing
three peaks. The equidistributing regrading for this function is given in the last column
of Table 3. We observe that the weight originally in grade 1 is shifted into new grade
2. The smooth regradings however, place this peak weight, more reasonably, in grade
1. As the parameter p increases from zero, the padding increases, and the equidistribut-
ing grading is transformed into the linear grading. The peak weight in grade 4 is thus
eventually moved into grade 5. We note that the padding of procedure 1 is constant
between the peaks, covering the central peak for p 1/2, 43-, and that with p =- the
regrading is already linear in this case. For procedure 2, the padding drops away
smoothly from each peak, the central peak being covered by the padding only for
p . In this case the linear regrading is only produced when p is close to unity.

The difference in the behavior of the two smoothing procedures is more explicitly
illustrated in Figures 1 and 2. A weight function with three sharp peaks on 95 grades
is regraded into 9 grades. On a scale from [0, 1], the peak weights occur at points 0,
0.3 and 1.0. For smoothing procedures 1 and 2, the positions of the 10 (scaled)
breakpoints 0 x0 < xl"’" < x9 1.0 are shown in the figures as continuous functions
of p, for p from 0 to 1.0.

In the smoothing produced by smoothing procedure 1, (Fig. 1) there are fairly
sharp changes in the positions of the breakpoints. For small p, each breakpoint changes
very little as p increases, until the constant padding reaches some critical level; then
the breakpoint moves rapidly into its position in the linear distribution. By contrast,
the behavior of the breakpoints produced by smoothing procedure 2 (Fig. 2) is
essentially smoother. All the breakpoints move gradually from the equidistributing
distribution towards positions close to the uniform distribution.
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With smoothing procedure 1, we also observe that the uniform regrading is
achieved fairly quickly (in this case for p >-0.5); while with smoothing procedure 2,
the character of the initial distribution of the points is retained for fairly large values
of p (p -< 0.8, here), and the final transition to the linear regrading is somewhat abrupt.
These characteristics are accentuated by the sharpness of the peaks, and for smooth
weight functions the behavior of both procedures is more modulated.

Complete results for the examples described in this section are given in [5].

6. Weighted regradings. In this section we describe an application of the pro-
cedures given in 3 and 4 to a more general regrading problem. In 2 we introduced
the concept of an equidistributing regrading as a regrading which transforms a given
weight function, or histogram, into an (approximately) constant weight function. We
now define a weighted regrading as one which transforms a given weight function into
another prescribed weight function called a reference function. The equidistributing
regrading is obviously a special case where the prescribed reference function is
constant. Generally, the reference function may be prescribed on a different number
of grades from that of the data being regraded.

For a more precise statement of the problem, let m, n, q be integers, and let {]’1,
]2, "", fn} and {wl, w2, "", wq} be nonnegative weights associated with sets of n
and q grades, respectively. Also let {wx*, w2*, "", w*,,} be the set of transformed
weights obtained from weights wj, f 1, 2, ..., q, by a linear regrading from q into
rn grades. We seek a regrading ’r from n into rn grades with respect to weights/,
] 1, 2," ", n, such that the transformed weights {f*, f*,. ., f} are (approximately)
equal to wf, f= 1, 2,..., m.

To give an explicit definition of " we proceed as in 3. We let F be a piecewise
linear function on [0, n such that

(19) F(0) 0, F(j) Y fi, j 1, 2,..., n,
i=1

and

F’(t) 1 for (j- 1, f).

Similarly we define W to be a piecewise linear function on [0, q] such that

(20) W(O)--O, W(j)-- E Wo, j-- 1, 2,..., 1,
i=1

and

W’(t)= wi for (j- l, j).

Breakpoints Xk [0, n are then determined by

(21) F(x,)- W(kq/m)F(n), k O, 1, m,
W(q)

and we have the following definition:
DEFINITION 3. Given integers n, q and m, and nonnegative weights {fl, rE, "’’,

fn} and {wl, w2, ’’’, Wq}, let the breakpoints Xo, xl, "’’, x, be given by (21), where
F and W are specified by (19) and (20) respectively. Then the regrading "r satisfying

’i k for all/" such that Xk- <j- <= Xk
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is said to distribute weights ., f 1, 2,..., n with respect to reference weights wj,

/" 1, 2,. ., q, and is called a weighted regrading.
A direct procedure for constructing the weighted regrading ,r is easy to implement

using inverse linear interpolation to find the breakpoints Xk defined by (21). We note,
however, that with the following theorem we may transform the weighted distribution
problem into an equidistribution problem and then apply the procedure of 3 to
determine the weighted regrading.

THEOREM. Let wj > O, ] 1, 2, ., q, and define

W-l(F(x)W(q) (22) H(x)
\ "]’ x [0, n].

Then there exist gj->0, ] 1, 2,..., 3n, such that

3n 3j--2

(23) Y gi q, 1/2g3i-1 + Y. gi H(]-), ] 1, 2,’’’, n.
i=1 i=1

Let tr be a 3n to m regrading which equidistributes weights gi,/" 1, 2, ..., 3n. Then
"r given by

(24) z tra_, ] 1, 2," , n

is the weighted regrading which distributes the weights f., j 1, 2, ..., n with respect
to reference weights wj, j 1, 2,..., q.

Proof. As wi > 0, the inverse function of W exists and the definition (21) of the
breakpoints Xk is equivalent to

kq
(25) H(xk) , k O, 1,. ", m.

m

The function H is a nondecreasing piecewise linear function mapping [0, n into [0, q]
with corners at points ], ] 1, 2, ., n 1 and at points t where H(ti) i, 1, 2,..., q-1. The weighted regrading x of Definition 3 is uniquely determined by the
relative positions of points Xk and points ]-, but is independent of the actual values
of the breakpoints Xk as long as the relative ordering of the points is preserved.

Thus the same regrading is obtained with the set of breakpoints Xk which satisfy

kq
(26) G(3xk) =, k O, 1, 2,..., m,

m

where G is any nondecreasing function from [0, 3n to [0, q] such that

(27) G(0) 0, G(an) q, G(3(]- 1/2)) H(j- 1/2), ] 1, 2,..., n.

In particular, if G is the piecewise linear function with corners at points 1, 2, ...,
3n- 1 such that

(28) G’(t) g,, (]- 1, ]), j 1, 2,..., 3n,

then G satisfies (27) by the definition of the weights gi given in the theorem. Further-
more, the regrading tr from [0, 3n] to [0, m] which equidistributes the weights g,,
] 1, 2, , 3n is determined by breakpoints 3Xk satisfying (26). A direct application
of Definition 2 then gives that Xk-1 <i--1/2Xk implies rj tr3j-a k, and hence is
the required weighted regrading.

The existence of the weights gi, ] 1, 2, ., 3n is shown by explicit construction.
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We may choose, for example,

g H(1/2), g =q-H(n -1/2),

g31-1 "-O, j 1, 2," ", n,

/_/g3 g3i+ =( (1 +1/2)-H(]-1/2)) ]=1,2,...,n-l,

and the theorem is proved.
We conclude that a generalized weighted regrading may be obtained by the

equidistributing procedure of 3. Unfortunately the weighted regradings cannot be
determined exactly by an equidistributing regrading from n to m grades; however,
approximations to the weighted regradings could be obtained by equidistributing an
appropriate choice of n weights based on the theorem. Such procedures are discussed
further in [5].

We observe that a variety of smooth weighted regradings could be obtained by
applying the padding procedures of 4 to the weights gj, ] 1, 2, ., 3n, defined in
the theorem, and equidistributing the padded weights. The weights gj satisfying (23)
are not uniquely determined, however, and the resulting smoothed regradings are
affected by the choice of these weights.

A conceptually simpler method for obtaining a range of smooth regradings
between a weighted regrading and a linear regrading is based on the fact that if a
given weight function is distributed with respect to itself, the resulting regrading is
linear. Thus a smoothing is achieved by reshaping either the reference function or
the original weight function, or both, so that they are ultimately equal, possibly to
another given function. The simplest such reshaping uses (one-parameter dependent)
linear combinations of the given weights"

Smoothing procedure 3. Let the vectors f, y represent, respectively, the nonnega-
tive weights/, y, ] 1, 2, ..., n and let vectors w, , represent the weights w, y’.,
] 1, 2, ., q. For p e [0, 1] replace f and w by new weights

(fp) (1 -p)]) +py, ]=l,2,...,n,
(29)

(w,)j (1 -p)w + p)Ti, ] 1, 2, , q.

If q n, then 17 y, ] 1, 2, ., n, is taken, and y is arbitrary. If q n, then 17 c,
j 1, 2, ..., q and y c, ] 1, 2, ..., n, is taken, where c is an arbitrary constant
with c > 0. (A more general choice is possible, but y and must together satisfy certain
constraints. The generalizations are discussed further in [5].)

A smoothing of the weighted regrading of f with respect to reference w is given
by the regrading from n into m grades which distributes the weights (fp)i, j 1, 2,.., n, with respect to weights (wp) 1, 2, ..., q. Clearly, when p 0 the weighted
regrading of Definition 3 is obtained, and when p 1, the linear regrading from n
into m grades results.

Remarks. 1) In the case q n, the choice of y-- is arbitrary and may be taken,
for example, to be either f or w. In the former case w0--w, wl f, and fp ---f, Vp; that
is, w is reshaped linearly into f. In the latter case, f is reshaped linearly into w, and
f0-=f, fl =-w, wp --w, p.

2) If the reference weights are all constant, i.e., w c, ] 1, 2, ..., q, then
procedure 3 gives an additional method to those of 4 for smoothing the regrading
which equidistributes the weights f., ] 1, 2, ., n.

The algorithms for determining smooth weighted regradings are implemented in
simple FORTRAN subroutines (see [5]). As an example, we consider a weighted
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TABLE 5a

Old Reference
grades Weights weights

9.0 0.0
2 8.0 1.0
3 7.0 2.0
4 6.0 3.0
5 5.0 4.0
6 4.0 5.0
7 3.0 6.0
8 2.0 7.0
9 1.0 8.0
10 0.0 9.0
11 1.0 10.0
12 2.0 9.0
13 3.0 8.0
14 4.0 7.0
15 5.0 6.0
16 6.0 5.0
17 7.0 4.0
18 8.0 3.0
19 9.0 2.0
20 10.0 1.0

New grades

p=0

6
6

p=l

New Reference
grades weights p 0

3.0 0.0
2 7.0 9.0
3 18.0 15.0
4 17.0 21.0
5 27.0 21.0
6 13.0 15.0
7 12.0 19.0
8 3.0 0.0

TABLE 5b

New weights

9.0
8.0

13.0
15.0
21.0
15.0
9.0

10.0

9.0
15.0
11.0
10.0
15.0
13.0
17.0
10.0

17.0
13.0
9.0
6.0

10.0
11.0
15.0
19.0

p=l

24.0
11.0
9.0
1.0
6.0
9.0

21.0
19.0

regrading from 20 into 8 grades which distributes the V-shaped weight function given
in {} 5 with respect to a A-shaped reference function defined explicitly by

= 1, 2,. , 20.

The results are summarized in Tables 5a, b. The regradings obtained with smoothing
procedure 3 for various values of p and y--- are shown in Table 5a, and the transformed
weights are shown in Table 5b. The weighted regrading gives a new histogram of the
required shape, and a gradual change into the linear regrading is obtained by the
smoothing. Further examples and detailed results are presented in [5].

7. 12ondusions. Simple explicit methods for histogram modification are presented
here. The methods construct weighted regradings, or transformations, of discrete data
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such that the histogram of data occurrences is transformed into a prescribed function.
Equidistributing regradings which flatten the histogram, i.e., transform it into a
constant function, are examined in detail. Methods for producing a range of "smooth"
regradings between a weighted regrading and a linear transformation are also dis-
cussed. The use of smoothing mollifies the difficulties which arise in regrading data
with extremely unevenly distributed histograms.

The technique of histogram modification is widely used for image processing.
The methods described here are currently being used by CSIRO Division of Land
Use Research for calibration, enhancement and normalization of LANDSAT image
data. Applications and preliminary results are published in [6]. The smoothing tech-
niques described here have proved particularly valuable for identifying and enhancing
special features. Further results will be presented in a forthcoming paper.

Acknowledgments. The authors wish to thank Dr D. B. Jupp of CSIRO, Can-
berra, Australia for bringing to their attention the problems of discrete regradings
and the need for smoothing techniques.

REFERENCES

[1] R. M. HARALICK, Automatic remote sensor image processing, Topics in Applied Physics, 11 (1976),
pp. 5-63.

[2] R. m. HUMMEL, Histogram modification techniques, Comput. Gr. Image Process., 4 (1975), pp.
209-224.

[3] ., Image enhancement by histogram modification, Comput. Gr. Image Process., 6 (1977), pp.
184-195.

14] J. KAUTSKY AND N. K. NICHOLS, Equidistributing meshes with constraints, SIAM J. Sci. Stat. Comp.,
(1980), pp. 499-511.

[5], Smooth regrading o[ discretized data, Department of Mathematics Numerical Analysis Rpt.
1/80, University of Reading, England, 1980.

[6] J. KAUTSKY, D. L. B. JuPP AND N. K. NICHOLS, Image enhancement by smoothed histogram
modification, Proc. 2nd Australian Remote Sensing Conference, LANDSAT 81, Canberra, 1981,
pp. 6.6.1-6.6.5.

[7] J. MAX, Quantizng for minimum distation, Trans. IRE, IT-6 (1960), pp. 7-12.
[8] V. PEREYRA AND E. G. SEWELL, Mesh selection ]or discrete solution of boundary problems in ordinary

differential equations, Num. Math., 23 (1975), pp. 261-268.



SIAM J. SCl. STAT. COMPUT.
Vol. 3, No. 2, June 1982

1982 Society for Industrial and Applied Mathematics

0196-5204/82/0302-0003 $01.00/0

A LAGRANGE EXTRAPOLATION ALGORITHM FOR
SEQUENCES OF APPROXIMATIONS TO MULTIPLE INTEGRALS*

ALAN C. GENZ

Abstract. An algorithm for multivariable Lagrange interpolation is described and applied to the problem
of extrapolating sequences of approximations to multiple integrals. The new algorithm is then compared
with a recursive extrapolation algorithm in terms of required time and storage, and stability. A Fortran
subroutine is given for computing extrapolated sequences of approximations to multiple integrals using the
new algorithm.

Key words, multiple integration, Lagrange interpolation, extrapolation.

1. Introduction. The purpose of this paper is to describe an algorithm for multi-
dimensional interpolation and the use of the algorithm for the extrapolation of
sequences of approximations to multidimensional integrals. This will be compared
with the use of a multidimensional recursive interpolation algorithm described by
McKinney [4]. In this introduction the motivation for the use of the algorithm is given,
along with some basic definitions.

Let {Am} be a sequence of real numbers with index m (ml, m2," mn) where
mi 0, 1, 2," Let [m[ 7=1 mi and assume that we have some ordering of the
integer n-tuples m such that if ]m] > Ik[ then m comes after k in the chosen ordering.
We denote (0, 0,..., 0) by 0.

We are concerned here with sequences {Am} which have the asymptotic form

Am-- A + CkX+ O(X),
l_--<lkl=<d Ikl=d+l

k, for some positive mesh sequencewhere Xm (x,l, Xm2, ", Xm.) and xk I-I7-- x,,
{x,} decreasing with limit zero, so that A will be the limit of the sequence {Am}.

The sequence of this type which we consider in this paper is obtained by applying
the product midpoint rule to a sufficiently smooth function f(x) in order to estimate

/(f)=Io fo fo ,(x) dx dx2"" dx,.

In this case we use Am Mm(f), where

fi
-, ,2 "" _/2k1+1 2k2+1 2kn+)Mm(f) (mi + 1)-1 Y’. ]%-tni=1 k=O k2=O k.=O 2’ 2m2 + 2’ 2mn +

and then A l(f) with x (1 + m)-:.
The use of McKinney’s recursive interpolation algorithm to extrapolate a sequence

{Am} was described in [1], where the strategy is similar to the one used when the
Neville-Aitken interpolation algorithm is used in the Romberg integration method
for one-variable functions. Because a similar method using a different interpolation
algorithm will be discussed in 2, we describe in some detail McKinney’s algorithm
and its application to extrapolation.

We use McKinney’s ordering, denoted by , for the sequence {m}. This ordering
gives m as the successor to m’ using

m=(m+l, m2-1, m3,...,m,) ifm2O,

* Received by the editors June 10, 1980, and in revised form April 15, 1981.
Mathematical Institute, University of Kent, Canterbury, Kent, CT2 7NF, England.
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or

m (0, 0," , O, mj + 1, mj+l 1, mi+2, m,)

We define polynomials bm(y) by
mi-1

bm(Y)=l-] II (yi-xl),
i=l l=O

if m2-- m3 mi 0.

using the convention that the inner product is equal to one if the upper index limit
is negative. Clearly the degree of 4’m is Iml; it can also be shown that 4’m(Xk)= 0 for
any km.

Now if g(x) is any function defined for the sequence {Xm}, then a sequence of
interpolating polynomials {Rm(x)} can be defined using

(1.1) Rm(x) Rm,(X) + ambm(X),

starting with Ro(x)= g(xo) and defining am by

g(Xm)-- Rm’(Xm)
(1.2) am m(Xm)

Clearly, Rm(x) is a polynomial of degree at most [m[ and induction easily shows that
Rm(xk) g(xk) for k

_
m.

In order to eliminate am we expand (1.2) to give

g(Xm) km akk(Xm)
am m(Xm)

and then substitute ak obtained from (1.1) in the form

Rk(X)-- Rw(x)
ak (k(X)

into the sum, to give finally

am--(g(Xm)--k=m (Rk(X)- Rk’(X))qk(Xm).)/Cm(Xm)k(X)

where Ro, 0.
For extrapolation, we are only interested in x 0, so we simplify notation by

using Rm Rm(0) and Am g(Xm), and defining

k(Xm)I kill ( "2/)1tOrn’k-- k(0) i=l l=O

This gives the recursive extrapolation formula in its final form as

Am-’km (Rk- Rk’)/gm,k(1.3) Rm=Rm,+
Pill,hi

If we define Pa Rm when m (d, 0, 0,..., 0), then when {Am} {Mm([)}, Pa is
an approximation to I(f) of polynomial degree 2d + 1.

The algorithm given by formula (1.3) is relatively straightforward to use, but
unfortunately requires rapidly increasing amounts of storage and time as d increases.
There are (,d) elements in the sequence {Rm} which are needed to obtain Pd and the
form of (1.3) requires all elements to be stored for possible future use. For increasing
d, (,d) grows like d ", so storage could be a significant problem on many computers
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when n is larger than two or three. Furthermore, it can be shown that a careful
implementation of (1.3) which takes account of the zero terms in the sum (they occur
when mi < ki for at least one i) requires roughly C(2a/d) arithmetic operations (C 2
or 3) to find Pd given {Am}. When {Am} {Mm(f)} the number of integrand evaluations
needed for {Mm(f)} with Iml--< d is given by

Y. (mi+ 1)=
Iml_--<d i= d

so the extrapolation requires the same order amount of time as do the integrand
evaluations. Other applications of (1.3) could give rise to situations where the extrapo-
lation process dominates.

These time and space complexity considerations lead to the investigation of
methods which use symmetry to reduce the time and space required for the computa-
tion of Pd. In the next section we present a generalization of the Lagrange interpolation
method, which may be applied to this type of extrapolation problem, and then describe
the resulting algorithm which exploits the symmetry of the problem to significantly
reduce the time and space required to compute Pa. A more efficient, symmetrized
version of McKinney’s algorithm is described in 3, and in the final section the
algorithms are compared and a brief description is given for the Fortran subroutine,
listed at the end of this paper, which uses the new algorithm to compute extrapolated
approximations to multiple integrals.

2. Multivariable Lagrange interpolation. We wish to find polynomials )(x) of
total degree d, when 0 -<_ Irnl-<- d, satisfying

(I)(md)(xk) m,k for 0 Ik[ d,

where

O, tn k,
,k / 1, m=k.

Then the multiple Lagrange interpolating polynomial for any function g(x) defined
on {Xk} is given by

(2.) ed(X) ’. g(Xm)(I)(md)(x).
Iml_-<d

We will construct )(x) from a divided difference representation. We assume
that {Xr} is a sequence of distinct real numbers and let [Xk]=
(Xo, Xl, ", Xkl; XO, Xl, ", Xk,.; XO, Xl, ", Xk,.). Then D[Xk], the multivariable
divided difference operator, may be explicitly given in the form

k k k k

D[Xk]g ’. E g(xi) I 1-I
jl=0 j2=0 jn=O i=1 l=O,ji

If we apply D[Xk] to 8m,k we find

I I"I (Xmi Xl)-1
D[Xk]tm,k--i=ll=O,mi

0 otherwise.

(Xh Xl)-1.

if ki --> mi for all i,
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We then express )(y) in its multivariable divided difference form (by generalizing
the two-dimensional formula in [3]) as

*)(Y): (I-I (yi--X/) D[xk]6.,k.
Ikl<--d \--li /=0

The only nonzero terms in the sum are those with ki mi for all i, so we make a slight
change of index and write )(y) as

1-I m’+k’-IltL-’O (yi

I l--< -Iml ,-- Fl?--’-o,:m, (Xm,--Xl)
For the purposes of extrapolation we are only interested in Pa(O), so we simplify

notation by using Pa--Pa(O) and ))(0). From the symmetry in (2.2) we can
see that )=ka) whenever k is a permutation of m. Therefore, the number of
distinct values in the sequence {)} with 0-<_ Iml-<-d is a most the number, which
we call N"), of distinct n-partitions of the integers 0, 1,2,...,d. Let
ml, m2,’’’, mNa") be these partitions as they occur in the chosen ordering, and let
O,,, be the set of permutations of a partition m. Pa can now be expressed in the form

where

Sm,-" Ak.
k

Finally we note that (d)m depends on -1) through the formula

(23).
Ikl Iml i= milO, (Xl Xmi)"

One algorithm for computing Pa from Pa_ consists of the following two stages:
i) For j 1, 2,..., N" compute )from -) using (2.3) and accumulate

the sum
N

=1

ii) For j N2 + 1 N") +2,... N) calculate (a) obtain S, and accumu-
late the final sum

A second algorithm, which does no require savin
directly as

N( mT+k-I
(2.4) Pd Pd-1 + Sm, 11/20 Xl

1=1 k=d-lm/I i=1 120,’mii [XI--Xmli)
We illustrate the use of the first algorithm with the integral

/(/):Io fo Io ex’xxdxldx2dx3:l’146s"

The various intermediate results for d 0, 1, 2, are given in Table 2.1 (to five digits).
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TABLE 2.1
Extrapolation example

/ lllj Sm -ml((d) -m2fb(d) I)(d) fb (d) Pd

(0, O, O) 1.1331 1.0000
2 (0, O, 1) 3.4061 -3.0000 1.3333
3 (0, O, 2) 3.4073
4 (0, 1, 1) 3.4148 3.4583 -4.6222

1.1331
1.1420

1.7778 2.0250 1.1457

3. Symmetrized recursive extrapolation. We use the formula (1.1) to define

Am-k=m (Rk-- Rk’)Pm,k
bm=Rm-Rm’=

Pill,Ill

and note that

(3.1)

with Bm defined by

N,
Pd= (Rm-Rm’) . bm Bm,

Iml_--<d [ml<-d i=I

(3.2) Bin-- E b=
iEOm /gm,

Sm EiE Om "ki Pi,kbk

Because Pm,k is zero whenever ml < kt for at least one l, the double sum in (3.2) may
be written in more detail as

il
(3.3) E E Wil.kl E WiE.k2 W i,.kbbk,

iQm kl=0 k2=0 kn=O

where the prime indicates that the last term in the sum is excluded, and the weights
W,,,k are given by

(3.4) Wm,k 1
/=0

The multiple sum uses the same set of weights for each Qm, so if a particular
bk occurs with a particular weight for some i, then all bb Qk must occur at least
once with the same weight for some other Qm. However, every b used in the sum
for Bk with k c m does not necessarily occur for each Qm. But we would like to
write the sum (3.3) in terms of Bk, so we use (m) to denote the number of distinct
permutations of the components of m. Then the sum (3.3) becomes

A symmetrized formula for B,,, is then

This formula is compact but is unfortunately somewhat difficult to use because the
sum is not taken over Bkr This presents counting problems because only the numbers

B are stored, and so for each k in the sum we have to determine for which f, k O.
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An alternative formula with more straightforward counting but requiring more arith-
metic is

(3.6) B,, (kS-,- E
iO.n

The new recursive extrapolation algorithm for computing Pd from Pa-1 involves
using (3.5) or (3.6) to compute B,,,, for ] N_I + 1,..., N(a and accumulating the
sum

d

e =e- + E

4. Comparison of the algorithms. Both of the new algorithms have roughly the
same storage requirements, which will be dominated, for large n and d by the array
space necessary to store the sequences {Smj} or {B,j}. In order to compute Pa we need
an array of size Na"). With d fixed, Na") has the same value for all n _>-d, and in order
to give some indication of the maximum array space needed for a given d, Na is
listed in Table 4.1 for d n 2, 3, , 10. We also list for comparison purposes (,a),

TABLE 4.1
Space required for new and old algorithms

d 2 3 4 5 6 7 8 9 10

N(da) 4 7 12 19 30 45 67 97 139
(2aa) 6 20 70 252 924 3432 12870 48620 184756

the space required for the original recursive extrapolation algorithm. The space
requirements are clearly less for the symmetrized algorithms, and more so as n and
d increase.

We now consider the time requirements for the two new algorithms, distinct from
the additional time necessary to compute elements in the sequence {A,}. It is difficult
to give a precise analysis of this because of the variety of operations involved in the
computation of Pa using either algorithm. If we assume that the counting is done
efficiently then the time for both algorithms will be proportional to the time required
for the arithmetic, which usually can be done with multiplications and additions. There
is usually one addition with every multiplication, so we provide a rough analysis which
is based on counting the number of multiplications.

For the recursive algorithm the multiplications necessary to compute the
coefficients P,,k will be the most important. In order to reduce the total number of
multiplications the weights W,,.k, defined by (3.4) in the previous section, should be
precomputed and stored at the beginning of the computation. If we assume this is
done then (3.5) requires roughly I-I’-- (mi+ 1) multiplications if the sum is done in
nested form and Pd requires a number of multiplications, which we call R (a", given by

N(/)
R(a") E l-I (m,,, + I),

j= i=

where m (mli, rn2i, , rn,i). We note that R(dn> R(dd> for all n > d.
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The Lagrange-based algorithm is dominated by the computation of the numbers. From (2.2)
d-lm[ d-lm[-k d-lml-kx kn-2

d
W

ka=O kz=O k.-a=O

with

k+m-1

l kfimWin,k-- H X (XI--Xm).
/=0 l=O,m

If the weights W’m,k have been precomputed and stored, and nested multiplication is
used then the computation of a(a) requires roughly d-lml multiplications and Pd
requires a number of multiplications, which we call L"), given by

i= d-lmj[ ]"

In Table 4.2 we list R(e") and L") for n + d <= 12, 1 <-d <-9 and 2<-n <- 10, with
L(a") given above R]") for each pair (n, d). For large values of n and d the total time
required for either extrapolation algorithm will be roughly proportional to the associ-
ated multiplication number R]") or L"). We see from the table that R") < L]") except
for small values of n. For d sufficiently large it can be shown that eventually L]") < R a
Anyway, the numbers in the table give a clear indication of the efficiency of either
algorithm for a range of values of n and d most likely to be of practical interest, when
compared with the multiplication number (2,+e) (see Table 4.4) required for the
original recursive extrapolation algorithm.

TABLE 4.2
Required numbers of multiplications La") and Rd")

d\n 2 3 4 5 6 7 8 9 10

1 3 4 5 6 7 8 9 10
3 3 3 3 3 3 3 3

2 7 11 16 22 29 37 46 56
10 10 10 10 10 10 10 10

3 13 25 41 63 92 129 175 231
20 28 28 28 28 28 28 28

4 22 50 92 155 247 376 551 782
42 62 78 78 78 78 78 78

5 34 91 187 343 590 966 1517 2299
70 124 164 196 196 196 196 196

6 50 155 353 701 1292 2258 3775 6074
120 245 353 433 497 497 497 497

7 70 250 628 1345 2643 4902 8677
180 427 677 893 1053 1181 1181

8 95 386 1065 2451 5116 10025
275 719 1294 1794 2226 2546

9 125 575 1735 4278 9457
385 1179 2256 3406 4406

11
3

67
10

298
28

1080
78

3379
196
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The time taken by either algorithm when applied to the problem of extrapolating
sequences of product midpoint rule approximations to multiple integrals will certainly
be dominated by the integrand function evaluations.

The stability of all three algorithms when used for multiple integration is expected
to be poor, because it is known to be poor for n 1, when they reduce to Romberg
integration with mesh sequence h, 1/(m + 1). A simple test was carried out to
determine the seriousness of this expected instability. We used a series of ten trials
for each of a range of values of n and d, with the Lagrange extrapolation algorithm
applied to the test integrand f(x)= 1 + 10-1r, where r was a uniformly distributed
(pseudo) random number chosen from [-1, 1], and a new r provided for each integrand
evaluation. In theory I(f)= 1, and in practice we would expect a stable algorithm to
give a result accurate to at least ten decimal digits. In Table 4.3 we give the average

TABLE 4.3
Digits lost because of instability

d\n 2 3 4 5 6 7 8 9 10

-.1 .3 .2 .4 .0 .6 .5
2 .0 .6 .7 .8 .7 1.1 1.1
3 .4 .7 1.2 1.1 1.4 1.2 1.7
4 .2 1.2 1.4 1.6 1.7 2.0 2.0
5 .7 1.5 1.7 1.9 1.9 2.6 2.4
6 1.1 1.6 1.8 2.3 2.5 2.8 2.8
7 1.4 1.7 2.0 2.6 2.9 2.9 3.2
8 1.7 1.6 2.4 2.9 3.1 3.2
9 2.0 2.0 2.6 3.0 3.5

.8 .7
1.6 1.5
2.2 2.0
2.6 2.7
3.0 3.2
3.5

number of decimal digits lost from the expected number, ten. Similar results were
obtained using the recursive algorithm in its original and symmetrized forms. The
averages listed all had associated standard deviations in the range .3-.9 and the
computation was carried out on a computer with approximately fourteen decimal
digits accuracy.

The results in Table 4.3 indicate that for a range of values of n and d of practical
interest, up to about four decimal digits could be lost using any of the extrapolation
algorithms discussed here with integrands which are reasonably smooth. As most
scientific calculations are carried out with ten to sixteen decimal digits precision, this
instability should usually not be a problem.

Finally, in order to place the integration rules described here in a somewhat wider
context, we compare the number of integrand evaluations required for the integration
rules generated by the sequence {Pa}, with the number required by product Gauss-
Legendre rules of degree 2d + 1 and the more recently described fully symmetric rules
of degree 2d + 1 described by Keast [2]. In Table 4.4 we give three numbers for each
value of n and d. The first is the number of integrand evaluations required for the
Keast rules, the second is the number required for Pa and the third is the number
(d + 1) required for a product Gauss rule. For specific values of n and d, all three
numbers are for multiple integration rules of degree 2d + 1.

Clearly the Keast rules are more efficient than the rules generated by the extrapola-
tion methods discussed in this paper, when efficiency is measured in terms of polynomial
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TABLE 4.4
Numbers o]’ integrand evaluations required ]’or the three rule types

d\n 2 3 4 5 6 7 8 9 10

1 5 7 9
5 7 9
4 8 16

2 9 19 33
15 28 45
9 27 81

3 17 45 97
35 84 165
16 64 256

4 25 77 193
70 210 495
25 125 625

5 41 151 417
126 462 1285
36 216 1296

6 49 223 737
210 924 3003
49 343 2401

7 73 369 1329
330 1716 6453
64 512 4096

8 81 465 1953
495 3003 12870
81 729 6561

9 113 731 3201
715 5005 24310
100 1000 10000

11 13 15 17
11 13 15 17
32 64 128 256

51 73 99 129
66 91 120 153
243 729 2187 6561

181 305 477 705
286 455 680 969
1024 4096 16384 65536

421 825 1485 2497
1001 1820 3060 4845
3125 15625 78125 390625

983 2089 4103 7553
3003 6188 11628 20349
7776 46656 279936 1659616

1975 4625 9871 19649
8008 18564 38760 74613
16807 117649 823543 5764801

3897 19913 22753 48353
19448 50388 116280 245157
32768 262144 2097152 16777216

6489 18353 46177
43758 125970 319770
59049 531441 4782969

11211 33649
92378 293930
100000 1000000

19 21
19 21

512 1024

163 201
190 231

19683 59049

997 1361
1330 1771

262144 1048576

3973 6041
7315 10626

1953125 9565625

13159 21865
33649 53130

10077696 60466176

36967
134596

40353607

integrating power per function evaluation. However, the extrapolation generated rules
are more efficient for many values of n and d than the product Gauss rules. They
also form nested families of easily generated rules which could be useful for automatic
multiple numerical integration routines and comparisons with results from other
methods.

The Fortran subroutine INTLAG listed at the end of this paper computes the
sequence {Pd} for d 0, 1,... MAXORD-1 using the algorithm given at the end of
2. The routine is written in ANSI (66) standard Fortran with all arguments

defined in the comments at the beginning of the subroutine. A subroutine using
Lagrange extrapolation is somewhat less efficient for many values of n and d, than
one based on formula (3.5) but, as was discussed at the end of 3, (3.5) is difficult
to implement efficiently. The Lagrange derived method also works directly with the
symmetric sums $,,j, and minor modifications could easily be made to the subroutine
if a user wanted to obtain and save the weights. Except for one possible change
of REAL to DOUBLE PRECISION advisable for computers with fewer than about
eight decimal digits single precision, the subroutine should run without modification
on any computer with a standard Fortran compiler.
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We conclude this section with a short example program illustrating the use of
INTLAG when applied to the integral

I() dx dx dx3 2.15214283.
4+X+X2+X3

EXAMPLE PROGRAM WITH RESULTS

EXTERNAb FUNINT
INTEGER IFAI L.J, MAXORD, .INORI), NOUT
REAL ACTERR,ESTERR
REAL FINVLS(O),A(3),[(3),SYSa5(200)
DATA NOUT/6/
RITE(NOUT 99999)
DO 20 J:l,.

20 CONTINUE
INORD=0
DO 40 gAXORD=2,8

CALL INTLAG(3 A B FU INT 4 NOR FINVLS,200,SYMSMS,IFAIL)

ESTERR:ABS (FINVLS (MAXDRD)-FINVhS (mAXORD-1)
nRITE(NOUT,9gg9B) AX3RD,F1NVLS(AXORD),ESTERR,ACTERR

40 C]NTINUE
999gg ORMAT(4(1X/),40H INTbG EXAPbE PROGrAm RESIbTS//3X,

* 60HAXDRD ESTIMATED VALUE ESTIMATED ACCURACY ACTUAb CCilRACY)
999g

STOP
EN D

REAL FIlNCTION FUBINT(NIIMVAR,Z)
INTEGER NUMVAR
REAL Z(NUMVAR)
FUNINT=I .O/(4.0+Z(1) +Z(2)+Z(3)
RETURN

INTbAG EXAMPLE PRUGRA RESU[,TS

MAXORD ESTIMATED VALUE ESTIMATED ACCURACY ACTUAL ACCURACY
2 2.12698413 .12698413 .02515871
3 2.14677249 .01978836 .00537035
4 2.15089424 .00412176 .00124859
5 2.15183772 .00094347 .00030512
6 2.15206551 .00022780 .00007732
7 2.15212269 .00005718 .00002014
8 2.15213748 .00001478 .00000536
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FORTRAN SUBROUTINE

SUBROUTINE
* FINVLS NU

INTEGRAL USIN

INTEGRAL B
CANTERBU K

INTLAG(NUMVAR. OWER, UPPER, FUNCTN, MINORD, MAXORD,
MSMS. SYMSMSt IAIb)AL GENERALISED DMBERG INTEGRATION SUBROUTINE

NE COMPUTES A SEQUENCE OF APPROXIMATIONS TO A MULTIPLE
G AN EXTRAPOLATION METHOD BASED ON MUbTIVARIAB
RPOLATION AS DESCRIBED IN THE PAPER A LAGRANGE
ALGORITHm FOR SEQUENCES OF APPROXIMATIONS TO MULTIPLE
A. GENZ MATHEMATICAL INSTITUTE, UNIVERSITY OF KENT,

ENT CT2 7r, ENGLAND

C NUMVAR
C LOWER
C UPPER
C FUNCTN
C
C
C MINORD
C
C
C
C
C
C MAXORD
C
C
C FINVLS
C
C
C
C NUMSMS
C
C
C
C SYMSMS
C
C
C
C IFAIL
C
C
C
C
C
C

I
R
R

W

THE
AVA
MIN

ON

AND
PIN
REA

NTEGER NUMBER OF VARIABLES. MUST EXCEED BUT NOT EXCEED 16
EAL LOWER INTEGRATION LIMITS ARRAY WITH DIMENSION(NUMVAR)
EAL UPPER INTEGRATION LIMITS ARRAY WITH DIMENSION(NUMVAR)
XTERNALLY DECLARED USER DEFINED REAL FUNCTION INTEGRAND,
T MUT HAVE PARAMETERS (NUMVAR,X), WHERE X IS A REAL ARRAY
ITH DIMENSION NUMVAR.

EGER MINIMUM ORDER PARAMETEB ON ENTRY MINORD SPECIFIES
ILABLE IN THE ARRAY FINVbS, FOR THE FIRST CAb, .TLAG
ORD SHOULD BE SET TO O, OTHERWISE A PREVIOUS CA&b IS
UMED WHICH COMPUTED FINVbS(1), FINVLS(MINORD),
EXIT MINORD IS SET TO MAXORD.
EGER MAXIMUM ORDER PARAMETER MUST BE GREATER THAN MINOR.D
NOT EXCEED 16. THE SUBROUTINE COMPUTE6 FINVb$(MINORD/I),
VLS(MINORD+2) FINVLS(MAXORD)
b ARRAY OF DIAON(MAXORD). UPON SUCCESSFUL EXIT

FINVLS(%) FINVLS(2) FINVLS(MAXORD) ARE APPROXIMATIONS
TO THE INTEGRAL. FIIJ) WILL BE AN APPROXIMATION OF
POLYNOMIAL DEGREE 2J-l.
INTEGER LENGTH OF ARRAY SYMSMB. MUST BE AT bEAST THE SUM OF
H NUMbeR or DSNC PARTiTiONS or LENGTH AT MOST NUMVAR
or H NGRS 0 MAXORD- AN UPPER BOU.O FOR .UMSNS
WHeN NUMVAR+MAXOR6 A’6SS .AN {9 S 200
A WORKING SORAG ARAY W. OMNSON (NUMSMS). ON X
SYMSMS(J) CONTAINS THE SUM OF Ab& PRODUCT MIDPOINT INTEGRAL
APPROXIMATIONS ASSOCIATED WITH THE JTH DISTINCT PARTITION OF
?HE INIEGERS 0 MAXORD’I

IFAIL=0 FOR SUCCESSFUL TERMINATION OF THE SUBROUTINE
IFAIL=! WHEN NUMSMS IS TOO SMALL FOR THE SUBROUTINE TO

CONTINUE IN THIS CASE FINVLS(1) FINVb$(2) ,FINVLS(J ARE RETURNED, WHERE J I MAXIMUM V OF
MAXORD COMPATIBLE WITH THE GIVEN VALUE OF NUMSMS.

IFAIL=2 WHEN PARAMETERS NUMVAR,MINORD OR MAXORD ARE OUT OF
C RA
*********************C*** FOR DOUBLE PREC
C IN THE NEXT ST

REAL FINVLS(MAX
t HX(6), INTVAL
* SYMSMM, SYMSMS

ZERO
INT I, xc.

C * MPL, MSUM, NUM
Ct PARAMETER CHECK

IFAIb = 2

IF NORD.bT.
IF XORD,GT,
IFAIL !

10

20
30

ZERO = 0
ONE = !
TWO = 2
D = MINO
CAbCULAT
DO l0 b=
FOATL
H(b) =

CONTINUE
DO 30

HLSQRD
WT = 0
DO 20

HISQ
IF
IF
WTPR

CONTIN
CONTINUE

NGE

ISION CHANGE REAL TO DOUBLE PRECISION
ATEMENT
ORD) FLOATL, FUNCTN H(,6), HISQRD, HLSRIN+WT, 0+ER(NUVA) ONE PHISUM(16) PINT,NUMSMS), T+0, UPPER(N+MVARf, WT, +TPRO+(t ,,

K1 KII.. IHAIaF. IMNUSL, IXCHNG, J, K(*6)M(%6 MIniMAXORD, Ml MINDRD, MODOFM,

ING AND INITIALISATION

.OR. NUMVAR.bT I) RETURN
OR, MINORD.GE.A XORD) RETURN
RETURN

RD
E MESH
I,MAXORD
= b
ONE/FLOATL

SEOUENCE AND PRECOMPUTED WEIGHTS

IMAXORDH(L)**2
NE
I=IMAXOR,2RD H(1)
I,LT.L) WT =
I,GT.L) WT =
OD(L,I) = WT
UE

WT#HISORD/(HISORD’HbSQRD)
WT*H(I’!)**2/(HISORD’HLSiRD)
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C
C*** BEGIN LOOP FOR EACH D
C FOR EACH D FIND ALL DISTINCT PARTITIONS M WITH MOD(M)<=D
C

40 d =
INTVAL = ZERO
MODOFM 0
DO 50 I=1 NUMVAR

K(I) =
PHISUM(I) = ZERO
M(1) = 0

50 CONTINUE
60 IF (J,GT,NUMSML) RETURN

IF (MODOFM,LT,D) GO TO 150
C
C***** WHEN MOD(M)=D FIND ALL PERMUTATIONS MP OF M
C AND COMPUTE INTEGRAL fOR EACH MP

DO 70 I=I,NUMVAR
MP(1) : M(I)

70 CONTINUE
SYMSMM = ZERO

C
C******* COMPUTE PRODUCT INTEGRAL FOR PERMUTATION MP

80 PRDINT = ZERO
INTWT ONE
DO 90 I=IUMVARMPI = M I) +

HX(1) = H(MPI)*(UPPER(I)’LOWER(1))
INTWT INTWT*HX(I)
X(I) = LOWER(I) + HX(1)/TWO

90 CONTINUE
I00 PRDIN? PRDINT / FUNCTN(NUMVAR,X)

DO 110 I=! NUMVAR
X(I) = xII) + HX(1)
IF (X(I),LT,UPPER(I)) GO TO %00
X(1) = LOWER(I) + HX(I)/TWO

l’lO CONTINUE
C**$$ END INTEGRATION LOOP FOR MP
C

SYMSMM = SYMSMM + INTT*PRDINT
C
C*****.* FIND NEXT DISTINCT PERMUTATION OF M
C AND LOOP BACK TO COMPUTE NEXT INTEGRAL

DO 140 I NUMVAR
IF (MPI),LE,MP(I)) GO TO 140
MPI = MP(I)
IXCHNG = I
IF (I,EO,2) GO TO
IHAL = IXCHNG/2
DO 120 b=l IHALF

MPL MP[L)
IMNUSL = I b
MP(L) = MP(IMNUSb)
M(IMNUSL) = MPb
IF (MPL,LE,MPI) IXCHNG = IXCHNG
IF (MP(L),GT.MPI) LXCHNG = b

120 CONTINUE
IF (MP(IXCHNG),LE.MPI) IXCHNG = LXCHNG

130 MP(I) = MP(IXCHNG)
MP(IXCHNG) = MPI
GO TO 80

140 CONTINUE
C***** END LOOP FOR PERMUTATIONS OF M AND ASSOCIATED INTEGRALS
C

SYMSMS(j) = SYMSMM
C
C***** CALCULATE WEIGHT FOR PARTITION M

150 Mt = M(t) +
K1 = D MODOFM MI

160 PHISUM(1) = WTPROD(M1,K1)
DO 170 I=2,NUMVAR

MI = M(I)
KI K(I) / MI
PHISUM(I) = PHISUM(I) WTPROD(MI,KI)*PHISUM(I-t)
PHISUM(I-1) = ZERO
Kt = Kt 1
K(I) = K(I)
If (K1 GE,M1) GO TO 160
K1 = K K(I)
K(I) = 0

170 CONTINUE
INTVAL = INTVAL PHISUM(NUMVAR)*SYMSMS(J)
PHISUM(NUMVAR) = ZERO

C
C*** FIND NEXT PARTITION M AND LOOP BACK TO COMPUTE
C ASSOCIATED INTEGRALS AND/OR WEIGHT

J=J/!
MSUM = M(t)
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DO 200 1=2 NUMVAR
MSUM = MUM + MCI)
IF CMCl),LE,M(I)+I) GO IO 190
Mr1) = MSUM (I-1)
DO 180 h=2 I

M(L) = MI) +
IB0 CONIINUE

GO IO 60
190 M(I) = 0
200 CONTINUE

M(1) = MSUM +
MODOFM = MODOFM /
IF (MODOFM,LE,D) GO TO 60

C

END LOOP FOR EACH D
IF (D,GT.0) INTVAL = FINVLS(D) + INTVAL
FINVLS(D+I) : INTVAb
D = D +
IF (D,LT,MAXORD) GO TO 40

SET FAILURE PARAMETER AND RETURN
IFAIL = 0
MINORD = MAXORD
RETURN
END
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ARC-LENGTH CONTINUATION AND MULTI-GRID TECHNIQUES
FOR NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS*

TONY F. C. CHAN+ AND H. B. KELLER$

Abstract. We investigate multi-grid methods for solving linear systems arising from arc-length continu-
ation techniques applied to nonlinear elliptic eigenvalue problems. We find that the usual multi-grid methods
diverge in the neighborhood of singular points of the solution branches. As a result, the continuation
method is unable to continue past a limit point in the Bratu problem. This divergence is analyzed and a
modified multi-grid algorithm has been devised based on this analysis. In principle, this new multi-grid
algorithm converges for elliptic systems, arbitrarily close to singularity and has been used successfully in
conjunction with arc-length continuation procedures on the model problem. In the worst situation, both
the storage and the computational work are only about a factor of two more than the unmodified multi-grid
methods.

Key words, multi-grid, arc-length continuation, nonlinear elliptic eigenvalue problems, singular systems

1. Introduction. Many problems of computational interest can be formulated as

(1.1) G(u, A) =0,

where u represents the "solution" (i.e., flow field, displacements, etc.) and A is a real
physical parameter (i.e., Reynold’s number, load, etc.) It is required to find the solution
for some A-intervals, that is, a path of solutions, [u(A), A]. In this paper, we use a
class of continuation based on parametrizing the solution branches by arc-length, say
[u(s), A (s)]. A main advantage of these arc-length continuation methods is that most
singular points on the solution branches can be handled without much difficulty.
Equations of the form (1.1) are called nonlinear elliptic eigenvalue problems if the
operator G with A fixed is an elliptic differential operator [2]. For nonlinear elliptic
eigenvalue problems, a major portion of the computational work in the arc-length
continuation methods is spent in solving large linear elliptic systems. In this paper,
we investigate the use of multi-grid [4] methods for solving these linear systems. It
turns out that a straightforward implementation of the multi-grid methods fails in the
neighborhood of the singular points and this usually prevents continuation past limit
points. This failure is analyzed and a modified multi-grid method based on this analysis
is devised. Even for very singular systems, the new multi-grid algorithm performs
satisfactorily and never requires more than about twice the storage and computational
work as the unmodified algorithm.

The arc-length continuation methods will be described in 2 and the multi-grid
methods in 3. In 4, computational results for a model problem are presented,
together with a description of the difficulties encountered by the multi-grid method
near a limit point. The behavior of the multi-grid method near singular points will be
analyzed in 5. The modified multi-grid algorithms designed to overcome these
difficulties are described in 6. The paper ends with a summary in 7.
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2. Newton’s method and continuation techniques. In this paper we are concerned
with methods for computing a family or path of solutions of (1.1). The methods we
employ will be based on some version of Newton’s method.

2.1. Newton’s method. Given a value of A and an initial guess u for the solution
u(A), we perform the following steps repeatedly until [lui[I < e is satisfied:

(2 1) Gu =-G(u ,,),

(2.2) u i+1= u + 8u i.

In the above, subscripts denote partial derivatives and so Gu denotes the Jacobian of
the operator G (with respect to u). This procedure will generally converge quadratically
when it does converge. However, as is well known, in many instances it will fail to
converge when the initial guess is not "close" to the true solution.

2.2. Natural continuation. A plausible procedure for overcoming this conver-
gence difficulty and also for determining the dependence of u on A is to start at a
known solution (Uo, Ao) on the solution curve and use it as initial guess for a Newton-
type iteration to find the solution for a neighboring point on the solution curve with
A close to A0. The procedure is then repeated. We can improve on this by computing
the derivative, ux, at a known solution and use it to get a better initial guess for the
next value of A in a predictor-corrector fashion. We call this a natural continuation
procedure because it corresponds to parametrizing the solution curve by A, the naturally
occurring parameter. A specific form of this is the more or less well-known

Euler-Newton continuation procedure. Given a known solution (Uo, A0), we com-
pute the solutions at nearby values of A as follows:

1. First compute the derivative ux at (Uo, Ao) from
(2.3) Guu -Gx.

2. Perform an Euler predictor step"

(2.4) u Uo + u (A Ao).

3. Use u as initial guess in Newton’s method,

(2.5) Giu(l,ti+l ui) -G(u A)

until convergence.
4. Use (u(A), A) as the new (u0, A0) and go back to Step 1.
Note that the computation of the derivative ux does not cause much computational

overhead because we usually have the factorization of the Jacobian G, computed
already in the Newton step. Using such a predictor-corrector method will often allow
us to take a much bigger step in A and thus reduce the overall cost of determining
the dependence of u on A.

Unfortunately, this procedure needs some modification in order to handle general
nonlinear systems because of the possibility of existence of nonunique solutions. The
nonuniqueness usually manifests itself in the form of existence of "singular" points
where the Jacobian Gu is singular (see Fig. 2.1). Points such as point A in Fig. 2.1
are called limit points (or turning points) and points such as point B are called
bifurcation points. These singular points are further characterized by the conditions
that Gx’Range (G) at a limit point and that G s Range (G) at a bifurcation point
[2].

The difficulties that a natural continuation procedure will encounter at singular
points are threefold. First of all, since G is singular at these points, Newton’s method
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FIG. 2.1. A typical bifurcation diagram.

No solution
at this value
of A.

FIG. 2.2. Failure o]: natural continuation near limit points.
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will at best be linearly convergent, making it much more costly to compute the solution.
Moreover, near a limit point, there may not exist a solution for a given value of A
(see Fig. 2.2) and hence the iterations must fail to converge. Lastly, we need some
mechanism for switching branches at a bifurcation point.

2.3. Arc-length continuation. In the pseudo arc-length continuation approach
[12], these difficulties are overcome by not parametrizing the solution u by A. Instead,
we parametrize the solution branches using an arc-length parameter s, and specify
how far along the current solution branch we want to march.

To be more specific, we let s be the arc-length parameter, and treat u(s) and
A(s) as functions of s. We can compute the "tangent" [tJ(s0), A(So)] (where the dots
denote differentiation with respect to s) of a known solution at s So from the following
two equations"

(2.6) GutJ0 + 0Gx 0,

Equation (2.6) is obtained from differentiating G(u, A) 0 with respect to s and (2.7)
imposes the arc-length condition. We could theoretically generate the solution curve
by integrating the initial value problem obtained by solving (2.6), (2.7) for ti(s) and
(s). Although this process is subject to the usual instabilities inherent in solving initial
value problems approximately, it can be an extremely effective procedure. Indeed our
pseudo arc-length continuation procedure can be viewed as a method for stabilizing
Euler integration of (2.6), (2.7).

solution curve on which
G(u(s),X(s))=O

predicted point

(uo, ,,)

S-So ----------1

plane +/- to tangent on which
N(u(s),h(s))=O

FIG. 2.3. Pseudo arc-length continuation.

solution
u(s), , (s)

tangent



MULTI-GRID CONTINUATION 177

In the pseudo arc-length continuation procedure, we advance from So to s along
the tangent to the solution branch and require the new solution u(s) and A (s) to satisfy

(2.8) N(u(s),X(s))=-a(u(s)-u(so))+Ao(X(s)-,(So))-(S-So)=O.
In addition we require, of course,

(2.9) O(u(s),Z(s))=O.

Equation (2.8) is the linearization of (2.7), and as indicated forces the new solution
to lie on a hyperplane perpendicular to the tangent vector to the solution curve at So
and at a distance (S-So) from it. Equation (2.9) requires u(s) and ;t (s) to lie on the
true solution curve (Fig. 2.3). We now solve the coupled system (2.8) and (2.9) for
u(s) and A(s), given the step size (S-So) (efficient strategies for choosing the step
size are discussed in [23]). We use Newton’s method, in which case we have to solve
the following linear system at each iteration"

(2 10) A[88uA] =[ Gu Gx

It can be shown that at limit points, where Gu is singular and Gx’Range (Gu),
the linear system in (2.10) is nonsingular (see [12]) and therefore Newton’s method
for the coupled system (2.8) and (2.9) is well defined. Hence limit points present no
problem and even quadratic convergence is achievable.

At bifurcation points, where Gu is singular and Gx Range (Gu), things are more
complicated. In the simplest case of only one branch bifurcating from the main branch
(simple bifurcation), an additional higher order condition involving Gu, Gx and Gxx
has to be satisfied. It can be shown [12] that this condition, together with (2.6) and
(2.7) and the left and right null vectors of Gu, enable two solutions for (ti0, 0) to
be computed at a simple bifurcation point, with one solution corresponding to each
branch. Using the appropriate pair of (ti0, 0) in (2.8) allows branch switching. In [7]
a more detailed study of the singular behavior and branch switching at bifurcation is
given.

In order to solve the linear system in (2.10) by direct methods, several approaches
are possible. One way is to perform Gaussian elimination on the inflated matrix A,
with some form of pivoting to ensure stability. But this approach completely ignores
the sparse structure which is usually found in Gu arising from nonlinear elliptic
eigenvalue problems. In order to take advantage of the structure in G, Keller [12]
suggested the following block-elimination procedure:

ALGORITHM BE (block-elimination)

Solve

(2.11)

and

(2.12)

Set

(2.13)

and

(2.14)

Gy Gx

G,z =-G.

6 N.Tz N)/ N NuTy

8u =z-SAy.
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Note that only systems with the coefficient matrix G, have to be solved, so
structures in Gu can be exploited. Moreover, only one factorization of Gu is needed.
It has been shown [27] that even when G, is becoming singular, Algorithm BE
produces iterates that converge quadratically at limit points.

Continuation methods of various forms and levels of sophistication have been
widely used in the engineering literature. For a recent survey of numerical methods
for bifurcation problems, see for example [18]. The approach taken here is due to
Keller [12], and has recently been applied to other problems in fluid mechanics [5],
[6], [15], [16], [25], [27]. A related approach suggested by Abbott [1] corresponds
(in a loose way) to applying Algorithm BE to the matrix A with the last column
permuted into the first n columns so that the corresponding coefficient matrix in
equations (2.11) and (2.12) becomes nonsingular even at limit points. However, as
has already been pointed out, any structure or symmetry in G, is lost in the process,
and hence that approach seems unsuitable for large elliptic systems in two or three
dimensions.

3. Multi-grid methods.
3.1. Introduction. The class of multi-grid (MG) methods that we use here is

based on work by Bakhvalov [3], Brandt [4], Federenko [8], Hackbush [10] and
Nicolaides [19]. We shall only briefly describe here the particular MG algorithms that
we have used for linear elliptic problems that arise in our treatment of nonlinear
elliptic eigenvalue problems.

The particular way in which we use the MG idea is to use a hierarchy of grids,
rather than a single one, in order to speed up the convergence rate of the solution
process. The MG process has some very desirable theoretical properties: for certain
elliptic operators on an n x n grid, it computes the approximate solution to truncation
error accuracy in O(n 2) arithmetic operations and O(n 2) storage. It seems natural to
consider the use of MG methods for solving nonlinear eigenvalue problems. MG
methods have been applied to solution of linear eigenvalue problems by Hackbush
[11 and McCormick 17].

3.2. The Cycle C MG algorithm. The particular MG algorithm that has been
used in this study is based on the "Cycle C" algorithm described in Brandt [4]. This
is an algorithm for iteratively solving the discrete equations approximating a linear
elliptic problem on a given grid, through interaction with a hierarchy of coarser grids,
taking advantage of the fact that the different discretizations on the different grids
are all approximations to the same continuous problem. We note that there are other
MG algorithms [4] proposed for implementing continuation procedures outside of the
context of the pseudo arc-length framework. Some potential problems with these
related algorithms are discussed in 3.4. We do not know how well such MG algorithms
perform and we hope to carry out our own investigation on such related methods in
the future. In this paper, MG algorithms are used to solve the fine grid discrete
equations that arise in the pseudo arc-length continuation procedure.

Consider a hierarchy of grids (G, G1, GM), with Gt being the finest one,
defined on a domain f with corresponding mesh sizes (h0> h >... > ht), and all
approximating the same linear elliptic problem"

(3.1) LU=F onlY, U=0 on

The discrete equation on a grid Gk is written as"

(3.2) LkUk Fk onGk, Uk O on 0.
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We are primarily interested in obtaining the approximating solution UM on the finest
grid, and we shall start with an initial guess on GM and apply a standard relaxation
procedure such as the Gauss-Seidel procedure. It is well known that the error is
reduced rapidly in the first few iterations but then the reduction rate becomes very
slow. By a frequency analysis, it can be shown that the fast reduction occurs when
the residual (or the error) in the current iterate has large harmonics on the scale of
the grid, the so-called high frequencies. Now at a stage in the iterative process where
the error reduction rate slows down, let the current iterate be uM. Define the error
M M UM uM. /)Mv in the iterate as v Then the error satisfies the following equation"

(3.3) LMVM FM -LMuM RM on G vM 0 on OGM.

The residual Ru is computable, and hence the original problem of solving for UM

can be reduced to an equivalent one of solving (3.3) for vM. There seems to be no
obvious advantage in using (3.3) rather than continuing with the original relaxation
procedure with u However, if the error vM and the residual RM are smooth relative
to G that is, if their high frequency components have been smoothed out by the
relaxation procedure, then we can approximate the solution of (3.3) on a coarser grid,
say Gt-1, by solving:

(3.4)
LM-lvM-1 FM-1 I-IRM on GM-l,

M-1 GM-1v =0 on 0

After this problem is solved we can interpolate the solution V
M-1 onto GM to get"

(3.5) new uM old uM + WM-I II-l /)M-1,

where WM- is an interpolation factor, normally taking the value unity, and I stands
for some interpolation operator from G to Gi. The solution process for equation
(3.4) on GM- usually costs considerably less than the cost of solving equation (3.3)
on Gu. If vM is indeed smooth (relative to GM), then GM- should provide adequate
resolution for v and hence I_vM-I should be a good approximation for vM. This
principle of transferring to a coarser grid when convergence slows down can be applied
recursi/)ely. Thus for example, we can start with a zero initial guess for vM- in equation
(3.4) and apply the Gauss-Seidel relaxation procedure to the iterates on GM-. When
the convergence slows down, we can again transfer to the next coarser grid GM-2,
and so on. One can view the whole process as each grid smoothing just those frequencies
in the error that are high relative to its own mesh size, each doing its job efficiently
because these high frequencies are precisely those that are efficiently smoothed out
by relaxation procedures.

The control of when to transfer between grids can follow a fixed strategy or an
adaptive one. A fixed strategy could be of the following kind (see Nicolaides [19]):
perform p relaxation sweeps on each grid Gk before transferring to a coarser grid
Gk-, and perform q relaxation sweeps before interpolating back to a finer grid GTM.
An adaptive strategy could be as follows (see Brandt [4]): transfer to a coarser grid
when the ratio of the residual norm of current iterate to the residual norm a sweep
earlier is greater than some tolerance r/, and transfer to a finer grid when the ratio
of the residual norm of current iterate to the residual norm on the next finer grid is
less than another tolerance 6. For simple problems like Poisson’s equation on a square,
the overall MG efficiency is very insensitive to which particular strategy is used and
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what values are used for (p, q) or (r/, 8). We shall refer to the above particular fixed
strategy the (p, q) strategy and the adaptive strategy the (r/, 8) strategy.

3.3. Indefinite problems. In the Cycle C algorithm just described, convergence
on the lowest (coarsest) grid GO is obtained by repeated relaxation sweeps. For positive
definite matrices, convergence on GO can be guaranteed. For indefinite problems,
however, convergence on GO cannot be obtained by repeated relaxation sweeps,
because the components of the error that correspond to eigenfunctions with negative
eigenvalues will grow as a result of relaxation sweeps (see the analysis in 5). Therefore,
for indefinite problems, a direct solution (e.g., Gaussian elimination) must be employed
on the coarsest grid. If this coarsest grid is fine enough, it will also provide corrections
to those growing components of the iterates on all finer grids. However, too fine a
grid for GO will increase the cost of the direct solution procedure. Hence a little care
must be taken regarding the size of the coarsest grid for indefinite problems. Fortu-
nately, for "not too indefinite" problems GO can be chosen coarse enough so that the
direct solution on GO will not affect the overall efficiency of the MG procedure
seriously. Since indefinite problems occur frequently in nonlinear elliptic eigenvalue
problems and, in particular, in our model problem, we shall use such a direct solution
on GO whenever necessary.

3.4. Continuation methods. Brandt [4] suggested using continuation methods in
conjunction with the MG procedure. His main idea is to use coarse grids for continu-
ation, with little work and crude accuracy, and only use the finer grids at the final
continuation step to achieve higher accuracy. We have not pursued this idea here.
We believe that it will work as long as we stay away from singular points. Around a
limit point, however, the solution branches corresponding to different grids may look
like the situation in Fig. 3.1. If we continue on the coarse grid to h* and try to refine

x x’x coarse grid

fine ,"1 "
_-____--

FIG. 3.1. Limit points ]:or different grids.

using the finer grid, while keeping A* fixed, we cannot hope to obtain a fine grid
solution because A* is larger than the fine grid limit point Ar (i.e., no fine grid solution
exists for A > At). In the opposite case, there is no coarse grid solution at A* so we
cannot get started on that grid. Hence, in general, we have to be extremely careful
in using MG methods and continuation around singular points.
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4. Application to the Bratu problem.
4.1. Bratu’s problem. As a typical example of a nonlinear elliptic eigenvalue

problem, we consider the Bratu problem:

G(u,A)=Au+Ae"=O on
(4.)

u =0 on

Equation (4.1) arises in many physical problems, for example, in chemical reactor
theory, radiative heat transfer, and in modelling the expansion of the universe. The
domain 1 is the unit interval [0, 1] in R 1, or the unit square [0, 1] x [0, 1] in R 2, or
the unit cube [0, 1]x[0, 1]x[0, 1] in R a. There are no bifurcation points in this
problem; all the singular points are limit points. The behavior of the solution near
the singular points has been studied numerically [1], [26] and theoretically [14], [20],
[21], [24]. Typical solution diagrams are shown in Fig. 4.1. For both the one- and

1D A 2D A

A

FIG. 4.1. Solution ]’or the Bratu problem.

two-dimensional cases, the problem has exactly one limit point, whereas the three-
dimensional case has infinitely many limit points (if fl is a sphere). From now on we
only consider the two-dimensional case, with fl the unit square. For this case, the
value of A* and the corresponding ]]ul] at the limit point are given by: A* 6.81 and
]]u]]oo u(0.5, 0.5) 1.39. For A > A*, equation (4.1) has no solution, and for A < A*,
it has exactly two solutions.
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4.2. Arc-length continuation with direct methods. We first apply the arc-length
continuation method of 2 to (4.1) using direct methods. For this problem, a trivial
solution is (u 0, A 0). We can thus start at this trivial solution on the lower branch
and march along the solution branch, past the limit point, and continue on to the
upper solution branch. Since the only singular point in this problem is a limit point,
this in principle presents no problem to the arc-length continuation procedure,
although the step size might have to be reduced and controlled appropriately near
the limit point. If desired, the limit point can be accurately determined by other related
techniques [1 ], [13].

The derivatives of the operator G in equation (4.1) that are needed for the
arc-length continuation technique are’

(4.2) Gu A + A e u,
(4.3) Gx =e.
Now if we approximate the Laplacian operator by the standard five-point stencil on
a uniform grid, the operator G, will be approximated by the usual block tridiagonal
matrix and the operator Gx by a column vector.

In the application of the arc-length continuation technique, we will have to
repeatedly solve linear systems of equations with the matrix given by G,. The solution
of these linear systems is the central part of the arc-length continuation method.
Hence, an efficient linear system solver is crucial to the overall performance of the
continuation technique. In this section, we present some computational results for
Bratu’s problem using a direct method (Gaussian elimination) of solution of the
linearized difference equations. For large problems, this would be prohibitively expen-
sive. However, the results here are intended to demonstrate the performance of the
continuation procedure independent of the linear algebra method employed. In the
next section, we shall investigate the use of multi-grid methods for solving the linear
equations. It should be pointed out that G, is generally not separable, and therefore
we cannot use fast Poisson solvers directly even on rectangular domains. Moreover,
this matrix is indefinite on the upper branch, and hence iterative methods like
successive-over-relaxation cannot be used directly.

We present some of our computed results in Table 4.1 and Fig. 4.2. Only the
behavior of the solution branch near the limit point for a few relatively coarse
discretizations is presented. This is to be compared with the values: A* 6.80811698
and u(.5, .5)= 1.3916603 for a grid with h =2 with the nine-point finite difference
operator as computed by Abbott [1] and to the easily obtainable exact solution
(h* 18/e 6.62183, u* 1) for the case h =1/2. As expected, the step size Os S-So
had to be suitably controlled near the limit point, but otherwise we encountered no
difficulty in continuing past the limit point.

4.3. Arc-length continuation with multi-grid methods. In this section we discuss
the use of MG methods, rather than direct methods, for solving the linear equations
that arise in the continuation procedure. The MG method that we use was described
in 3 and Gauss-Seidel is the smoothing relaxation process. Since the Jacobian matrix
Gu becomes indefinite on the upper branch, we use a direct method on the coarsest
grid in the neighborhood of the limit point and on the upper branch.

We started the continuation procedure with the trivial solution (u =0, A =0),
with h 1/4 on the coarsest grid, and a total of four levels of grids, making the finest
grid with h =2. As expected, the MG method worked fine and we were able to
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TABLE 4.1.
Computed results for Bratu’s problem near limit point

h x u

6.000000 0.619061 0.9841
6.485170 0.809435 0.9165
6.572858 0.883052 0.7948
6.621830 0.999899 2.8889E-4 limit point
6.614022 1.04937 -0.4307

6.500000 1.00456 0.9632
6.689007 1.14350 0.9041
6.802681 1.34995 0.2965
6.805499 1.39043 -1.1732E-4 limitpoint
6.805485 1.39368 -0.0125

1.4

1.2

1.0

h = h --

0.8

6.4 6.5 6.6 6.7 6.8 A

FIG. 4.2. Computed results }’or Bratu’s problem near limit point.

continue up to very close to the limit point, at A 6.804 on the lower branch. However,
we noticed that the convergence of the MG method deteriorates as we move in towards
the limit point. For example, the number of equivalent relaxation sweeps on the finest
grid required to reduce the residual norm by an order of magnitude, which is a
convenient way of measuring the efficiency of MG methods, went from about 5 at
A 0 to about 20 at A 6.803 and to divergence at A 6.805. The divergence occurred
in the MG method and not in the Newton iteration. It is not due to the possible
indefiniteness of the Jacobian matrix on the finest grid. This can occur near the limit
point after a large Euler-predictor step. We performed other tests starting on the
upper branch, away from the limit point, where the Jacobian matrix is indefinite, and
here the MG method performed as efficiently as on the lower branch. From our
experience, this divergence is strictly a phenomenon associated with the limit point,



184 TONY F. C. CHAN AND H. B. KELLER

and to the best of our knowledge, has never been discussed or analyzed in the literature.
We study this effect in 5.

The exact value of A at which this divergence first occurs varies slightly with the
size of the coarsest grid h0, but is quite independent of the other parameters of the
Cycle C algorithm (e.g., r/and 8). In all the cases we have run, this divergence made
it impossible to continue past the limit point. Therefore, a remedy is needed. Before
we can find one, we must understand the reason for the divergence.

5. Analysis of multi-grid methods for near-singular systems. For the present
analysis, we assume that the linear operator L is self-adjoint and has the complete
set of orthonormal eigenfunctions {sl, 2,’" ’} with corresponding real eigenvalues
{/xl=</x2,.. "}. The operator Gu in the Bratu problem clearly satisfies the above
hypothesis. Thus the solution U to LU F can be written as:

(5.1) U=
i=1

aj=(j,F), j= l, 2,

We assume that the discrete approximations Lk to the continuous L are symmetric.
Thus they have real eigenvalues {/x k _-</x -<. _-</zk} and a complete set of orthonor-
mal eigenvectors {1k, seEk, ", k}. Here Nk is the dimension of the matrix representing
Lk. For most reasonable approximations, and certainly for the five-point formula used
for the Bratu problem on a rectangle, this is true.

Assume that after iterating (relaxing) on the grid Gk, convergence has slowed
down and a transfer to the next coarser grid is desired. Let the current iterate be u k,
and the corresponding "correction" be v k so that Uk= u k +v k where Uk satisfies
Lkuk --Fk. The correction problem is given (as in 3) by"

(5.2) Lkv k R k Fk --Lku k in Gk, V
k 0 on OGk.

This is approximated on Gk- by

(5.3) Lk-vk- I_IR k in Gk, vk-1 0 on oGk-1.

Using the eigenvector expansion of v k in (5.2) we get

(5.4) v k= akck,
i=1

where

k Rk,
(5.5) a k i=l,’’’,

Suppose now that (5.3) is solved exactly (by either direct solution or Cycle C or any
other means) on Gk-1. The solution v k-1 is then

where

k- {Ikk-Rk,
(5.7) ai k-1
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The key idea in the MG method is that if v k and R k are smooth enough, they can be
well approximated on G-1. Thus it is important for efficiency considerations that

(5.8) I,_v- v.
Using (5.4) and (5.6), this is equivalent to"

Nk_l
I_(5.9) ’. a k- lSk- k a k:k.

i=1 i=1

This will be the case if

(5.10) (a) Ikk_:k- sCk, 1 --<i _--< N_I,
k(5.11) (b) a - =a, l <-i <-N,_,

(5.12) (c) ak =0, >N,_.

Conditions (5.10) and (5.11) ensure that the coarse grid correction v k-x improves the
lower modes of the iterate u k. Condition (5.12) is essentially the smoothness required
of v k on Gk (i.e., negligible higher modes).

Now condition (5.10) is satisfied for the low frequency eigenfunctions of the
continuous operator L if the grids Gk and Gk- are both fine enough to resolve these
eigenfunctions. This holds in many cases since the lower eigenfunctions of most
second-order elliptic operators over smooth domains are very smooth. For the Bratu
problem, the eigenfunctions are very close to products of sines and cosines (the
eigenfunctions of the Laplacian operator) and so the lower modes are easily resolved
by very coarse grids. Condition (5.11), on the other hand, turns out to be violated if
the operator Lk is near singular. This is what caused the divergence of the Cycle C
algorithm in the arc-length continuation procedure as we approach the limit point
(see 4.3). We shall analyze this case next.

From (5.5) and (5.7), condition (5.11) becomes

(5 13)
(I-Rk’ -) (R’ :)_

iiN_.

We claim that if condition (5.10) is satisfied, and if the transfer from G to G- is
done only after the residual R has been smoothed, then the numerators in (5.13)
will have approximately the same value. To show this, we expand R as

(.) : ri,
i=1

where

(5.15)

Thus the numerator on the right-hand side of (5.13) is precisely ri. To estimate the
numerator on the left hand side of (5.13), we proceed as follows"

NI NIt-1 Nk
(5.16) I-IR X ril"-"t ;i X riI-1 + X riI-i

i= i= i=Nt_+

We shall use the symbol to mean rather loosely "approximately equal to". The meaning should
be clear by context. Also, we shall assume that the interpolation factor Wk- in equation (3.5) is equal to
one unless stated otherwise.
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Now if condition (5.10) holds, its converse

(5.17) I-1/ :-1, 1 < <Nk-
also holds. Also, if R k has been smoothed on G, then ri [for N_, < <N] must be
small compared with ri [for 1 -< -<N_,]. Alternatively (5.12) assumes a/ ri//x -0
for >Nk-1. Therefore, we can approximate in (5.16) by dropping the second sum
on the right-hand side to get

Hence

(5.19) (I-R k, l <i<=N_l.

Therefore, from (5.15) and (5.19), we have, as claimed earlier,

(5.20) {I-R,-)-(Rk,) for l<--i<--Nk_l.

The relations in (5.20) imply that condition (5.13) will be true if
k

(5 21)
_

-1, l<=i<=N_.

Actually, these conditions need to be strengthened in order to guarantee that the visit
to G-1 actually improves the accuracy of u k. This can be seen as follows. The error
in the iterate u k before the transfer to Gk- is given by

(5.22) old error v k Y a/:/.
i=1

From (3.5), the new error in u k after coming back from a visit to Gk- is given by

(5.23) new error v wk_I_Iv-.
In view of (5.4) and (5.6), the above gives

Nk-1
new error Y (a Wk_lak-1 )/ + higher modes

i=1
(5.24)

N-I (Wk_lai_)
i=

1
a

a/:/ + higher modes.

From (5.5), (5.7) and (5.20), we have
k-1 ka l,i
k k-la [J,i

and therefore we can write the new error in (5.24) as

(5.25) new error 1 --_ a+higher modes.
i=1

For obvious efficiency and convergence considerations, the new error should preferably
be less than the old error, at least for the lower modes. In other words, condition
(5.21) should be strengthened to

(5.26) 1 w-l-r < 1
]’i--
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k
Wk-tz(5.27) O< k-X < 2 for 1 <-- <--Nk_.

Now if the ratios of eigenvalues in (5.21) are not close to unity, the interpolation
factors, Wk-1, should be chosen so that condition (5.27) is satisfied. Otherwise the
new error can be larger than the old error in some modes.

It should be pointed out that, in general, condition (5.27) is not necessary for
the convergence of the "Cycle C" algorithm. This is the case, for instance, if L and
the Lk’s are all positive definite. Then Gauss-Seidel sweeps on any grid Gk will reduce
the amplitude of every mode present in the error. In such cases, convergence on any
grid can be achieved by merely doing enough relaxation sweeps. Then it is not necessary
for the next coarser grid to provide any improvement on the current iterate, although
it would obviously improve the efficiency of the overall algorithm if it does so. In fact,
the MG method derives its efficiency from the very fact that the coarser grids do
provide improvements in the current iterate u k in the lower modes. These are precisely
those modes that have poor convergence rates for the relaxation sweeps on Gk. Thus,
even in the positive definite case, it is important (from an efficiency viewpoint) that
conditions (5.27) hold, at least for small i’s.

If the operator L and the Lk’s are indefinite the situation is different because
some modes will grow if we simply perform relaxation sweeps on a fixed grid. Such
modes have to be corrected by going to coarser grids and using a direct method on
the coarsest grid. Further, the interpolation factors, Wk-1, should be chosen such that
condition (5.27) is satisfied for these modes. Condition (5.27) has been suggested by
Brandt [4] for indefinite problems. However, as we show later, most nonlinear
eigenvalue problems with limit points and bifurcation points abound with indefinite
operators, but they do not cause difficulties in the sense of violating condition (5.27).
Essentially only one mode causes problems on each Gk and it is the mode that
corresponds to the eigenvalue that is nearest zero as the singular point is approached.
Merely including the interpolation factors so that condition (5.27) is satisfied turns
out to be very inefficient. Further, it is not clear that such factors, Wk_l, can be found
at all in this case.

Another source of difficulty is that the process of interpolating vk- into Gk

introduces high frequency errors. That is, the exact relation corresponding to (5.10) is:

k k(5.28) Ikk_:/k- :k + b,j, 1, 2,..., Nk-, for 1 <--_ <= Nk-1,
j=l

kand the coefficients bi/may be large for ] > Nk-1. This would result in a violation of
(5.12). Fortunately, these high frequency errors are very efficiently smoothed out by
the subsequent relaxation sweeps on Gk, and thus these errors are automatically
corrected.

For elliptic operators which are "far" from being singular and with a reasonable
grid system {Gk} condition (5.27) can be assured. For example, if L is the negative
Laplacian, -A, on a unit square with Dirichlet boundary conditions, then it is known
(e.g., [9]) that the eigenvalues of L are given by

(5.29) p,,,,,, (m)+ (n’rr)2.
The corresponding eigenfunctions are"

(5.30) s,,,, sin (mzrx)sin (nTry).
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These eigenfunctions evaluated at the discrete interior grid points of a uniform mesh
on the unit square give the eigenfunctions of the discrete 5-point approximations,
Lk =--Ah, with h being the uniform mesh size. The eigenvalues of Lk are, with
6x y hk,

k 4[sin2 (mzrhk/2)+sin2 (ncrhk/2)]
(5.31) / ,,,n h,
Some of these eigenvalues are tabulated in Table 5.1 for various mesh sizes, hk. The

k k-1ratios/x....//x,.., are given in Table 5.2. We see from Table 5.2 that condition (5.27)

TABLE 5.1.
k for_Ah

k= 0 2 3

(re, n) h0=1/2 h1=41- h2= h3-6 h=0

1, 1 16.0 18.745 19.487 19.676 19.739
2, NA 41.37258 47.238 48.812 49.348
1, 2 NA 41.37258 47.238 48.812 49.348
2, 2 NA 64.0 74.981 77.947 78.957
3, 1 NA NA 88.760 96.126 98.696
1, 3 NA NA 88.760 96.126 98.696
3, 2 NA NA 116.507 125.261 128.305
2, 3 NA NA 116.507 125.261 128.305
3, 3 NA NA 158.033 172.575 177.653

TABLE 5.2.
k-1Ratios tzm,./l,,,,, for --Ahk

(m, n) hk =1/4, hk- =1/2 hk =, hk-x =1/4 hk =, hk-=
1, 1.17 1.04 1.01
2, NA 1.14 1.03
1,2 NA 1.14 1.03
2, 2 NA 1.17 1.04
3, 1 NA NA 1.08
1,3 NA NA 1.08
3,2 NA NA 1.08
2, 3 NA NA 1.08
3, 3 NA NA 1.09

is satisfied, with Wk-1 1, for all lower modes shown. These ratios are very close to
unity, even for the case where the coarsest grid has only one interior point. We have
seen from condition (5.11) that this closeness to unity is very desirable and this fact
partly explains the well-documented success of MG methods for the Laplacian
operator.

Near the limit point of the Bratu problem, the operator L =- G, A + he" behaves
very much like a shifted Laplacian operator. Clearly, if the factor e were replaced
by a constant, a say, then Gu is replaced by the Laplacian operator with a shift



MULTI-GRID CONTINUATION 189

k k-1Then the eigenvalue ratio/ 1,1/ff, valid for aA 0, is replaced by:1,1

(5.32)
k

k-1
1,1 --aA

Since 0 < u < 1.4, the factor e does not vary much and we assume this approximation
to be valid for some a > 0. The situation is depicted graphically in Fig. 5.1 for the
grid system that was used for Table 5.1. As the shift aA approaches the group of
eigenvalues corresponding to the (1, 1) mode from below, the ratios in (5.31) increase.
As aA continues to increase, the ratio of eigenvalues will become greater than 2, then
increase towards +o, jump to - discontinuously, and start increasing from -o to
1. The situation is depicted in Fig. 5.2.

Old
Origin--

shift

New
Origin

(1,1)
mode

I_1_1..I

(2, 1) and (1, 2)
mode

(1, 1) mode (2, 1) and
(1, 2) mode

L -A- aAI

FIG. 5.1. Spectrum of shifted Laplacian.

Origin

(1, 1) mode
(1,2)
(2, 1) mode

II..I >

shift aA .->

FIG. 5.2. Spectrum near singular point.
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We thus see, under the above assumptions, that condition (5.27) is first violated
by the lowest mode (i.e., the (1, 1) mode) on the two coarsest grids GO and G1. In
fact the lowest eigenvalues for the Bratu problem computed at the first point on the
solution branch where Cycle C diverged, yields the ratio almost exactly 2. On the
other hand, even at this point, condition (5.27) is satisfied by the (1, 1) modes on the
finer grids. In other words, the divergence of Cycle C is seen to be caused by one
near-singular grid out of the whole hierarchy of grids present. The mode that becomes
singular at the limit point of the Bratu problem is the (1, 1) mode, and this occurs
first on the GO grid. As the limit point is approached, Lk on some of these grids may
even become indefinite, while others (the finer grids) may still be positive definite.
Essentially, the near-singular grid causes the (1, 1) mode component of the correction
k-1 kv when viewed as an approximation to v to have the right direction, but the

wrong magnitude. This phenomenon is not limited to the Bratu problem. The only
thing special about this problem is that it is the eigenvalue of the (1, 1) mode that
becomes zero at the limit point. For other problems, the eigenvalue of the operator
L that becomes zero as the singular point is approached might correspond to other
modes. Although the singular point in the Bratu problem is a limit point, we can
expect the same behavior at a bifurcation point.

Having now understood the cause of the divergence of the MG method, in the
next section we shall discuss some modifications to the basic Cycle C algorithm that
are designed to overcome such difficulties.

6. Remedies and new algorithms. In this section we discuss approaches that have
been devised to overcome the difficulties with the MG method near singular points.
The first goal is to modify the basic Cycle C algorithm so that it will converge for
values of A close enough to the limit point so that the arc-length continuation procedure
can take us past the limit point onto the upper solution branch. A more ambitious
goal is to modify Cycle C further so that it will converge arbitrarily close to the singular
point. Such an algorithm, when used in conjunction with the arc-length continuation
technique for tracing solution branches, will make the overall algorithm much more
robust. Moreover, such an algorithm may prove to be useful for locating singular
points accurately, either using an arc-length continuation based procedure [13], or
some other procedure that uses the operator Gu near the singular point [22]. We shall
see that the first goal is relatively easy to achieve, whereas the second goal is much
more difficult. However, we have devised a Cycle C based algorithm that has performed
very well when applied very close to the limit point. The approaches that we have
tried and that lead to the final algorithm will be discussed in this section. We shall
describe them in the sequence that they were tried.

Before we proceed, however, we have to explain a few general strategies that
were used. First of all, Gauss-Seidel and many other relaxation schemes are not very
effective in smoothing the lower modes, especially modes with near-zero eigenvalues.
Hence, these modes must be eliminated by means other than relaxation, even on the
coarsest grid. Therefore, unless stated otherwise, we shall use a direct solution on the
coarsest grid even though the operators Lk’s may be positive definite. This does not
affect the overall efficiency very much because the coarsest grid has so few points that
direct solution is very fast and efficient.

Another strategy concerns the treatment of the mode that causes the divergence,
that is, the mode with a near-zero eigenvalue, say q. In all the algorithms that are
discussed, this mode is treated separately from the other modes. To do this, it is
essential to have approximations to this mode and to its corresponding eigenvalues,
say and/2, respectively. Here we have to strike a balance between accuracy and
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efficiency. If we compute the k exactly, then we can completely eliminate the :k
error components on each grid. Thus, the problem on Gk can be reduced to one in
which a k is zero (see (5.25)). When this is done, we do not need to satisfy condition
(5.27) for this mode. On the other hand, the work involved in computing accurate
approximations to/x k and :k for each k would be at least as much as solving the
original linear system. Our compromise has been to compute an approximation 0 to

:1 on the coarsest grid, G, by a few steps of inverse iteration with zero shift (since
the eigenvalue we want is near zero). This is very inexpensive since GO is quite coarse
and the LU factors of L are already available. Then we interpolate 7 onto the finer
grids. To eliminate the high frequency errors introduced in these interpolations, we
do two things: (1) use higher order interpolation, e.g., cubic instead of linear; (2)
smooth the interpolated eigenfunctions by performing a few relaxation sweeps on
Lk:k 0. Estimates of the eigenvalues, /21k, are then computed using the Rayleigh
quotients: (, Lk). We view this as a preprocessing phase of the algorithm and the
extra work is usually minimal compared to the overall work. Furthermore, since the
eigenfunctions (not the eigenvalues) do not change very much in the neighborhood
of the singular points, we can use the same approximation for different linearized
operators L. The storage required to store these eigenfunctions is less than twice the
size of the finest grid.

We use the (r/, 8) adaptive version of the Cycle C algorithm, unless otherwise
stated. The first modified algorithm is the following.

6.1. Under- and over-interpolation. The idea is to choose w-i in (3.5) for
interpolation onto G, such that condition (5.27) is satisfied for 1. Clearly the value

-k-1

(6.1) Wk-1

is in some sense optimal since it eliminates the :1 term in (5.25). For the case discussed
in 4.3, this modification allows the computation to continue past the point h 6.804,
where divergence of Cycle C first occurred. In fact (with a little luck) we succeeded
in continuing around the limit point onto the upper branch. Here the eigenfunction

01 no longer presented difficulties for the MG algorithm. For some of these cases/x
is actually negative and therefore (6.1) yields a negative value for wl. In this case the
transfer from GO to G violates condition (5.27) for all modes other than 1. The
errors in these modes must be reduced by extra relaxation sweeps on G1. In other
words GO only provides a proper correction on G for the s1 mode, all higher modes
are treated incorrectly during the transfer. The efficiency of the algorithm thus suffers.
This effect is especially pronounced if some factors Wk are either very large or negative
or (worse) both. The algorithm is very sensitive to the parameters (r/, 8) and thus is
not robust. It can even diverge if the higher modes are not reduced fast enough on
Gk after the transfer from Gk-1.

Even worse, the above algorithm will not work for indefinite problems in which
some intermediate eigenvalue is near zero. For example, if the spectra of the L are
similar to those in Fig. 6.1, the interpolation factors w are controlled by the sex
belonging to eigenvalues/x k near zero. On the other hand, the eigenfunctions k_1
require that condition (5.27) be satisfied because these modes cannot be liquidated
by relaxation. Conflicts can occur when s1k requires Wk to be negative while :k_l
requires Wk to be positive. Indefinite problems of this type occur frequently in nonlinear
eigenvalue problems. Mere under- or over-interpolation must run into difficulties for
such problems, near the singular points.
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Origin

FIG. 6.1. Intermediate eigenvalue near zero.

The above considerations make it clear that the eigenfunction with the near-zero
eigenvalue must be isolated and treated differently from the other eigenfunctions. We
use the approximate eigenfunctions that are computed in the preprocessing phase for
this purpose in the following procedure.

6.2. Under- and over-interpolating the singular eigenfunction only. We use an
interpolation different from that in (3.5). Specifically if

(6.2) /3
k-1 u a.-:/-.

i=1

on G-, we interpolate it onto G by

(6.3) v :- r_
-/-w-ax-l[- +I-1 E af

i=2

Further w_ is chosen to satisfy (6.1). Since we only have an approximation to ,
we use, instead of (6.3)"

(6.4) v I-1 Iv ’-t _(v-l, -I)-I ]4- Wk_I(U k-1 1k-1 )I_11k-1

In practice, this performed much better than indiscriminate under- and over-interpola-
tion described in 6.1. It was the more efficient when both procedures worked. In
many cases when (6.1) yields large and/or negative values for w, only the current
scheme converges. In principle, it will also work for indefinite problems like that
depicted in Fig. 6.1. The efficiency in most cases was very respectable" in the range
of 6-10 units per order of magnitude reduction in the residual. It is also quite insensitive
to the parameters (r/, 8). Thus, it can be used very efficiently and reliably with the
arc-length continuation procedure for tracing out solution branches.

Unfortunately, this improved algorithm fails when the magnitude of w becomes
too large. This occurs when L is very nearly singular, that is, with tz very close to
zero. Since we only have an approximation to :, large factors w in (6.4) introduce
very large errors in the other modes. Moreover, the estimates t2 using Rayleigh
quotients tend to be too large (relatively) when tz is very small. Then (6.1) gives a
value of w that is too small. Both of the above result in lower efficiency and reliability.
In extreme cases, this makes the algorithm impractical. To overcome this difficulty,
we devise an algorithm that will work even if one of the operators L is very nearly
singular. For this we employ the idea of skipping a grid.

6.3. Skipping the singular grid. The previous algorithm fails if the operator is
very nearly singular on one of the grids, say G. The idea here is to simply delete
this grid from the hierarchy of grids used by the MG algorithm. If the remaining grids
are not as singular as the deleted grid it would seem that the algorithm described in
6.2 should work. However, calculations show that skipping a grid can cause other
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problems. When Gk is skipped, the mesh changes more drastically from Gk-1 to
Gk+l, and hence the interpolation in (6.4) (now rk+l

-k-1 instead of I-1) introduces
larger errors into the higher modes on GTM. These high-frequency errors can cause
divergence of the MG process unless controlled properly by the parameters (r/, 8). A
large value of r/, say between 0.8 and 0.9, makes the algorithm more robust but
involves more work than for a smaller value of r, say 0.5. We encountered a case
where, with all else the same, the new skipping algorithm converges for r/= 0.9 but
diverges for r/= 0.6. Granted with r/= 0.9 the algorithm may be very reliable, such
sensitivity to one parameter is very undesirable. Therefore, we considered the following
modification.

6.4. Skipping the singular grid for the singular eigenfunction only. The idea is
to skip the singular grid Gk for s1 only, and to keep it for smoothing the other modes.
In the actual implementation, we modify the algorithm described in 6.2 to use

-k-1
/Zl(6.5) w_ _/

for 1 and Wk-1 1 for all other modes to transfer from Gk-1 to Gk and, after a few
smoothing sweeps on Gk, transfer to Gk+l with Wk 1 for all modes. Note that we
do not try to solve the Gk equations for v k. Trying to do that would result in large
magnification of the sk component in v k, since k is near zero. This would in turn
cause problems during the transfer to Gk/l.

In addition, we have experimented with using a mixture of the adaptive (r/, 8)
strategy with the nonadaptive (p, q) strategy (cf. 3.2). We have found an (r/, q)
strategy that is as good as any other we have tried. In this strategy, we use r/to control
when we terminate relaxation on a certain grid and go on to a coarser grid, and use
q to control how many sweeps to do on a grid after transfer from a coarser grid before
interpolating onto a finer grid. A typical set of parameters that worked well is (r/= 0.6,
q 2). The resulting algorithm is fairly insensitive to actual values of r/ and q and is
quite robust. It is also quite efficient. It consistently achieved an efficiency of less than
about 12 units per order of magnitude reduction in the residual for most problems
that we have encountered. Some of these problems have very singular grids which
presented difficulties for all of the previous algorithms.

7. Summary. In this paper, we study arc-length continuation techniques and
multi-grid techniques for solving nonlinear elliptic eigenvalue problems. We have
applied these techniques to solve a model nonlinear elliptic eigenvalue problem (the
Bratu problem). We have found that as long as we stay away from singular points,
the two techniques combined to give a very powerful and efficient procedure for
tracing solution branches. Near singular points, however, the standard multi-grid
method has difficulty converging on the linearized elliptic systems that arise in the
continuation procedure. One consequence is that we cannot continue past the limit
point in the model problem. This divergence is successfully analyzed and several
modified multi-grid algorithms have been designed based on this analysis. The best
of these modified algorithms performs efficiently and reliably arbitrarily close to the
singular points. This enables the continuation procedure to continue past the limit
point with no difficulty. It seems reasonable that this modified multi-grid algorithm
can be useful in more general situations where nearly singular elliptic systems arise,
such as in inverse iteration 11], 17].
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PIECEWISE ANALYTICAL PERTURBATION SERIES SOLUTIONS
OF THE RADIAL SCHRDINGER EQUATION:

ONE-DIMENSIONAL CASE*

MITCHELL D. SMOOKES"

Abstract. We develop a piecewise analytical perturbation series method (PAPSM) for solving the
radial Schr6dinger equation. The method centers around seeking a perturbation series solution when the
coefficient function of the radial Schr6dinger equation is approximated by piecewise constant polynomials.
We perform a number of numerical experiments designed to evaluate the accuracy and efficiency of PAPSM
as compared to Gordon’s piecewise analytical solution method. The calculations are performed for both
scattering and bound state problems.

Key words. Schr6dinger equation, piecewise analytical, perturbation series, two-point boundary value
problem.

1. Introduction. We want to consider the following one-dimensional two-point
boundary value problem:

-u"(r)+p(r)u(r)=O, 0<r<o,

(1.1) u(O) =0,

u(r)--,uo as ro,

where p(r), the potential function, has the following properties:

(1.2)
rU]p(r)l as ro0,

]p(r)[--, constant as r-.
The problem stated in (1.1) and (1.2) occurs in a variety of physical contexts. Of

particular importance to us is the relation between (1.1) and (1.2) and problems
encountered in quantum chemistry. Using the proper changes of variables, Messiah
[24] shows that one can write the radial Schr6dinger equation in a form similar to
the differential equation in (1.1). Moreover, elastic scattering [25] and bound state
eigenvalue problems [29] can be formulated as two-point boundary value problems
similar to (1.1). For these, p(r) is defined by

I(I+1)+(1.3) p(r)=-E+.. 2 v(r),
r

for some energy E (specified in the scattering problem and to be determined in the
bound state problem), specified orbital angular momentum quantum number and
interaction potential v(r).

If p(r) is of such a form that an analytical solution to (1.1) cannot be obtained,
then a numerical technique must be used. This requires solving the problem on a mesh

(1.4) d//= {0 < a R0 <R <" <RM =/3 < },

where we set hk Rk -R_I, k 1, 2, ., M. By imposing boundary conditions at a
and/3 we can reduce the problem in (1.1) to a finite domain. This leads us to consider

* Received by the editors August 15, 1980, and in final form October 6, 1981. This work was supported
by the National Science Foundation under contract NSF-MPS75-15469.

5" Applied Mathematics Division, Sandia National Laboratories, Livermore, California 94550.

195



196 MITCHELL D. SMOOKE

the two-point boundary value problem

-u" +pu 0, a < r < fl,

cu()/c=u’()-c, Ic11/1c210,
4U() + C5U’() C6, IC4I q-]C5I 0,

for constants ci, 1, 2,..., 6. We remark that in solving (1.5) on the mesh ///, the
points Rk, k O, 1,. ., M, are generally not equally spaced.

Although there is a variety of methods for solving the elastic scattering problem
[5], [16], [21], [26] and the bound state eigenvalue problem [4], [6]-[7], [11], [19],
we focus our attention here on a method studied by Gordon et al. [12], [14]-[15],
[28], Canosa and De Oliveira [9], Ixaru et al. [2], [17]-[18], Riehl, Diestler and
Wagner [27], Luthey [23], and more recently by Smooke [30]. The method involves
replacing the coefficient function p(r) by low degree piecewise polynomials /(r)
(constant, linear and quadratic) so that the resulting zeroth order equation can be
solved analytically. The rationale behind this kind of approximation lies in the fact
that, for a number of problems of physical interest, the scale of variation of u(r) is
often small compared to the scale of variation of p(r). As a result, the approximating
scheme allows larger mesh intervals, or equivalently, a smaller number of mesh points
than if, for example, a conventional finite difference scheme had been used. The
method is computationally efficient providing the complexity of the calculation hasn’t
been shifted to evaluation of the functions comprising the analytical solution of the
zeroth order equation.

While all of the authors mentioned in connection with the piecewise analytical
solution method (PASM) have considered zeroth order approximations to (1.5) only
Ixaru et al. [2], Riehl, Diestler and Wagner [27] and sometimes Gordon [15] have
included a first perturbation correction in their approximation to (1.5).

The approach we shall take will be to rewrite (1.5) in the form

(1.6) -u" +u =-(p-t)u,

and seek a perturbation series solution to u on the premise that (p-)u is small
compared to terms on the left hand side of (1.6). As in the zeroth order work of
Gordon and others, we will require that our perturbation series solution be determined
analytically. This will lead us to consider piecewise constant polynomial approximations
to p(r) with (p-/) expressed in some polynomial-exponential combination. We will
then be able to obtain a piecewise analytical perturbation series solution by the method
of undetermined coefficients.

The motivation for our piecewise analytical perturbation series method (PAPSM)
lies in the fact that by taking our approximate solution as a piecewise constant zeroth
order solution plus a number of perturbation corrections to this zeroth order solution,
we will obtain a more accurate approximation to u than if we had not included any
perturbation corrections. This will manifest itself in a smaller number of mesh intervals
needed to solve the problem numerically. Hence, providing the complexity of evaluat-
ing the perturbation corrections is not too prohibitive, we will reduce the overall cost
of the calculation.

The paper is organized as follows" in the next section we reformulate the two-point
boundary value problem in (1.5) to obtain a piecewise analytical perturbation series
solution for pieeewise constant polynomial approximations to p(r). In 3 we discuss
the numerical algorithms used in implementing our piecewise analytical perturbation
series method in both scattering and bound state problems. Finally in 4 we present
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our numerical results and compare the piecewise analytical perturbation series method
with the zeroth order piecewise analytical solution method of Gordon [14].

2. Formulation of the piecewise analytical perturbation series method. To
develop the formalism necessary to solve (1.5) by a piecewise perturbation series
solution, we first let/(r) be a piecewise polynomial approximation to p(r) and imbed
our problem in the family of problems

(2.) -u"+u -(p-)u,

parametrized by e. The problem we want to solve is for the case e 1. We know the
solution for e 0 and/ a low degree piecewise polynomial. This is the zeroth order
problem studied in [2], [9], [12], [14]-[15], [17]-[18], [23], [27]-[28]. From the theory
of differential equations, we expect the solution to (2.1) to be analytic in e in some
disk about the origin. We will thus seek a power series solution in e and hope that
the disk convergence of this series includes e- 1. This will be true if (p-/) is
sufficiently small and sufficiently smooth.

We define

(2.2) u (rle) Y eivi(r),

where we employ the convention that vj(r) will be referred to as the ]th order
perturbation correction. The procedure we will follow will be to substitute the
expression for u(rle) and its second derivative into (2.1) and then to equate like
powers of e. If we then apply the boundary conditions of (1.5) to v0 and corresponding
homogeneous boundary conditions (c3 c6 0) to vj, j 1, 2, we have the following
two-point boundary value problems:

-v +/vo 0, a <r <t,

(2.3) c 1/.)0(0) ’ c2/.) ) (0) c3, ICll /lc=l # O,

C40() + C5Da () C6, Icnl+lc,I # 0,

where Vo(R +
k vo(R and v (R +k)= v(R) for k 1, 2,. .,M,

-vj +ffv -(p -)v-l, ce <r</3,

(2.4) clv,(a)+c2v;(ee)=O, 1c11+[c21 0,

C4/3() "- C5U () =0 Ic l/lc l #0,
where v(R +

k )= vj(R-) and vj(R /

k v(R-) for k 1, 2,..., M and/" 1, 2,. .. As
usual, we terminate the representation in (2.2) at some finite upper limit n, and seek
a perturbation series solution to (1.5) up through and including the first n perturbation
corrections.

In each subinterval the general solution of (2.3) can be expressed as a linear
combination of two linearly independent basis functions

+ (r) + flov (r)(2.5) vo(r) oovo

for some constants Co and /3o. The general solution to (2.4) is composed of a
homogeneous solution Vh.j and a particular solution vp.,/" 1, 2,..., n. Since the
homogeneous solution is expressed as a linear combination of the two zeroth order
basis functions, v and vg, we have

(2.6) /

vi civ o +/3.v + vp,i,
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for constants aj and flj,/’ 1, 2,..., n. If we assume that the mesh is given, the two
constants parameterizing the solution of each perturbation correction in each subinter-
val can be determined by forming and solving a 2M x 2M block bidiagonal system
of linear equations relating the aj’s and flj’s in one subinterval to those in adjacent
subintervals. This essentially reflects the fact that we require each perturbation correc-
tion vi, ] 0, 1, .., n, to be C continuous at each mesh node.

In determining the zeroth order solution to (1.5) we saw that in each subinterval
we could represent the solution as a linear combination of two linearly independent

+basis functions v0 and v. However, once we allow the first perturbation correction
to be included in the approximate solution, it becomes unclear as to how to represent
the solution to (1.5) in a similar way. However, to try to do so is appealing, not only
from a mathematical viewpoint but from a conceptual one as well.

To achieve this type of representation we re-examine the general solution of
(1.5). The two linearly independent basis functions, u+(r) and u-(r) have the property
that

(2.7) -u’’+ + pu O.

Our strategy will be to rewrite (2.7) as

(2.8) -u"+/-+u+=-(p-)u +/-,

and seek a perturbation series solution to both u + and u-. Hence we define

(2.9) u(r) Y v. (r).
]--0

As before, we will terminate the expansions in (2.9) at some finite upper limit n.
These expressions will be referred to as modified basis functions. Note that we have
not written (2.8) and (2.9) in terms of the formal expansion parameter e because we
are interested in the case e 1 and the expansion parameter merely serves as a
mnemonic aid in deriving the perturbation equations.

If we substitute the expressions for u
/ and u- and their second derivatives into

(2.8) and then order the equations much the same as was done in (2.3) and (2.4), we
have the following system of ordinary differential equations:

(2.10)

(a) -v+/- +/v0 0,

(b) -v+/- +,6v +/- -(p -t)vo,

(c) -v, +pv, -(p fi)v n-lo

Note that by splitting the solution of (1.5) into two linearly independent basis
functions and by then seeking a perturbation series approximation to each of them,
we can no longer explicitly write out a two-point boundary value problem with known
boundary conditions for v, ] 0, 1, 2,. , n. However, by systematically solving for
v0, vl,..., vn we can express our perturbation solution in each subinterval as a
linear combination of the two modified basis functions. We have

(2.11) a(r)=a Y v; +/3 vi,
i=0 /=0

for constants a and ft. If we again assume that the mesh d//is given, we can determine
the two constants parameterizing our solution in each subinterval by requiring that
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the approximate solution be C continuous at each mesh node. This amounts to again
forming and solving a 2M x 2M block bidiagonal system of linear equations relating
c and/3 in one subinterval to those in the adjacent subintervals.

At first glance there may seem to be little advantage in implementing the modified
basis function approach as opposed to the perturbation method of (2.2). However,
as we shall see shortly, when the mesh J/is not known, the modified basis function
approach will allow us to adaptively determine the mesh. The perturbation approach
of (2.2) does not conveniently allow this.

As was the case for each vj, f 1, 2,..., n, the general solution to each v in
each subinterval is composed of a homogeneous solution and a particular solution.
The homogeneous solution is parameterized by two constants. However, because of
the way we have chosen to represent our perturbation solution, we have the freedom
to choose these two constants in some meaningful way. Although there is a variety
of ways in which one can determine them, we have employed a least squares minimiz-
ation. We determine the homogeneous constants such that the L2 norm of the given
perturbation correction is minimized. This implies that each v:, ] 1, 2,..., n, will
lie in the orthogonal complement of the nullspace of (2.3). We can think of this
minimization procedure as a device to keep the perturbation corrections as close to
the canonical zeroth order set (v- and v) as possible. If we denote the general
solution to v on each subinterval by

q- dz(2.12) v. =CxVo +c2v +vp,, ]=1,2,.." ,n,

for some constants c and c2, where v p. is the particular solution, then minimization
of the L2 norm of each v: amounts to solving the system of equations

(2.13)
’ v- dr

.tRk_

-1

(v-d )(v- dr

(v-)(v) d (v:,)(v-) dr

Rk
(U)2 dr 2 (Vpj)(/)) dr

Rk J
Ordinarily when we solve (1.5) by a piecewise perturbation series, we would like

the local error or the global error incurred by such a solution method to be less than
some pre-set error tolerance. If, for example, the global error we incur is larger or
smaller than our error tolerance, we want to appropriately increase or decrease the
size of the mesh intervals. Note however, that even though we are applying the
perturbation scheme of (2.2) locally---in each subinterval--each time we change the
size of the mesh intervals we must repeat the determination of each perturbation
correction on the whole interval [a,/]. Hence we have a local perturbation series
solution with a global mesh adjustment procedure. The modified basis function
approach also produces a local perturbation series solution. However, since the entire
perturbation series solution in each subinterval is parameterized by two constants,
one can apply a variation of Gordon’s [14] shooting method with local error estimates
to obtain a local mesh adjustment procedure. This substantially increases the efficiency
of our piecewise perturbation series method. If the error incurred in a given subinterval
is too large or too small we need only repeat the calculation in that subinterval.

We now focus our attention on the method that is used in determining our
perturbation corrections analytically. For a differential equation with an arbitrary
inhomogeneous term, one can obtain a particular solution by the method of variation
of parameters [8] or Green’s function techniques [10]. However, if the coefficients of
the differential equation are constants, and if the inhomogeneous term is some
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polynomial-exponential combination, then an analytical solution can be obtained by
the method of undetermined coefficients.

Note that if p(r) is taken to be a piecewise constant approximation to p(r)mfor
example the value of p(r) at the midpoint of each subintervalmthen v are
exponentials,

+ ex/r,(2.14) Vo Vo =e

Hence, if in each subinterval we represent (p-/) in a Taylor series expanded about
the midpoint of the interval and terminated at some finite upper limit, we will be able
to determine an analytical particular solution for v, ] 1, 2, ., n. Recall that if we
want to obtain a particular solution of the second order inhomogeneous ordinary
differential equation

(2.15) y"- A -y bit e
i=O

A 0, by the method of undetermined coefficients, then we look for a particular
solution of the form

(2.16) yv(r) ( airi+) e.
i=O

If we substitute (2.16) and its second derivative into (2.15), factor out the common
exponentials and then equate like powers or r, we have

bs(a) as +-2h(s + 1)’
(2.17)

bi-(i + 2)(i / 1)ai+a
(b) ai +/-

2A(i + 1)
=0, 1,. ., s- 1.

The general solution of (1.21) can then be expressed as

(2.18) y(r) ca er + c2 e -xr / y,(r),

for constants ca and C2 and yp of the form given by (2.16) and (2.17). As a result, we
see that if in each subinterval (p-/) is expressed as a Taylor series expanded about
the midpoint of the interval, then the right-hand side of (2.10b) is a polynomial-
exponential combination. Hence, a general solution to v or v i- will be similar in
form to (2.18). The least squares minimization described in (2.12)-(2.13) can then be
applied to determine the constants parameterizing the homogeneous solution of
This procedure can be continued in determining the v :,/" 2, 3,. , n.

An important point to note is that in the determination of a particular solution
of (2.10b, c) by the method of undetermined coefficients if the right hand side is of
one (or a mixed) exponential type, then so is the particular solution. The "full" least
squares minimization procedure defined in (2.13) has the effect that particular solutions
containing more than first order perturbation corrections will always be of mixed
exponential type. This complicates the calculation and the representation of the
modified basis functions. An alternative to this full least squares minimization is to
always force the homogeneous solution to be of the same exponential type as the
particular solution. Hence for the "plus" perturbation corrections in (2.12) we can

+ +set c. =0 and perform a minimization with respect to c. Similarly, for ’minus’
perturbation corrections we can set c- 0 and perform a minimization with respect
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to c. Thus each of our modified basis functions will be of a given exponential
type--that is, only e "/r in the plus modified basis function and only e -’7r in the
minus modified basis function. Maintaining a homogeneity of given exponential type
in the plus and minus modified basis functions is appealing from a mathematical as
well as from a conceptual viewpoint. Such a "partial" least squares minimization will
mean that the L2 norm of each of our perturbation corrections will not be as small
as if we had employed a full least squares minimization. However, we would hope
that the coefficient of the opposite exponential in the homogeneous solution would
be small anyway, so that the loss would be small.

Although the partial least squares minimization causes a slight reduction in the
convergence rate of our perturbation solution, the computational gains from such a
procedure make its implementation well worthwhile. As Anderson remarks, it is not
really the convergence rate of each of our modified basis functions separately that
matters, but rather the ability of linear combinations of modified basis functions to
approximate solutions to the original equation [3].

Finally, we note that there is nothing sacred about our perturbation parameteriz-
ation. In problems of physical interest, the potential p(r) often contains a natural
expansion parameter. Hence, if we expand u4- as well as (p-/) in a series and then
follow arguments similar to those which led to (2.10), we find

4-
-Vo +/Vo =0,

(2.19)

where the quantities (p--ff)l can simply be the corresponding terms in a local Taylor
series respresentation of (p-fi) expanded about the midpoint of the interval in
question. Since (p-fi) is expanded in a power series, the degree of the polynomial
approximation to u

/ and u- will increase from stage to stage in proportion to the
degree of the approximation to (p-/). However, in order to minimize the number
of terms to be manipulated, it is advantageous to curb the growth of these degrees.
The parameterization which led to (2.19) achieves this result. We bring in higher
order terms in (p-/) only as we bring in higher order terms in the perturbation
expansion.

3. Numerical implementation of the piecewise analytical perturbation series
method. In actually solving scattering and bound state problems we require a numeri-
cal algorithm which enables us to implement the piecewise analytical perturbation
series method described at the end of the last section. Recall that by choosing a mesh

(3.1) J///={O<a =Ro<R <’" "<RM= <o0},

where we set hk Rk --Rk-1, k 1, 2,. , M, we can reduce the scattering and bound
state problems to a finite domain by imposing boundary conditions at Ro and RM. In
practice the numerical algorithms for solving both problems will allow us to adjust
the size of each mesh interval in order to meet some pre-set error criterion. We
reformulate the scattering boundary value problem as an initial value problem on
Ice,/3] and use a shooting method, specifically the method of complementary functions
[20], to integrate the wavefunction and its derivative from a to/3. Such a shooting
method requires that we specify initial conditions for the wavefunction and its deriva-
tive at a. The assumed initial conditions at a and the resulting solution at will
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ultimately be adjusted to satisfy the asymptotic form of the wavefunction u(r). In
the bound state problem we specify initial conditions at both a and fl and integrate
the wavefunction and its derivative from a to some interior pointnsay RMxDnand
from to RMm. Since we are interested in problems in which the effective inter-
molecular potential, p(r)+ E, has a local minimum which is negative, we typically take
RMID to be the position of the bottom of the well. There will be a nontrivial solution
for only particular energy values and it will be characterized by the fact that the
interface conditions at RMD are satisfied. We use a root finding technique to adjust
the energy so that the interface conditions are satisfied.

3.1. Propagation. We begin our discussion of the numerical implementation of
PAPSM by considering the propagation of our algorithm. Omitting consideration of
the regions [0, Ro] and [RM, oe], we will discuss the shooting method across a general
interior subinterval IRk-l, Rk], k 1, 2,..., M. Introducing a reduced independent
variable x, where

Rk --Rk-)Rk + Rk-1 q_ X(3.2) r
2 2

we can define a corresponding reduced dependent variable and coefficient such that
the radial Schr6dinger equation can be written as

(3.3) -w"(x) + q(x)w(x) O, -1 < x < 1.

If we approximate q(x) by a piecewise constant polynomial approximation 4(x)
obtained by evaluating q(x) at the midpoint of the interval in question, then by
rewriting (3.3) in the form

(3.4) -w"+glw -(q-4)w

we can apply our modified basis function perturbation algorithm to generate two
modified basis functions w /n and w -n. We denote the general approximate solution
to (3.4) in the kth subinterval by

/n(3.5) =a w +/3 w

for constants a and fin. If we use the initial conditions that arise from the continuity
conditions of the wavefunction and its derivative at the interface point between the
(k-1)st and kth subinterval, we can determine a and fin by solving two linear

n!equations. Once a and fin are determined, we can. evaluate k(1) and k (1). With
the propagation complete across the kth subinterval, we must check to see if the mesh
length, h, has to be adjusted to satisfy our given local error tolerance.

If a perturbation series is convergent, we would hope that the first neglected term
be small compared to the expansion we are considering. In our problems, we define
an error estimate, e 7o associated with our perturbation solution in the kth subinterval.
We set

"(x)(3.6) e
I#n/l (x)- v nk (x)[ + LkI# n+l’ (x)-- r n’ (X)[

[WZ(x)[ +L[7,’ (x)l
In classically allowed regions, (p(r)< 0), our wavefunction will be oscillatory. Hence
there is the possibility that it may vanish at one or more points in the interval. As a
result, we have included derivative terms in (3.6) to avoid the possibility of e becoming
singular at these points. Lk is a local characteristic distance over which the wavefunction
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varies. We follow Gordon [14] and choose Lk such that for a "typical" wavefunction

(3.7)

He uses the estimate

( ]dq]
2/3

(3.8) Lk 4+ x=0J
In order to use the estimate in (3.6) to adjust the size of the mesh to satisfy a

pre-set error tolerance, we must know how e varies with interval length hk. From
[31], we expect our perturbation scheme to generate global error bounds O(h n/l)
where h maxk hk. We expect a local error bound to be one power of h higher.

In our shooting method we are interested in the error incurred by our perturbation
scheme at the right-hand side of an interval. Hence we evaluate e (1). If the error is
too large, we want to shrink the mesh length and repeat the calculation. If the error
is too small, we want to increase the mesh length and repeat the calculation.

If we let TOL be our pre-set error tolerance, then we can adjust the mesh interval
by using the formula

TOLl
/("+

(3.9) hk’NEW (iJ h,OLD.

Ordinarily we cannot determine the exact hk that will produce a local error equal to
TOL. However, we can avoid this diculty by requiring the local error in each
subinterval to be less than some maximum value TOLl and greater than some
minimum value TOL2

(3.10) TOL2 <TOL<TOLl.

Once we satisfy our error criterion, we normalize the wavefunction and its
derivative by dividing them by the quantity

Upon normalization, the values #(1)/Nk and ’ (1)INk become the initial data for
the (k + 1)st subinterval. We start the propagation over with hg+ h.

3.2. Initialization and termination. Since p(r) as r 0, in problems of inter-
est, we know that u(r) 0 exponentially rapidly as r 0. The boundary conditions at
small r for the scattering problem require that u (r)= 0 at r 0. However, in practice,
u(r) becomes so tiny at some small but nonzero r, call it R0, that one can simply set
the wavefunction to zero at Ro [5]. This amounts to assuming the potential is an
infinitely repulsive wall inside R0. Gordon [14] has employed a linear reference
potential to improve the treatment of the boundary conditions at small r for the
scattering problem. Luthey [23] and Anderson [3] have employed a singular potential
method. Although the singular potential method provides the best treatment of the
boundary conditions at small r, we have initialized our scattering problem by employing
a single linear segment from R0 to R which can be extrapolated back to the origin.
Most of our numerical experiments have been designed to compare the eciency of
Gordon’s 14] widely used offset tangent method and our piecewise analytical perturba-
tion series method. Gordon’s method was chosen, as opposed to another piecewise
analytical solution method, due to the availability of a large amount of test data. In
order to help us make a fair comparison between the two methods, we have imple-
mented Gordon’s Airy function initialization routine.
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In the region of small r, a linear reference potential produces two linearly
independent basis functionsmthe regular and irregular Airy functions. The regular
Airy function tends to zero as its argument becomes large and positive or equivalently
as r 0. The irregular Airy function diverges as its argument becomes large and
positive or equivalently as r 0. Since we want u (r) 0 as r 0, we take the wavefunc-
tion proportional to the regular Airy function in [0, R0]. Specifically, if we represent
our linear reference potential as the first two terms of the Taylor series representation
of q(x) expanded about the midpoint of the first interval, then upon introducing the
change of variables

(3.12) : sgn a]all/3x + a-2/3b,

where

(a) a q’(0),
(3.13)

(b) b q(0),

(3.3a, b) can be rewritten as

(3.14) -y"() + :y (:) 0,

where y(:)= w(se(x)). The general solution of (3.14) is a linear combination of the
regular and irregular Airy functions, Ai (:) and Bi (), respectively. As stated above,
we write

(3.15) u(Ro) a Ai (:(-1)),

for some constant a. Upon normalizing u(Ro) to some convenient value, say .5, we
can write [30] the two initial conditions for our shooting method as

U(Ro) .5,

(2) Ai’(sc(- 1))(3.16)
u’(Ro)=.5

RI Ro
sgn a]a]/3

Ai (so(- 1))"

In order to terminate our scattering algorithm we must determine the asymptotic
form of u(r) in (RM, oo]. We assume that the interaction potential, u (r), vanishes more
rapidly than r-2 as r oo. Hence we have

/(1+1)
(3.17) p(r) 2 E as roo,

where is the specified orbital angular momentum quantum number. In the scattering
problem E is greater than zero and we associate this with asymptotically open or
physical scattering states. Equation (3.17) then implies that the radial Schr6dinger
equation approaches

(3.18) -u"(r) + r2 k u(r) O,

where kz E. This is the Riccati-Bessel equation whose real and linearly independent
solutions can be written in terms of the regular and irregular spherical Bessel functions,
]l(kr) and y(kr) respectively [1]. We write these two linearly independent solutions as

(3.19) (kr) krf(kr) and dll(kr) kry(kr).
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u(r) then asymptotes to

(3.20) u(r) l(kr) l(kr),

where the reactance, , (or more precisely quantities derived therefrom) is the quantity
of fundamental interest.

Our shooting method propagates an approximate solution with increasing r until
we reach the Mth subinterval. We generally estimate the asymptotic region to be such
that RM is greater than some given value of r. Assuming we have satisfied our pre-set
local error tolerance and we have normalized our solution we denote the value of the
wavefunction and its derivative at the right-hand side of the Mth subinterval by n
and n. respectively. We can determine the constants c and fl parameterizing our
asymptotic solution in the (M + 1)st subinterval by solving

(a)
(3.21)

(b)

nl otI(RM) + o’t.J,(RM),

n2 a. (R) +8(R).

A comparison between (3.20) and (3.21a) reveals that

(3.22) = /3.
We then apply our perturbation algorithm on the (M + 1)st subinterval. We determine
the constants parameterizing our modified basis function perturbation solution in the
(M+1)st subinterval and, by denoting the value of the wavefunction and its derivative
at the right-hand side of the (M + 1)st subinterval by ri and /2 respectively, we can
determine the constants c and fl parameterizing our asymptotic solution in the
(M + 2)nd subinterval by solving a system of equations similar to (3.21). We repeat
the calculation of on the (M + 2)nd subinterval and continue this process over
successive intervals of uniform length ht until the variations in are less than an
allowed tolerance. Once convergence has been verified, the phase shift, 3, is evaluated
using the relations in (3.23) and the calculations terminated. We have

(3.23)

2
S=SR+iSz, S=1+92, S 1 Y&

tan-

Initialization of our bound state algorithm for small r is precisely the same as
that for the scattering problem. However, since we are not only propagating our
solution from R0 to RMID, but from Ru to RMID as well, we must also initialize our
algorithm in the region of large r.

As in the case of the scattering problem, we assume that the interaction potential,
u(r), vanishes more rapidly than r-2 as r- c. Hence we have

(+)
(3.24) p(r) .-9, 2 E as r c.

The radial Schr6dinger equation still approaches (3.18); however, since k2 is now
negative, the two linearly independent solutions S and $2 can be written in terms of
the two modified spherical Bessel functions it and i-l. We have

(a) $ [klril(lklr),
(3.25)

(b) &= ]klri_(Iklr).
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If we take appropriate linear combinations of (3.25a, b), we can obtain two linearly
independent solutions I;- (r) and I- (r). I- (r) decays to zero as r oo and I- (r) diverges
as r- oo. Since we want u(r) 0 as r oo, we have

(3.26) u(r) I-[ (r) in [RM, o),

for some constant/3. If we normalize u(RM) to some convenient value, say .5, then
we have

.r -; R,
(3.27) u(R) .5, u’(R) .5

I- (R)"

To determine the eigenvalues (bound states) we must find the energies, E, such
that the interface conditions at RMID are satisfied. We begin our propagation at R0
with the initial conditions in (3.16) and propagate our solution until we reach RMm.
If we denote the normalized solution propagating from the left by tL(r), then if the
energy used is an eigenvalue, there exists a scalar, vL, such that the eigenfunction
u(r) L(r)VL. In addition, we start the propagation at R with the initial conditions
in (3.27) and propagate our solution until we reach Ram. If we denote the normalized
solution propagating from the right by/2R (r), then if the energy used is an eigenvalue,
there exists a scalar, vR, such that the eigenfunction u(r)= (r)vl. At an eigenvalue
and only at an eigenvalue it must be possible to join smoothly at Rm the solutions
from the left- and right-hand sides. Our two interface conditions become

(3.28)
(a) Uv 0,

where

aL(RMID) /R(RMID) 1 and v=(b) U
t (RMID) /2 (RMID)J

The system of equations in (3.28a) has a nontrivial solution if the determinant of the
2 x 2 coefficient matrix U vanishes. The determinant of U will also be a continuous
function of the energy E. Hence we can relate our eigenvalue problem to a nonlinear
root finding problem where we must find the zeros of det U. In practice we perform
a one-dimensional search in the energy to find the region where det U changes sign.
Once we have bracketed an energy range containing a zero of det U, we employ a
direct quadratic interpolation root finding technique [3] to find the eigenvalue.

3.3. Potential difficulties. There are two potential difficulties associated with our
piecewise analytical perturbation series method. The first involves the fact that as
(x) gets small in one or more intervals, the two modified basis functions may become
numerically linearly dependent. The second difficulty is associated with the fact that
in regions around turning pointspoints where q(x)=0we have observed our
perturbation series to be slowly converging or diverging. It is instructive at this time
to briefly discuss these problems together with ways of mitigating their effects.

Consider the case where (x) is small and positi,ve. We would expect the dominant
terms of the modified basis functions to be aoe"/’ and boe -’/’, where a0 and b0
are constants. However, for small q(x) these terms tend to become multiples of each
other when evaluated numerically. To avoid this numerical linear dependence we
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consider the linear combinations
+n +n

(3.29)
w w w w
+ and
2a0 2b0 2x/a0 2x/b0’

where w +/-n are the two modified basis functions. The linear combinations in (3.29)
produce two new modified basis functions whose leading terms are cosh (x/x) and
sinh (x/x)// respectively. As 4(x) 0, the leading terms in the perturbation series
become 1 and x respectively. For the higher order terms in the modified basis functions
we eliminate the need to evaluate ex and e-x by converting them to hyperbolic
sines and cosines. For even smaller values of 4, we have found it helpful to evaluate
cosh (x/x) and sinh (4-x)/41 by taking the first few terms of their Taylor series
expansion about x 0. This has the added feature of allowing us to remove the
numerical singularity of sinh (x/-x)/x/- as 4 0. A similar procedure can be applied
to the case where 4(x) is small and negative; see [30]. In this case the new set of
modified basis functions will be in terms of sines and cosines.

Typically we use the exponential representation for the two modified basis
functions when 4 -> 1.0. We use the sinh-cosh or sin-cos representation when .1 =< 4 <
1.0. However, for 4 << .1 we find that, even though we are employing linear combina-
tions of modified basis functions as in (3.29), our perturbation series converges slowly
or diverges. This leads us to our second problem.

The difficulty in using the perturbation series formalism in turning point regions
stems from the .fact that as/ 0, the process of evaluating the coefficients comprising
the particular solutions of the equations in (2.19) using recurrence relations similar
to those in (2.17) is unstable numerically. One way to mitigate the effect of turning
point regions is to employ the Airy function method of Gordon [14]. We recall that
no special problems occur in the vicinity of turning points for this method. As a result
we have employed a zeroth order piecewise analytical solution method in these regions
based upon a piecewise linear potential approximation to p(r). Other ways to mitigate
the effect of turning point regions are discussed in some detail in [30].

4. Numerical results and discussion. A variety of numerical experiments were
performed to evaluate the accuracy and efficiency of our piecewise analytical perturba-
tion series method. The accuracy of the method is related to the local order of the
error expression in (3.6). Recall that if a quantity - has a functional dependence on
hk, then to say that z=O(hk) implies that limhk_,oh-’z=c, for some constant c.
Hence, we perform tests which determine the local order of e , for an approximation
to u containing a given number of perturbation corrections.

The evaluation of the efficiency of the method is much more difficult. Implicit in
such an evaluation is a comparison of our method with other proposed methods of
solution. The comparison should be based upon the number of subintervals needed
and the cost per subinterval. Although we cannot adequately compare our method
with all proposed methods, we will make comparisons between ours and Gordon’s
[15] offset tangent piecewise analytical solution method. If we then incorporate the
results of Riehl, Diestler, and Wagner [27] in their comparison of the Numerov method
and their piecewise analytical solution method with our results, we will have a better
understanding of the relative merits of PAPSM, PASM and the Numerov method.

For our test calculations we have employed the hypothetical A-B2 atom-
diatomic molecule system first introduced by Lester and Bernstein [22]. This model
system serves as a standard test problem from which we can compare our results with
those of others. In this one-dimensional system, the coefficient function p(r) is given
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by

(4.1) p(r) -E + 2 + v(r),
r

where E is the energy, is the orbital angular momentum quantum number and v(r)
is an interaction potential. For our system we have taken v(r) as a Lennard-Jones
12-6 potential such that

where A 2, a scalar, is set equal to 1000.0. In Fig. 1 we plot the effective intermolecular
potential

t(+)
(4.3) v*(r)- 2 +v(r),

as a function of radial distance r for a variety of orbital angular momentum quantum
numbers.

0
0

EFFECTIVE
INTERMOLECULAR
POTENTIAL FOR

A-B2

oo_
o

oo

1 =o

FIG. 1. Effective intermolecular potential [or model A B2 system.

All of the numerical results in this paper were obtained using a DEC PDP-10
computer at Harvard University’s Aiken Computation Laboratory. The computer
codes were written in single precision FORTRAN.
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4.1. Order of the method. As we mentioned previously, we expect the error
estimate in (3.6) to be proportional to some power of hk. If we evaluate e,(x) at a
set of equispaced points in IRk-l, Rk ], average the results and then repeat the calcula-
tion several times for a new hk equal to one half the old value, we can obtain average
local error estimates. If we then plot the local error estimates versus corresponding
mesh interval lengths, hk, on log-log paper, we can obtain the power of hk to which
our local error estimate is proportional.

We have performed such experiments for the perturbation scheme defined in
(2.19) using a variety of energies, angular momentum quantum numbers and starting
points. From the results contained in [31], we expect

(4.4) IleT, IIo ess sup ]eT, O(h+2).

All of the numerical experiments we have performed indicate that the O(h+2) local
error dependence is obeyed. In Table 1 we have recorded the theoretical and average
calculated orders of our local error estimate for a variety of approximate solutions
containing as many as three perturbation corrections. A total of five interior equispaced
points were used in obtaining an average value for e 7, (x) for each value of hk.

TABLE
Local order: O(h).

n Theoretical Calculated

0 h h"
h h"81

2 h h"93

3 h h"13

We observe that as we continue to add perturbation corrections to our expansion,
the local order of our method essentially increases by one power of hk. As we shall
see, such an increase in the order of the method results in a reduction in the number
of subintervals needed to solve our problems.

4.2. Efficiency of the method. The numerical methods that are used to solve
linear two-point boundary value problems can be classified as either direct methods
or as shooting methods. Direct methods, as the name implies, are applied directly to
the boundary value problem. Shooting methods on the other hand are based upon
the equivalence existing between the boundary value problem and a corresponding
initial value problem. As it turns out, shooting methods are a more effective class of
numerical techniques than direct methods for solving the radial Schr6dinger equation.

In the past, several authors [7], [13] have noted that step by step integration of
the one-dimensional radial Schr/Sdinger equation by the method of Numerov was
superior to any other method proposed. This was true for k2>0, giving a closed
channel, and for k2 < 0, giving an open channel. Riehl, Diestler and Wagner [27] have
performed numerical experiments designed to compare the efficiency of a one-
dimensional Numerov method and a one-dimensional piecewise analytical solution
method with one perturbation correction. Their piecewise analytical method was based
upon a piecewise constant approximation to p(r). We have performed a number of
experiments which compare the efficiency of our perturbation method with the widely
used off-set tangent method of Gordon [15]. By combining our results with those of
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Riehl et al., we will be able to get a better understanding of the relative merits of our
perturbation series method, the Numerov method and the piecewise analytical solution
method of Gordon.

Our numerical experiments are divided into two test caseswscattering and bound
state problems.

In order to begin the scattering test calculations for a given value of E and l, we
need values for R0 (the starting point) and Rvt (the beginning of the asymptotic region).
From previous similar calculations we can obtain rough estimates for both Ro and
Rvt. By performing a series of calculations where Ro and Rvt are varied until changes
in the reactance are less than some allowed tolerance, we can obtain the values of
R0 and Rvt to be used in a test calculation. See [30]. For our first three test problems
we have employed initial estimates of R0 and Rvt used by Luthey [23] in her A-B2
model calculations.

In Table 2 we list the relevant parameters for our first three scattering calculations.
We recall that in each subinterval we allow e,(1) to be no larger than TOLl and no
smaller than TOL2. In addition, once we reach the asymptotic region, we terminate
our calculation when variations in the reactance are less than RTOL.

TABLE 2
A B2 parameters.

A 2 1000.0
Ro .78
Rm 4.0
TOLl 1.0 10-4

TOL2 7.0 x 10-5

RTOL 1.0 10-4

For the first three problems we have considered, we have set 0. For the
perturbation series method with n =0, 1,2,3 and for Gordon’s off-set tangent
algorithm, we have recorded the data by tabulating the phase shifts, in units of ,r, the
number of subintervals required to reach the asymptotic region, the average time it
took to propagate the solutions from one subinterval to another and finally the total
time of the calculation.

We recall that in the neighborhood of turning points we have resorted to a
piecewise linear polynomial approximation to p(r). Hence for the modified basis
function approach, we have broken the recorded subintervals into exponential intervals
(E) and Airy intervals (A). In addition, the off-set tangent method has difficulty when
the argument of the Airy function becomes large and negative. This occurs in the
extreme classical regions where the potential is nearly fiat. In these regions we have
used a piecewise constant polynomial approximation to p(r). We again record both
the number of exponential and Airy subintervals. The choice of when to implement
the Airy function turning point approximation as well as the extreme classical exponen-
tial approximation is discussed in some detail in [30]. We merely note that when the
ratio of q(O)/q’(O) falls below 4 or 5 we use the Airy function approximation in turning
point regions in our method and when the argument of the Airy function becomes
smaller than -1000, we use the exponential approximation in Gordon’s method.

Scattering problems.
Problem 1. E 1000, 0. In Table 3 we record the number of subintervals and

the phase shifts in units of zr for the piecewise analytical perturbation series method
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with full and partial least squares minimization conditions and the off-set tangent
method.

In Table 4 we record the average representative interval propagation times
together with the total times required to integrate the solution from R0 to RM for the
perturbation methods and Gordon’s algorithm.

TABLE 3
Test data" E 1000, 0.

n 6/7r #E #A Total

full least squares

partial least squares

0 .203 42 3 45
.202 21 3 24

2 .203 11 4 15
3 .204 8 4 12

0 .203 43 3 46
.203 21 3 24

2 .205 11 4 15
3 .204 10 4 14

offset .204 1 24 25

TABLE 4
Average calculation times.

Interval Total
(in milliseconds) (in seconds)

full least squares

partial least squares

0 550 25.1
1 730 17.3
2 910 12.6
3 1150 11.8

0 470 22.2
1 550 13.5
2 630 9.5
3 730 9.9

offset 650 16.1

We observe that the shortest total time occurred for n 2 with partial least
squares minimization conditions. We also note that the total number of subintervals
needed to solve the test problem was fairly insensitive as to whether we implemented
the full least squares minimization conditions or the partial least squares minimization
conditions. In fact, for all the test problems considered, for a given n, the partial least
squares solution was always faster than the full least squares solution. As a result, in
the calculations that follow, we will only employ the modified basis function approach
with partial least squares minimization conditions.

In Table 3 we observe that we do not obtain a substantial reduction in the number
of subintervals needed to solve the test problem when going from n 2 to n 3 for
both the full and partial least squares minimization methods. This behavior can best
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be explained by recalling that the calculations were done on a PDP-10 in single
precision arithmetic. After a number of calculations have been performed on such a
machine we can expect at most 5 or 6 significant figures of accuracy. However, since
we expect the higher order terms in the perturbation series expansion to be small
compared to the expansion as a whole, there is the possibility that round-off error
can affect the calculations when say n is equal to 3. This behavior was observed early
in the development of the piecewise analytical perturbation series method. To verify
the round-off error hypothesis, we performed numerous test calculations on an IBM
370-168 computer in double precision arithmetic. We found that we were able to
include as many as seven perturbation corrections in our approximate solution before
the effects of round-off began to dominate the calculations.

Problem 2. E 730, 0. We record the relevant test data and calculation times
in Tables 5 and 6.

TABLE 5
Test data" E 730, 0.

n 8/r #E #A Total #

0 .335 45 3 48
1 .331 22 3 25
2 .334 10 4 14
3 .327 10 4 14

offset .335 1 25 26

TABLE 6
Total time (in seconds).

n Total time

0 23.1
1 14.1
2 8.9
3 9.9

offset 16.7

Problem 3. E 550, 0. We record the relevant test data and calculation times
in Tables 7 and 8.

TABLE 7
Test data" E 550, 0.

0 -.156 49 3 52
1 -.143 21 4 25
2 -.143 11 4 15
3 -.140 12 3 15

offset -.145 26 27

n 8/,r #E #A Total
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TABLE 8
Total time (in seconds).

n Total time

0 25.0
14.2

2 9.5
3 10.7

offset 17.4

In all three problems considered we see that the n 2 case is by and large the
fastest method. The slowest method is the case where n 0. This is simply a piecewise
analytical solution method with a piecewise constant polynomial approximation to p(r).

In a number of problems one wishes to determine the phase shift for a given
value, the same interaction potential and a spectrum of energies. The first time a
calculation is done for a given energy and orbital angular momentum quantum number,
we evaluate the (n + 1)st perturbation correction in each subinterval to get an estimate
of the local error incurred by the solution. We then apply the formula in (3.9) for
some given value of TOL in order to adjust the mesh so that we satisfy the pre-set
error tolerance. More computational effort is required to evaluate this extra perturba-
tion correction and to determine whether the local error tolerance satisfies (3.10) than
if we had evaluated the approximate perturbation series solution through only the
nth perturbation correction with the mesh intervals already determined. However, as
we shall see, for subsequent calculations at different collision energies but with the
same interaction potential and the same orbital angular momentum quantum number,
we can repeat the calculation using the mesh intervals determined by the initial
calculation. This eliminates the need to evaluate the (n + 1)st perturbation correction
in each subinterval and it also eliminates the mesh adjustment calculation.

The choice of the proper energy with which to determine the mesh in such energy
spectrum calculations is nevertheless a subtle point. Gordon [15] and Luthey [23] set
the mesh based upon the highest energy being used. In contrast, we have found that
it generally requires more computation time to solve a given problem with fixed n,
the same initial point Ro, the same value, but lower energy. This is partially explained
because as the energy decreases we expose a larger section of the steep potential to
the left of the turning point. We expect this to be the region where we obtain the
smallest mesh intervals. In addition, based upon the results of our test problems, we
have found that the convergence property ot the perturbation series is related to the
energy of the problem we are trying to solve or--more specificallymit is related to
the difference (v*-E) between the effective intermolecular potential and the energy.
Hence, if we applied the perturbation series algorithm (fixed n) on a given region in
r, for an effective intermolecular potential v*(r), but tor two different energies, we
could expect that it would take a smaller number of subintervals to propagate the
solution over this region for the higher energy than it would for the lower energy.
Ideally we should set R0 based upon the highest energy and then set the mesh based
upon the lowest energy we are considering. This eliminates the error that would be
introduced if we used larger mesh intervals than are consistent with a given local error
tolerancemespecially tor problems in which the lowest energy differs substantially
from the highest.
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In Tables 9-11 we have recorded the data obtained by running our computer
code for a variety of energies and angular momentum values. As the energy changes,
we have adjusted the initial and terminal points, Ro and Rt. The corresponding values
of Ro and Rt are recorded as well.

TABLE 9
Test data" E 1000, 730, 0, 2, 6.

l=0 /=2 /=6

E n 6/ # 6/" # 6/r

Ro =.78, R,vt 4.0

Ro =.78,R =4.5

0 .203 46 .160 44 -.029 43
.203 24 .169 23 -.027 23

1000 2 .205 15 .172 14 -.026 14
3 .204 14 .172 14 -.025 14

offset .204 25 .167 25 -.026 24

0 -.355 48 -.372 48 .449 48
1 -.331 25 -.368 25 .410 25

730 2 -.334 14 -.370 15 .410 15
3 -.328 14 -.364 14 .412 15

offset -.334 26 -.369 26 .439 25

TABLE 10
Test data" E 550, 100, 0, 2, 6.

/=0 1=2 /=6
E n 8/zr # 6/7r # 6/r

Ro =.79, Rt 5.0

Ro =.80, Rt 6.0

0 -.156 52 -.186 48 -.424 47
-.143 25 -.183 23 -.429 24

550 2 -.143 15 -.188 14 -.436 14
3 -.140 15 -.1.81 13 -.429 13

offset -.145 27 -.186 25 -.425 24

0 .022 67 -.051 66 .478 63
.020 32 -.056 32 .476 31

100 2 .021 18 -.055 18 .477 18
3 .024 16 -.053 16 .478 17

offset .021 34 -.051 34 .477 33

Observe that there is a significant variation in computation time for a given
value and changing energy. Also, there are almost 50% increases in computation time
for several methods between E 1000 and E 100. This can partially be attributed
to the fact that as the energy decreases substantially, Rt moves far enough to the
right to affect the number of subintervals needed in the calculation. However, of more
importance, is the point we have already made regarding the convergence property
of our perturbation series. We would expect a larger number of subintervals to be
used in integrating the solution over a given r region for the E 100 problem, and
a given value of l, than for the E 1000 problem.

Eigenvalue problems. From the previous section we recall that in the eigenvalue
problem, we must determine the values of E such that det U 0. Generally as we
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TABLE 11
Total time (in seconds).

/=0 /=2 /=6

E n Time Time Time

0 22.2 21.2 20.8
13.5 13.0 13.0

1000 2 9.5 8.9 8.9
3 9.9 9.9 9.9

offset 16.1 16.1 15.2

0 23.1 23.1 23.1
1 14.1 14.1 14.1

730 2 8.9 9.5 9.5
3 9.9 9.9 10.6

offset 16.7 16.7 16.1

0 25.0 23.1 22.6
1 14.2 13.0 13.5

550 2 9.5 8.9 8.9
3 10.7 9.2 9.2

offset 17.4 16.1 15.4

0 32.0 31.6 30.2
17.9 18.0 17.4

100 2 11.4 11.4 9.1
3 11.4 11.4 12.1

offset 21.7 21.7 20.9

start at the bottom of the well and move upward in energy, the determinant of U
will change sign several times indicating the presence of a number of eigenvalues.

There are a couple of ways we can proceed. We can first determine a representative
trial mesh for some energy near the middle of the well and we can then begin our
energy search at the bottom (top) of the well and move upward (downward) in energy.
This will allow us to get a rough estimate of the position of the eigenvalues. In the
vicinity of each eigenvalue we can then use a more refined mesh and initiate our root
finding technique. An alternative, and the method we have implemented, involves
sectioning the potential into several energy regions. In each of these regions we can
determine a mesh and perform an energy search to see where the determinant of U
changes sign. Once an eigenvalue has been bracketed, we can implement the root
finding routine.

We will again perform our calculations on the A-B2 model system. However,
in contrast to the scattering problem, we must always contend with two turning points
in our eigenvalue calculations. In each of these regions we will again employ a piecewise
linear potential approximation to p(r).

To start our calculations, we divide our potential well into several sections and
we determine a mesh for an energy in each of these sections. Each time we determine
a mesh, we adjust the values of R0 and RM in a manner similar to the procedure
outlined above. However, in the bound state calculations, we determine the final
values of R0 and RM when variations in the determinant of U are less than some
allowed tolerance. Once the mesh is set, we perform a search for the eigenvalues in
the neighborhood of each of these mesh energies. If we locate a region where det U
changes sign, the root finding procedure is initialized.
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We note that each time we do an energy search and each time the root finding
routine performs an iteration, we use the previously determined mesh. We will soon
see that this greatly reduces the computation time needed to determine one or more
eigenvalues.

We determined the first mesh for E =-900.0. We found that R0 .83 and
RM 1.6. In Table 12 we have recorded the eigenvalue and the number of intervals
used for each of the methods we have tested.

TABLE 12
Test data" E =-900, 0.

n h # E #A Total

0 -979.3 28 8 36
-979.1 16 9 25

2 -979.3 10 10 20
offset -979.3 0 24 24

We observe that the total number of subintervals decreases for the modified basis
function methods as we include higher perturbation corrections in the approximate
solution. This behavior is similar to what we observed in the scattering problems.
However, we note that we require a larger number of Airy intervals in the bound
state calculations than we did in the scattering calculations. This is due to the fact
that we must now contend with two turning points.

As we mentioned previously, the great advantage of the piecewise analytical
perturbation series method and the piecewise analytical solution method is the ability
to quickly repeat a calculation for a given value of but different energy. In determining
each eigenvalue, we will heavily rely upon this feature. Hence, we must determine
the time required to propagate the solution from one subinterval to another with the
mesh already set. In Table 13 we record average representative times for a repeated
interval calculation for our modified basis function methods and Gordon’s off-set
tangent method.

TABLE 13
Interval repeat times
(in milliseconds).

n Time

0 33
87

2 117
3 188

offset 113

The total calculation time is then composed of the time it took to determine the
original mesh, the time it took to perform the energy search and the time it took to
do the root finding iterations.

A successful energy search implies that we have found two energies E1 and E2
such that det U(E1)" det U(E2)<-0. Hence we require two propagations with the
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mesh set. In addition, our root finding routine requires a number of propagations
with the mesh set. Essentially, each propagation corresponds to an iteration. The total
number of propagations with the mesh set usually varied between 4 and 8.

If we use the data in Tables 4, 12 and 13 and if, for the sake of convenience, we
take the number of propagations with the mesh set equal to 6, then we can get an
idea of the total computation time required to determine each eigenvalue.

In Table 14 we record the times for the first eigenvalue.

TABLE 14
total time (in seconds).

n Original Repeated Total

0 18.4 14.6 33.0
14.7 19.3 34.0

2 12.8 18.4 31.2
offset 15.6 21.7 37.3

We note that although the case n 0 was by far the slowest method in the original
calculation, it has the fastest repeat calculation time. As we will see in Fig. 2, the
eigenvalue, h 1, is very near the bottom of the potential well. This implies that the
two turning points are quite close together. As it turns out our perturbation series
calculation in this region with n 3 is almost totally dominated by Airy intervals. As
a result, we have not included any data for the perturbation series method with n 3
for h .

In Tables 15-22 we have recorded the interval numbers and the total times it
took to determine the remaining eigenvalues of the A-B system for each of the
methods we have been considering. The energies listed correspond to the energies
for which a mesh was determined. In each case we have recorded the values of R0
and Ru that were used in the calculations.

TABLE 15
Test data" E =-500, R0 .79, Rt 1.8, 0.

n h2 # E #A Total

0 -472.1 33 10 43
-472.0 17 12 29

2 -472.5 12 11 23
3 -472.5 9 12 21

offset -472.6 0 29 29

TABLE 16
total time (in seconds).

0 22.0 17.8 39.8
1 17.2 22.7 39.9
2 14.7 21.2 35.9
3 14.4 24.4 38.8

offset 18.9 26.2 45.1

n Original Repeated Total
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TABLE 17
Test data: E =-300, Ro .78, RM 1.95, 0.

Total #

0
1
2
3

offset

-287.7 41 10 51
-287.7 20 12 32
-288.3 12 13 25
-288.3 10 14 24
-288.3 0 32 32

TABLE 18
total time (in seconds).

Original Repeated Total

0 25.8 19.9 45.7
1 18.8 24.8 43.6
2 16.0 23.0 39.0
3 16.4 27.7 44.1

offset 20.8 28.9 49.7

TABLE 19
Test data: E =-150, Ro .78, Rvt 2.3, =0.

Total

0
1
2
3

offset

-136.5 48 10 58
-136.5 21 14 35
-136.9 14 14 28
-136.9 13 14 27
-136.9 0 35 35

TABLE 20
14 total time (in seconds).

Original Repeated Total

0 29.1 21.7 50.8
20.7 27.3 48.0

2 17.9 25.8 43.7
3 18.6 32.2 50.8

offset 22.8 31.6 54.4

TABLE 21
Test data: E -50, Ro .78, Rvt 2.80, 0.

A5/A6 #E #A Total

0
1
2
3

offset

-78.54/-29.40 58 10 68
-78.53/-29.43 25 13 38
-78.70/-29.66 16 15 31
-78.34/-29.49 19 12 31
-78.56/-29.57 0 32 39
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TABLE 22
total time (in seconds).

n Original Repeated Total

0 33.8 24.4 58.2
1 22.2 29.2 51.4
2 19.8 28.5 48.3
3 21.7 39.4 61.1

offset 25.4 35.3 60.7

A number of observations are in order. As in the scattering problems, the case
n 2 is always the fastest. Although the single energy calculations with n 0 were
totally uncompetitive with the other four methods, the fact that its repeat calculation
time is so fast makes it competitive and in some cases better than all but the n 2
method. In fact as the number of iterations required in the root finding routine
increases, the n 0 method can actually become the method of choice.

In Fig. 2 we plot the position of the six eigenvalues for our A-B2 system.
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FIG. 2. Eigenvalues for model A-B2 system (1 0).

4.3. Discussion. In all of the test problems considered--both scattering and
bound state--we have seen that our piecewise analytical perturbation series solution
method with n 2 and partial least squares minimization conditions is more efficient
than Gordon’s off-set tangent method and it is more efficient than the other modified
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basis function methods we have considered. We have not, however, made a comparison
between our solution method and the one-dimensional Numerov method. We recogn-
ize the fact, however, that in order to get a better understanding of the relative merits
of the piecewise analytical perturbation series solution method, the piecewise analytical
solution method and Numerov’s method, a series of numerical experiments should
be performed which test the three solution methods on a variety of problems. We
can, however, draw a number of conclusions about the three solution methods by
combining our results with those of Riehl, Diestler and Wagner [27].

Riehl, Diestler and Wagner have compared the one-dimensional Numerov
method with a one-dimensional piecewise analytical solution method which includes
one perturbation correction. Their method was based upon a piecewise constant
polynomial approximation to p(r). They found that for values of near zero the
piecewise analytical solution method they considered was faster than the Numerov
method. However, for large (10 or 20) the Numerov method was almost always
faster than the piecewise analytical perturbation series method they considered. This
behavior can best be explained by remembering the convergence property of our
perturbation series. We recall that our perturbation series converges more rapidly the
larger the value of v*-E. We note that for a given value of E, the quantity v*-E
decreases as the angular momentum increases. Hence with E constant we would
expect the perturbation method to require a larger number of subintervals to propagate
the solution over a region in r for large than for small l. The more subintervals
required, the longer the calculation takes. The Numerov method, however, computes
the wavefunction directly. As increases, so does the effective intermolecular potential.
This results in a decrease in the local wavenumber of the wavefunction. Hence the
wavefunction oscillates less rapidly for larger I. Thus a coarser grid can be used to
represent the wavefunction. The larger the intervals, the quicker the calculation.

Although it is difficult to accurately compare the efficiency of our piecewise
analytical perturbation series method with the method used by Riehl, Diestler and
Wagner, we can note the following points. The method they have used to produce
their approximate solution gives a solution similar in form to the perturbation scheme
in (2.2) with (p-/)(r) expanded through the quadratic term. We have experimented
with a variety of perturbation schemes and have found the method employed in (2.9)
and (2.19) with partial least squares minimization conditions to be the most efficient
method for a given n. In addition, we have observed in our test cases that the piecewise
analytical solution method with two perturbation corrections included in the zeroth
order solution is a faster solution method than a zeroth order solution with one
perturbation correction.

Based upon the test results of Riehl, Diestler and Wagner, the experiments we
have done with various perturbation schemes and our test results, we anticipate our
method to be more efficient than the Numerov method for a single scattering calculation
at low angular momentum. In addition, we anticipate our method to be more competi-
tive than existing piecewise analytical solution methods with the Numerov method at
large values. Finally, our piecewise analytical perturbation series method is the method
of choice for energy spectrum scattering calculations.

No study similar to the one of Riehl, Diestler and Wagner [27] has been conducted
for the eigenvalue problem. Ixaru et al. [2] have examined the stability of a first order
perturbative piecewise analytical solution method against roundoff errors and they
have compared the efficiency of their method with the Numerov method for eigenvalue
problems. However, their results were based upon equispaced meshes and they did
not optimize their algorithm with respect to computation time by implementing a
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variable step method. We note that the eigenvalue calculation is similar to the energy
spectrum calculations in the scattering problem. A number of repeat calculations are
required when using the root-finding routine. We again anticipate our piecewise
analytical perturbation series method with two perturbation corrections and partial
least squares minimization conditions to be the method of choice in such calculations.

As a final remark, we recall that the motivation for considering a piecewise
analytical perturbation series solution method based upon a piecewise constant poly-
nomial approximation to p(r) was the fact that since exponentials were less expensive
to evaluate than Airy functions and since we could include a number of analytical
perturbation corrections in our zeroth order solution, we hoped that computational
gains could be obtained over the widely used offset tangent method of Gordon. Our
numerical experiments have indeed confirmed these hypotheses. However, a major
drawback to the piecewise constant method is the fact that it can have problems in
the neighborhood of turning points. The Airy function method, however, does not
suffer from this difficulty. It is natural to ask whether a piecewise analytical perturbation
series solution method based upon piecewise linear polynomial approximations to
p(r) would be a more efficient method of solution for scattering and bound state
problems. Such a method would have the best of both worlds in the sense that it
would have the increased accuracy arising from the addition of perturbation corrections
in its zeroth order solution and it would not have difficulty in the region around turning
points. As it turns out, our perturbation series arguments can be generalized to include
piecewise linear polynomial approximations to p(r). As to whether such a method
would be computationally more efficient than our method, a number of numerical
experiments would have to be performed.

5. Remarks. We have developed a piecewise analytical perturbation series
method (PAPSM) for solving the radial Schr/Sdinger equation scattering and bound
state problems. PAPSM is a shooting method based on a perturbation series solution
of the radial Schr6dinger equation when the potential function p(r) is replaced by a
piecewise constant polynomial/5(r). We saw that the efficiency of the method was
related to the ability to adaptively adjust the mesh so that the local error incurred
was less than some pre-set error tolerance. The mesh selection procedure required
that we knew how our local error estimate varied with the mesh length hk. By making
use of the rigorous error bounds derived in another paper we were able to infer the
dependence of our local error estimate on hk. We performed a number of experiments
designed to compare the accuracy and efficiency of the method with Gordon’s piecewise
analytical solution method. We found that by including several perturbation corrections
in our approximate zeroth order solution, we obtained a numerical method that was
40-50% faster than Gordon’s method for the scattering problems considered and
16-22% faster than Gordon’s method for the bound state problems considered.
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SOME EXTENSIONS OF AN ALGORITHM FOR
SPARSE LINEAR LEAST SQUARES PROBLEMS*

MICHAEL T. HEATH’

Abstract. Several algorithms are developed which extend the method of George and Heath for sparse
linear least squares problems to include rank-deficient problems, linear equality constrained problems, and
updating of solutions. An application of these methods to the solution of sparse square nonsymmetric
linear systems is also presented.

Key words, sparse least squares, rank deficiency, numerical rank determination, updating, constraints

1. Introduction. In [9] an algorithm is presented for solving the unconstrained
linear least squares problem

(1.1) min Ilax b

where A is an rn n matrix, rn >= n, rank (A) n, and x and b are vectors of appropriate
dimension. In addition, for sparse problems the effectiveness of the method depends
on the sparsity of A’A. The latter matrix, unfortunately, is not necessarily as sparse
as A, as can readily be seen by considering a matrix A having at least one relatively
full row. The purpose of this paper is to relax some of these restrictions by extending
the algorithm of [9] to include least squares problems having matrices of arbitrary
shape and rank, problems having linear equality constraints, and problems having a
few "nasty" rows which cause excessive fill in the structure of A

The classical approach to solving the linear least squares problem is via the system
of normal equations

(1.2) A T"Ax A T"b.
The n n symmetric positive definite matrix B A:rA is factored using Cholesky’s
method into R 7"R, where R is upper triangular, and then x is computed by solving
the two triangular systems Ry A7"b and Rx y. This algorithm has several attractive
features for large sparse problems. The Cholesky factorization does not require
pivoting for stability so that the ordering for B (i.e., column ordering for A) can be
chosen based on sparsity considerations alone. Moreover, there exists well-developed
software for obtaining a good ordering in advance of any numerical computation,
thereby allowing use of a static data structure. Another advantage is that the row
ordering of A is irrelevant so that the rows of A can be processed sequentially from
an auxiliary input file in arbitrary order, and A need never be represented in fast
storage in its entirety at any one time. Unfortunately the normal-equations method
may be numerically unstable. This is due to the potential loss of information in
explicitly forming A7"A and A 7"b, and to the fact that the condition number of B is
the square of that of A. Moreover, the normal-equations method is not easily extended
to handle the more general circumstances, such as possible rank deficiency, addressed
in this paper.
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Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.
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Corporation, Nuclear Division, Oak Ridge, Tennessee 37830.

223



224 MICHAEL T. HEATH

A well-known stable alternative to the normal equations is provided by orthogonal
tactorization. An orthogonal matrix Q is computed which reduces [A, b] to the form

where R is n x n and upper triangular. Since the Euclidean norm is invariant under
orthogonal transformation, the solution to (1.1) may be obtained by solving the
triangular system Rx=c. The matrix O usually results from Gram-Schmidt
orthogonalization or from a sequence of Householder or Givens transformations.
Both the Gram-Schmidt and Householder algorithms process the unreduced part of
the matrix A by columns and can cause severe intermediate fill for large sparse
problems. The use of Givens rotations is much more attractive in that the matrix is
processed by rows, gradually building up R, and intermediate fill is confined to the
working row. This approach, implemented with a good column ordering and an efficient
data structure, is the basis for the algorithm described in 2.

Throughout this paper standard techniques of numerical linear algebra, especially
linear least squares, are used without explicit references. In such cases a full discussion
of the methods employed, with citations of original sources, will be found in [17].

2. The basic algorithm. The algorithm is developed in detail in [9]. Its motivation
is to combine the flexibility, convenience and low storage requirements of the normal
equations with the stability of orthogonal factorization. The steps of the algorithm
are as follows:

ALGORITHM 1
1. Determine the structure (not the numerical values) of B ATA.
2. Find an ordering for B (column ordering for A) which has a sparse Cholesky

factor R.
3. Symbolically factorize the reordered B, generating a row-oriented data struc-

ture for R.
4. Compute R and c by processing the rows of -A, b] one by one using Givens

rotations.
5. Solve Rx c, then permute the components of x back into the original column

ordering of A.

Steps 1 through 3 of Algorithm 1 are the same as would be used in a good
implementation of the normal equations method. These steps may be carried out very
efficiently using existing sparse matrix software, such as SPARSPAK [11]. It is
important to emphasize that the data structure for R is generated in advance of any
numerical computation, and therefore dynamic storage allocation to accommodate
fill during the numerical computation is unnecessary. See [9] for a detailed description
of an appropriate data structure. The order in which the rows of A are processed in
step 4 does not affect the structure of R. Therefore, the rows may be accessed from
an external file one at a time in arbitrary order. In particular, a row ordering scheme
may be used to reduce the amount of computation associated with intermediate fill
in the working row or to enhance stability when dealing with problems having widely
varying weights or row norms. Thus, Algorithm 1 requires the same storage and
exploits sparsity to the same degree as the normal equations, allows convenient use
of auxiliary storage, and in addition is numerically stable.

The details of step 4 of the algorithm are of some interest and will be needed
for reference later. Let a T be a given row of A to be processed next, with the
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components of a 7- suitably permuted to reflect the new column ordering for A. Let
be the subscript of the first nonzero component of a . It is shown in [9] that there is
space in row of the data structure of R to accommodate a r. If row/" of the data
structure is still vacant, as will likely be the case early in the row-by-row processing,
then a 7" may simply be placed into row of the data structure. If, on the other hand,
row of the data structure is already occupied by previously stored numerical values,
then row f may be used to annihilate the first nonzero of a 7" with a Givens rotation.
It is further shown in [9] that the resulting "shorter" row can also be accommodated
in the data structure, even though some fill may have occurred as a result of the
transformation. Thus, the process may be repeated until either an unoccupied row is
found in which to place the working row or all its nonzeros have been annihilated.

3. Rank deficiency. In this section the requirement that rn _-> n is dropped, and
we allow rank (A)= k -< min {m, n}. When k < n there is no longer a unique solution
to (1.1). However, among the infinite set of vectors x which minimize the least squares
residual, there is a unique solution x of minimum norm. This minimum-norm solution
is the result ordinarily desired in the rank-deficient case and is the solution which
would be given by the Moore-Penrose pseudoinverse, although the latter is not a
useful computational tool. It is worthwhile observing that for many practical purposes
a basic solution (i.e., a least squares solution having at most k nonzero components)
is equally useful and rather easier to compute (as will be seen below). These solutions
are introduced in [20] and quantitatively compared in [14].

In practice the rank of A is not usually known in advance, and therefore it must
be estimated as part of the solution procedure. Numerically, the choice of rank may
not be clear cut and may be somewhat dependent on the particular solution algorithm.
The situation is further complicated by the fact that the rank may not be well
determined in that a small perturbation to the matrix may cause the rank to change.
Nevertheless, heuristic rules which are reasonable, if not entirely rigorous, usually do
an adequate job of numerical rank determination in most contexts.

Perhaps the most reliable method for computing the minimum-norm solution to
a rank-deficient, rectangular linear system when the rank is unknown is by means of
the singular value decomposition

(3.1) A=U,V,
where U and V are orthogonal matrices of order rn and n, respectively, and E is an
rn n nonnegative diagonal matrix. The diagonal entries of E are the singular values
of A. In theory, exactly k rank (A) of the singular values are positive. In practice,
some of the computed singular values may be very small but nonzero. In this case
the rank is estimated by declaring those singular values whose magnitudes fall below
some tolerance to be negligible. The choice of an appropriate tolerance depends on
the accuracy with which the data are known and on the machine precision. The choice
may be obvious if there is a sharp break or gap between the "large" and "small"
singular values, but this may well not be the case. Once the rank is selected the
minimum-norm solution is given by

x= V+U’b,
where E/ is an n x rn diagonal matrix whose nonzero diagonal entries are the
reciprocals of the corresponding nonnegligible singular values of A.

Unfortunately, this decomposition is not very useful for large sparse least squares
problems. Not only are the matrices U and V generally full, but the orthogonal
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transformations successively applied to A in computing the decomposition cause an
unacceptable amount of intermediate fill before the diagonal form is ultimately
reached.

A more promising approach is offered by the orthogonal factorization (1.3). Even
in the rank-deficient case this factorization exists and can be stably computed by a
sequence of orthogonal transformations. However, the triangular factor R is then no
longer nonsingular, so that it cannot be used directly to solve the least squares problem.
In the Householder and Gram-Schmidt algorithms A is reduced to triangular form
by annihilating the subdiagonal elements of successive columns. What is ordinarily
done when rank deficiency is expected is to interchange columns at each step so that
the unreduced column of largest norm is brought into the next position to be reduced.
After k steps this process yields a factorization of the form

0

where R is k x k and upper triangular and P is a permutation matrix which performs
the column interchanges. In theory, if rank (A)= k, then R is nonsingular and T 0.
In practice, with finite precision arithmetic, the computed elements of T become small
but remain nonzero. Thus, as before, the rank is estimated by terminating the
factorization process at some point and declaring the remaining unreduced portion T
to be negligible. Numerous criteria have been proposed for making this choice, usually
based on some measure of the size of T or on the condition of the resulting triangular
matrix R (see, for example, [1], [13], [16], [17], [18], [21]).

At this point a basic solution may be obtained rom the factorization (3.2) by
solving the triangular system Ry =c, where the vector c consists of the first k
components of Oh, and setting

To compute the minimum-norm solution, however, requires more work. Continuing
from the factorization (3.2), the block S is annihilated by a sequence of orthogonal
transformations from the right, resulting in the complete orthogonal factorization

where R is again k x k, upper triangular and nonsingular and V is an orthogonal
matrix of order n. (Note that P has been absorbed into V and that the R in (3.3) is
not the same as R in (3.2).) The minimum-norm solution is now obtained by solving
the triangular system Ry c and setting

Although this approach works well for small problems, it has a number of
drawbacks when used in conjunction with Algorithm 1 for large sparse problems.
Obviously, the processing of A by columns is inconsistent with the row-oriented
processing of Algorithm 1. Moreover, the column ordering in Algorithm 1 is fixed in
advance of any numerical computation so as to produce a triangular factor with low
fill. Thus, the column interchanges required in obtaining (3.2) would not be permissible.
Finally, the additional orthogonal transformations needed to annihilate S in order to



SPARSE LEAST SQUARES ALGORITHMS 227

obtain (3.3) would cause fill in R which might be excessive, and in any case would
not be anticipated by the fixed data structure for the triangular factor. We circumvent
these difficulties by first showing that form (3.2) can be obtained without column
pivoting during the factorization process, and then showing that the minimum-norm
solution can be computed directly from (3.2) without the additional processing needed
to obtain (3.3).

If Algorithm 1 is applied to a matrix A of rank k < n using exact arithmetic, the
result is an n n triangular factor of rank k which has n- k zeros on its diagonal.
Thus, R might be thought of as schematically depicted in Fig. 1 (a). However, recalling
the details of step 4 of Algorithm 1, the working row is always placed into the data
structure so that its diagonal entry is nonzero, and diagonal entries can only grow as
a result of further processing with Givens rotations. Thus, if a diagonal entry of R is
zero, then that row must have been untouched by the Givens processing, and therefore
all its entries must be zero, as depicted in Fig. 1 (b). Now a matrix of the latter form
can be permuted into the form (3.2) by row interchanges (Fig. l(c)) and column
interchanges (Fig. l(d)). As we shall see below, however, access to R and S in their
original locations is all that is required for our purposes, so that such row and column
interchanges need not actually be performed. For simplicity we continue to use the
notation of (3.2) although in practice this form need not be obtained explicitly.

(a) (b) (c) (d)

FIG.

As usual, the situation is more complicated in finite precision arithmetic. One
might expect numerical rank deficiency in A to be revealed by the presence of n- k
small diagonal elements in the triangular factor, and this is usually, though not always,
the case (see example of Wilkinson cited below). It is no longer true, however, that
a diagonal entry being small implies that the remainder of the row is also negligible.
There are two ways of coping with this difficulty. One way is to test against some
small tolerance, rather than exact zero, when checking symbolic nonzeros in the
working row to see if they are in fact numerically nonzero. If this is done then the
algorithm proceeds just as described in the preceding paragraph and a triangular
factor of the form of Fig. 1 (b) results. A drawback of this method is that the tolerance
must be set before processing is begun, so that it must be an absolute tolerance which
cannot take the scale of the problem into account unless the user can supply this
information in advance.

A second alternative is to process all of the rows of A using an exact zero test
in step 4, then examine the diagonal of the resulting triangular factor for small entries.
Any row whose diagonal element falls below some tolerance may be considered to
have resulted from premature termination of normal processing. Processing is therefore
resumed on such a row, including the corresponding right-hand side component, until
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the row is annihilated in the usual manner, and a row of zeros is left in its original
location in the data structure. Some care must be exercised with regard to the order
in which the rows having small diagonal elements are processed. The reason for this
is that the further processing of a row cannot affect any row above its original location,
but may fill in a previously small diagonal element below. Thus, these rows should
be processed in order of increasing row subscript as they are encountered along the
diagonal, and the rank deficiency is equal to the number of zero rows after all row
processing is complete. Although it is slightly more complicated than the first method,
this approach conveniently allows a relative tolerance to be used in the test for small
diagonal elements, since their magnitudes may be compared, for example, to the
largest diagonal element.

Either of these methods results in triangular factor of the form of Fig. l(b) and
a corresponding estimate for the rank. Although it is undoubtedly somewhat less
robust in determining the rank than algorithms using explicit column pivoting during
the factorization process, the author has found this approach to work very well in
practice, even for small dense problems. For example, on the 36 test cases generated
by PROG2 in [17] this scheme agrees with the rank determined by Householder
transformations with column pivoting (subroutine HFTI) using the same absolute
tolerances for each algorithm. On the other hand, it is possible, though unlikely to
occur in practice, for a triangular matrix to be severely ill conditioned, yet have no
small diagonal elements. The example devised by Wilkinson [19] having all diagonal
elements equal to 1 and all elements above the diagonal equal to -1 illustrates this
point. In such a case the numerical rank deficiency would not be detected by the
algorithm described thus far. However, it could be detected by using the triangular
factor to solve the linear systems required to estimate the condition number [4], so
that the user could at least be warned of such pathology.

We turn now to the problem of computing the minimum-norm solution directly
from a factorization of the form (3.2). We first observe that although there is no
unique least squares solution in the rank-deficient case, there is still a unique point
in the range space of A closest to the right-hand side vector b. The indeterminacy
results from the representation of this unique point as a particular solution, such as
the basic solution

where y is the solution to the k k system Ry c, plus an arbitrary solution to the
homogeneous system. Since any least squares solution can be represented as a sum
of ] and a null space component, the minimum-norm solution can be determined
by finding the point in the null space closest to 37, which is another least squares
problem. In particular, the minimum residual vector for this latter problem is the
minimum-norm solution to the original least squares problem. Thus, we may regard
the solution procedure as a sequence of two projections: first the vector b is projected
onto the range space of A, then the point so determined is projected onto the null
space of A. If we let the k (n- k) matrix K be the solution to the linear system
RK S, then the columns of the n (n- k) matrix

form a basis for the null space of A. Thus, the minimum-norm solution to the original
least squares problem is given by the minimum residual vector for the least squares
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problem

Problem (3.4) can be solved by means of the orthogonal factorization

where U is an orthogonal matrix of order n and L is a lower triangular matrix of
order n k, but the solution z need not be computed explicitly since only the residual
vector is needed and this is given by

Providing the rank deficiency n- k is small, as is usually the case, the orthogonal
factorization (3.5) can be computed by any method, such as Householder transforma-
tions, suitable for small dense problems.

Observe that the systems Ry c and RK S are easily solved using the sparse
triangular factor already computed. The vector c consists of the k components ol the
transformed right-hand side corresponding to the nonzero rows ol the triangular
factor. The matrix S consists of the columns of the triangular factor whose diagonal
entries have been declared zero, and these are easily extracted from the data structure
one by one as needed. In solving these triangular systems it is unnecessary to extract
R from the data structure or write a special back substitution routine to skip over
the zero rows, since the same effect may be obtained by simply setting the zero"
diagonal elements equal to 1 and noting that the corresponding components of the
right-hand sides, both for c and for columns of S, will already be zero. In this way
the same back substitution routine used for the full-rank case will give correct results
with no division by zero.

We thus arrive at the following algorithm for large sparse rank-deficient linear
least squares problems:

ALGORITHM 2
1. Perform steps 1 through 4 of Algorithm 1, carrying out additional Givens

processing, if necessary, to annihilate any rows having diagonal elements falling
below given tolerance. The result is a permuted form of (3.2) with T negligible.

2. Solve Ry c.
3. Solve RK S.
4. Compute the orthogonal factorization (3.5).

This approach to handling rank deficiency is similar to that in [7] and [14],
although these references are not concerned with preservation of sparsity. In contrast
to our geometric derivation, the algorithm can also be derived analytically or algebrai-
cally. In the former category, an expression can be written for the components of a
general least squares solution in terms of R and $ and then its norm minimized by
differentiation. In the latter category, the formula for the minimum-norm solution to
an underdetermined linear system of full row rank [6] can be applied to the matrix
[, S].
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4. Updating. As we have noted, if an otherwise sparse matrix A has a few rows
with a relatively large number of nonzeros, the resulting fill in A7"A (and hence in its
Cholesky factor) would severely limit the usefulness of Algorithm 1. In such cases it
is desirable to withhold these "nasty" rows from initial Givens processing, then update
the resulting solution to incorporate the effects of the omitted rows. Such updating
procedures are common in least squares applications when new observations are added
to a previously solved problem. However, in the present context it is important to
note that only the solution is updated and not the factorization, since otherwise our
purpose would be defeated. Thus, in this section we consider the least squares problem

where A is m n, E is p n, and vectors b and f are dimensioned accordingly. We
assume that A is sparse and has rank n, and that p is relatively small compared to n.

We begin by applying Algorithm 1 to [A, b], so that we have R and c as in (1.3).
Let y be the solution to the linear system Ry c and write the solution to problem
(4.1) as x y + z, so that we seek to determine z. Let r f-Ey. Then since

and f-Ex r-Ez, we see that z is given by the solution to the least squares problem

Let the n p matrix K be the solution to the linear system R TK Er. Under the
transformation of variables u Rz and v r-Ez r-KTu, problem (4.2) becomes
that of finding the minimum-norm solution to the underdetermined linear system

Problem (4.3) can be solved by means of the orthogonal factorization

(4.4) U[/K] [L0],
where U is an orthogonal matrix of order n +p and L is a lower triangular matrix of
order p. We use another transformation of variables

so that (4.3) becomes

In this way s is determined by the linear system Ls =r, leaving free to be chosen
so as to minimize the norm. The choice 0 yields the desired result. We are thus
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led to the following algorithm for solving problem (4.1)"

ALGORITHM 3
1. Perform steps 1 through 4 of Algorithm 1 on [A, b].
2. Solve Ry c.
3. Solve R 7,K E7-

4. Compute the orthogonal factorization (4.4).
5. r=f-Ey.
6. Solve Ls r.

8. Solve Rz u.
9. x=y+z.

The sparse triangular factor computed in step 1 is used to solve all subsequent
large linear systems required in this algorithm. Since the number p of updating rows
is presumably small, the orthogonal factorization (4.4) required in step 4 may be
carried out by Householder transformations or any other method suitable for small
dense problems, resulting in a small triangular system to be solved in step 6.

Although this algorithm was motivated by the problem of withholding rows from
the initial orthogonal factorization, it is, of course, also applicable in any instance
when updating is required to incorporate new observations into a problem previously
solved using Algorithm 1. In the latter case a second alternative is to use Givens
rotations to process the new rows directly into the triangular factor, provided that the
new rows add no new structure to ATA and that the original transformed right-hand
side vector c has been preserved.

5. Constraints. It is sometimes the case, due to theoretically known relationships
among the variables or to a few unusually accurate measurements, that it is desirable
that some of the equations in a linear system be satisfied exactly while the remaining
equations are satisfied only in the least squares sense. Such a problem may be written
in the form

(5.1) min IIAx b I1= subject to Gx h,

where G is a q n matrix and h is a q-vector. We assume that A is of full column
rank n and the constraint equations are consistent. There are a number of methods
for solving such a linear equality constrained least squares problem:

1. using a basis of the null space of the constraint matrix G;
2. by direct elimination of variables using the constraint equations;
3. by weighting;
4. by the method of Lagrange multipliers.

The first three of these methods are described in Chapters 20, 21, and 22, respectively,
of [17]; the fourth is described in [12]. The first two methods, when implemented
using orthogonalization, generally involve transformations on the least squares matrix
A which may cause unacceptable fill in the large sparse case. Better preservation of
sparsity might be obtained by using Gaussian elimination, but then the pivoting
generally required to maintain stability would bring on just the kind of data access
problems Algorithm 1 is designed to avoid. The third method, weighting, is the simplest
to implement since it requires only the solution of an unconstrained least squares
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problem of the form

where w is a scalar weighting parameter chosen so that the constraint equations are
satisfied as accurately as desired. Provided G is also sparse, Algorithm 1 is applicable
to problem (5.2), although, as with any problem having disparate row norms, the
ordering of the rows may have to be chosen so as to maximize stability and accuracy.
In this context, processing all the heavily weighted constraint equations first is usually
adequate if the only disparity is due to the weight w [17]. It is not unusual, however,
especially with constraints imposed for theoretical reasons, for G to consist of a small
number of dense rows. For example, it may be required that the sum ot all the variables
be equal to 1 or some other prescribed constant, in which case G contains a completely
full row. The method of Lagrange multipliers is very attractive when G is dense but
q is small, and for this reason we develop a simplified variant in which the multipliers
are not explicitly computed.

The method of Lagrange multipliers applied to problem (5.1) consists of introduc-
ing a q-vector I of multiplier variables and solving the expanded linear system of
order n + q

(53) [AA ][:] [A2b]
Straightforward block elimination leads to an approach using normal equations to
solve (5.3) for A, then x, by means of the following sequence of steps:

1. Solve A7-Ay A 7-b for y.
2. Solve A7-AJ G 7- for the n q matrix J.
3. M=GJ.
4. r=h-Gy.
5. Solve MA r. (Note that M is symmetric.)
6. x y +JA.

As usual, a numerically superior approach is provided by orthogonalization, and
explicit computation of A can thereby be avoided. Let R and c be as in (1.3) as
computed by Algorithm 1. We first note that y in step 1 is simply the solution to the
unconstrained least squares problem and is given by the solution to the triangular
system Ry c. Next, if we define the n q matrix K as the solution to the linear
system R rK G, then we have

M= GJ G(AT-A)-G 7- G(R TR)-G 7- KTK.
Thus, we can avoid explicitly forming the symmetric matrix M by computing its
Cholesky factor directly via the orthogonal decomposition

where U is an orthogonal matrix of order n and L is a lower triangular matrix of
order q. Once again, the small size q permits the use of Householder transformations
in computing (5.4) since sparsity is not an issue there. We note that if G, hence K, is
rank deficient (as will be the case, for instance, if the constraint equations are
inconsistent), this can be detected at this stage by checking the condition of L.
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In this way the linear system for A in step 5 could be replaced by the system
LLTA r. We note, however, that A is immediately multiplied by J in step 6 and that

T

where we have defined s LTA. Thus, we see that it is unnecessary to determine A,
but only to solve the system Ls r. We therefore arrive at the following algorithm
for solving problem (5.1):

ALGORITHM 4
1. Perform steps 1 through 4 of Algorithm 1 on [A, b].
2. Solve Ry c.
3. Solve R rK Gr.
4. Compute the orthogonal factorization (5.4).
5. r=h-Gy.
6. Solve Ls r.

8. Solve Rz u.
9. x=y+z.

The great similarity between Algorithms 3 and 4 reflects the close relationship
between these two updating problems. The only substantive difference is the matrix
to be factorized in step 4. In particular, Algorithm 4 can be derived from Algorithm
3 by taking. E wG and f= wh, as in (5.2), and letting w. Alternatively, the
transformation of variables technique used in deriving Algorithm 3 can also be used
to obtain Algorithm 4, or, more generally, an algorithm for least squares problems
having both kinds of update equations:

(5.5) [EA]x[] subjectto Gx =h,

where all matrices and vectors are as in (4.1) and (5.1). The resulting algorithm for
problem (5.5) is as follows:

ALGORITHM 5
1. Perform steps 1 through 4 of Algorithm 1 on [A, b].
2. Solve Ry=c.
3. Solve R rj ET and R TK GT

4. Compute the orthogonal factorization
I

6. Solve Ls r.

8. Solve Rz u.
9. x=y+z.

6. Square systems. Most popular algorithms for solving sparse nonsymmetric
square (m n) linear systems (e.g., the Harwell software package MA28 [8]) use row
and column pivoting during the factorization process in order to preserve sparsity and
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ensure numerical stability, and therefore they employ a relatively high-overhead
dynamic data structure. Since Algorithm 1 uses an efficient static data structure with
the column ordering fixed in advance, it is natural to conjecture that Algorithm 1
might be a viable alternative for solving sparse square systems. One potential difficulty
is the necessity of withholding any dense rows from the factorization in order to
prevent excessive fill in the triangular factor. In our previous updating schemes we
have assumed that the sparse part of the matrix is already of full column rank without
the omitted rows. If any rows are omitted from a square system, however, the resulting
system is underdetermined and therefore has rank less than n. The general problem
of updating a rank-deficient system when the added rows may change the rank by an
unknown amount is quite complicated and can be numerically delicate (see, e.g., [5]).
If n- k rows are omitted from a square nonsingular system, however, the rank of the
remaining part must be exactly k and the update must restore full rank. This fortunate
circumstance allows us to cope with this special case in a convenient way. We simply
replace the n- k omitted rows by n- k judiciously chosen sparse rows which give us
a square nonsingular system to which Algorithm 1 is applicable. The resulting solution
is then modified to obtain the solution to the original problem. This updating could
be done using the Woodbury formula [15] or, equivalently, the capacitance matrix
method [3]. In the present context, however, we use a more direct and numerically
superior approach.

Although the dense rows may appear anywhere in the system, for simplicity of
notation we place them last. Thus, we wish to solve the linear system

(6.1) x=
f,

where A is k x n and sparse, and E is (n- k)x n and dense. We assume that the
entire system (6.1) is nonsingular and that n- k is relatively small compared to n.
We denote the (n- k)x n sparse matrix which replaces E in the initial orthogonal
factorization by G.

The best possible choice of replacement rows in terms of sparsity preservation
would be to select the n k rows of the identity matrix which yield a square nonsingular
system, since this would add nothing to the structure of ArA. The problem of which
rows of the identity matrix to use is solved by the rank determination procedure in
step 1 of Algorithm 2 applied to the k sparse rows of the system. With a suitable
tolerance step 1 will result in a matrix having n- k zero rows. The appropriate rows
of the identity matrix may then be added to the system by simply placing a 1 in the
diagonal entry of each of the n- k zero rows. (This will in fact have already been
done if the trick suggested in 3 for avoiding a special back substitution routine is
used. We also note that it may be desirable to use a scalar multiple of the identity
matrix to improve conditioning if the scale of the problem differs significantly from
unity.) With the matrix G consisting of the indicated rows of the identity matrix, step
1 of Algorithm 2 provides a factorization of the form

(6.2)
0 0

where we have written the matrices in permuted and partitioned form for notational
simplicity. Applying this transformation to system (6.1) yields

0 0
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where E [E1, E2] and E2 is square. Thus, we wish to solve the equivalent system

(6.3)
E1 E2

x=

utilizing the available sparse factorization (6.2). Carrying out block elimination on
(6.3) leads to the system

0 K
x=

where the (n k) x n matrix Kr [K, K] is given by the solution to the system

r r-i

and

r =f-Kc =f-E1R-lc =/-Ely =f-E[J.
TIf we now let u be the solution to the square system KEU--r (computed by any

suitable method, such as elimination or orthogonalization), we see that the solution
to the system

0 u

is also the solution to (6.4).
Reverting to our prior notation (with R representing the entire triangular factor)

and organizing the computation to emphasize its similarity to Algorithm 3, we get
the following algorithm for solving problem (6.1):

ALGORITHM 6
1. Perform step 1 of Algorithm 2 on [A, b ], then replace any zero diagonal entries

in the resulting triangular factor with ones (effectively adding [G, 0] to the
system).

2. Solve Ry c.
3. Solve R rK Er for the n x (n-k) matrix K, and let the square matrix K

consist of the rows of K corresponding to G.
4. Compute the orthogonal factorization UK L
5. r=f-Ey.
6. Solve Ls r.
7. u=U.

So,ve [0].u
9. x=y+z.

Early computational experience with Algorithms 1 and 6 on a modest set of
square sparse test problems indicates that this method does hold significant promise
and is worthy of further development. Our approach seems to be reasonably competi-
tive, usually requiring less storage but more execution time than MA28. Our algorithms
perform especially well on problems having a very regular sparsity pattern, such as
the matrices corresponding to geodetic networks or finite element grids, because of
the availability of good heuristics for presorting the rows into an order which reduces
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the arithmetic operation count for the orthogonal factorization [9]. Due at least in
part to the lack of more broadly effective row ordering schemes, our method has so
far done less well on problems having more random sparsity patterns. Even in such
cases, however, some of the other features enjoyed by our method, such as the
convenience with which auxiliary storage can be used [10], may nevertheless make it
an attractive alternative.

7. Conclusions. In this paper we have developed several algorithms for handling
sparse linear least squares problems not covered by the basic algorithm of [9]. These
algorithms retain, however, the fundamental spirit of the basic algorithm: the column
ordering is fixed in advance to minimize fill and the rows may be processed in essentially
arbitrary order. Each of the extended algorithms requires the solution of several linear
systems of two types" large systems which are solved using the sparse triangular factor
computed by the basic algorithm, and small systems which are solved using methods
appropriate to the small dense case. For the latter systems we have emphasized the
use of numerically stable orthogonalization techniques. All of the algorithms presented
have been implemented in computer software and have been found to work well in
practice. The results of extensive numerical testing and comparisons with other
methods will be presented elsewhere.

There remain numerous questions relating to these algorithms and their possible
further extensions. The difficult problem of general updating for rank-deficient prob-
lems has already been mentioned. (For a treatment of this problem in the context of
a different basic algorithm, see [2].) The details of the tolerances and tests needed
for numerical rank determination are not universally agreed upon. Further investiga-
tion is needed into the effect of the row ordering in Algorithm 1 with regard to
efficiency and stability. A better understanding of this problem should lead to row
ordering heuristics which are effective for broader classes of problems. It is obvious
that dense rows must be withheld from the initial orthogonal factorization because
of the fill they would cause. It may also be possible that significantly less fill would
result from the omission of other, less obvious rows. The identification of such rows,
however, appears to be a difficult problem. Other potential generalizations of our
technique include the ability to handle inequality constraints, nondiagonal weight
matrices (i.e., correlated observations), and total least squares (i.e., all variables subject
to error).
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Abstract. Using the results of Chow (Ph.D. dissertation, Texas A & M Univ., 1978) on the optimal
placement of knots in the approximation of functions by piecewise polynomials, we present an algorithm
for the computation of optimal designs for certain time series models considered by Eubank, Smith and
Smith (Ann. Statist., 9 (1981), pp. 486-493), (Tech. Rep. 150, Southern Methodist Univ., 1981). The ideas
underlying this algorithm form a unified approach to the computation of optimal spacings for the sample
quantiles used in the asymptotically best linear unbiased estimator of a location or scale parameter.
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1. Introduction. Consider the linear regression model in which a stochastic pro-
cess, Y, is observed having the form

(1.1) Y(t)=f(t)+X(t), t[0, 1],

where/3 is an unknown parameter, f is a known regression function and X(. is a
zero mean process with known covariance kernel, R. The X process is assumed to
admit k 1 quadratic mean derivatives at each point [0, 1].

When the Y process is observed over all of [0, 1], the reproducing kernel Hilbert
space (RKHS) techniques developed by Parzen (1961a), (1961b) may be used to
construct a linear unbiased estimator of the parameter/3. We will denote this estimator
by/. For finite sampling schemes the regression design problem has been considered
by Sacks and Ylvisaker (1966), (1968), (1970), Wahba (1971), (1974), and Eubank,
Smith and Smith (1981a), (1981b). In the context of model (1.1), a regression design
is a set of noncoincident points in [0, 1]. The problem of design selection is, therefore,
one of choosing from among the members of the class of all n + 2 point designs

Dn :=((to, tl,’ ’, tn+l): 0 to<t<" <t+ 1},

where := means "is defined as."
It is assumed throughout this paper that it is possible to sample not only the Y

process but its derivatives as well. Given T D,, one can then consider the estimation
of/3 by an estimator based on the observation set

Yk.r ={Yi(t)" t T, =0,.", k-l}.

In particular, generalized least squares may be utilized to obtain the best linear
unbiased estimator (BLUE) of/3 using the observations Yk, T. This estimator will be
denoted by/t,,T.

An optimal (n + 2)-point design for model (1.1) is a T* D which satisfies

V(k,T*) inf V(k,T).
TDn
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Problems pertaining to the existence of optimal designs can be handled as in Sacks
and Ylvisaker (1966). Sufficient conditions for the uniqueness of optimal designs have
been given by Wahba (1971) and Eubank, Smith and Smith (1981a), (1981b) for
certain types of covariance kernels.

Unfortunately, it will not alwaysbe possible to sample, the derivatives of the Y
process. However, results regarding flk,T are. still useful in this event since, as noted
by Wahba (1971),

inf V(/T) ----< inf V(/k,T) -< inf V(/T)
T Dnk T D T D

where./ is the. BLUE of obtained without the. use of derivative information, i.e.,
the. ge.ne.ralize.d least squares estimator of fl obtained from model (1.1) using the.
observation se.t Y--(Y(t): T. It should also be. noted that, for the. process con-
sidered here,, the work of Barrow and Smith (1978)^ has the consequence that optimal
designs for/3k,r are asymptotically optimal for/37. In addition, when k 2 the optimal
designs for/3k.7- are, under certain conditions on f, precisely the optimal designs for
/3a (cf. Theorem 2.3 of Eubank, Smith and Smith (1981a) and Theorem 2.2 of Eubank,
Smith and Smith (1981b)). Of course, in the important case of k 1 considered by
Sacks and Ylvisaker (1966),/,r =/7- and our work is also applicable to the regression
design problem in this instance.

In this paper we continue the work of Eubank, Smith and Smith (1981a), (1981b)
by constructing an algorithm for the computation of optimal designs for the case that
R is the covariance kernel corresponding to a (k-1)-fold multiple integral of a
Brownian bridge or Brownian motion process or certain generalizations of these
processes. The case k 1 corresponds to the Brownian bridge and Brownian motion
covariance kernels and is of particular importance. In fact, a model of the form (1.1)
with X(. a Brownian bridge process has been shown by Parzen (1979) to arise in
the estimation of a location or scale parameter by linear combinations of order statistics.
It will be seen ( 4) that our algorithm can be used, in conjunction with the work of
Eubank (1981), to obtain a unified framework for optimal spacing selection for the
quantiles utilized in the asymptotically best linear unbiased estimator of a location or
scale parameter.

In 2 we give some preliminary results regarding certain relationships between
the selection of designs for model (1.1) and the approximation of functions by piecewise
polynomials. By use of these relationships, it is possible to obtain an algorithm for
optimal design computation through the modification of work by Chow (1978) on
piecewise polynomial approximation with variable knots. The optimal design algorithm
is presented in 3 along with several illustrations of its use. Its application to location
or scale parameter estimation is discussed in 4. Section 5 contains a short summary.

2. Optimal designs and piecewise polynomial approximation. The covariance
kernel, R, for the process (1.1) is the reproducing kernel for a reproducing kernel
Hilbert space (RKHS) which will be denoted as H(R) (cf. Parzen (1961a), (1961b)).
The problem of optimal design selection for the estimator/3k.r may be formulated as
a minimum norm approximation problem in H(R) in the following manner. Let
denote the norm in H(R) and define

where
Sk,T 1= span{R’i)( t)’ T, /= O, 1,..., k- 1}

oi+iRi’i)(s, t):= Os iR (s, t).
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The orthogonal projector (with respect to II" IIR), k.T, which maps H(R) onto Sk,T
has been shown by Sacks and Ylvisaker (1970) to satisfy

(2.) V(,,T) -As ,r is an orthogonal projection, we have

(2.2) k,Tf[] 2R Ilfll2R Ill-- Ok, Tfll 2R
From (2.1) and (2.2) it follows that T* is an optimal design if and only if

(2.3) Ilf--
TDn

Thus we see that the optimal design problem is equivalent to the nonlinear best
approximation problem: Find T* e Dn such that s* := k.V*f satisfies

IIf-s*ll inf inf [If-sll,
TDn SSk,

In order to study this problem more closely we now restrict our attention to a
specific class of X processes and their corresponding covariance kernels. Let

(S U)+-(t- u)+-(2.4) K(s,t):-
(k_ 1)!2 du, O<-_s, t<-_l,

where (x)_ x for x _-> 0 and is 0 otherwise, and let U(. denote the corresponding
normal process, i.e., a (k-1)-fold multiple integral of Brownian motion. Define a
new process, W, by

(2 5) W(t)= { U(t)-E[U(t)lU(i)(1)’ ]= k-q’ O<q<=k,
U(t), q =0.

It will be assumed in subsequent discussions that R is the covariance kernel defined
by

(2.6) R (s, t):= Cov (W(s), W(t)).

When q 1, R is the covariance kernel corresponding to a (k 1)-fold multiple integral
of a Brownian bridge process whereas the case of q 0 reverts to the covariance
kernel (2.4) for a multiple integral of Brownian motion. The case of q k was
considered by Eubank, Smith and Smith (1981a).

For processes with covariance kernels of the form (2.6), it is known that (cf.
Eubank, Smith and Smith (1981a), (1981b)),

i) H(R) is a Hilbert function space consisting of functions which satisfy for
feH(R),

f() absolutely continuous, ] 0,. , k 1, with fCk) L2[O, 1],

and boundary conditions

f()(O) O, j 0,. ., k 1,

fi)(1) O, ]=k-q,...,k-1, for O<q =<k,

or just fi)(O) O, ] O, , k 1, for q O. The norm for f H(R) is
1/2
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ii) When q k, observations at 0 or 1 provide no information regarding the
parameter /3 (this follows from property (i) since, in this case, f(J)(0)=fJ)(1)=0,

0,..., k- 1). Therefore, only design points in the interior of [0, 1] are utilized
when estimating/. This convention has the consequence that the designs to be selected
here agree with those considered by Eubank, Smith and Smith (1981a). We note in
passing that similar remarks about observation selection hold for other values of q
(cf. Sacks and Ylvisaker (1966) for the case of k 1, q 0).

iii) R (s, t), as a function of s for fixed t, is a spline of order 2k in continuity class
C2k-2 with a knot at t.

iv) For T= (to, tl,’", t,/l)D,, the best L[0, 1] approximation to fk) from
pk(T), the set of piecewise polynomials of order k with breakpoints at q,..., t,, is
(,f).

Let ,r denote the L[0, 1] orthogonal projector forP(T). Then, equation (2.7)
and result (iv) have the consequence that

and, hence,

Therefore, in view of (2.3), the optimal design problem for the types of Y processes
considered here coincides with finding the breakpoints of the best L2[0, 1] piecewise
polynomial approximation to f(k).

Approximation by piecewise polynomials with free breakpoints has been studied
by Barrow et al. (1978), Barrow and Smith (1978) and Chow (1978). Their results,
restated in the design setting, yield this partial characterization of optimal designs for
covariance kernels of the form (2.6).

THEOREM 1. Let T* (t*o, t, *t,+) D an an optimal design. If f
H(R)fq Cz[O, 1] and f(Z)>O on (0, 1) then, for 1, n,

(2.8) (k x(k)t/* { (k’T*f)(k)(t*i + )’ k even,
,T ) t’i --) 2f(k)(t)_(k,T,f)(k)(t,i +), k odd.

Sometimes the necessary condition (2.8) is also sufficient to guarantee an optimal
design. We state such a result from Eubank, Smith and Smith (1981a), (1981b).

THEOREM 2. Letf sH(R)tq C2k [0, 1] withf<2k)>O on [0, 1]and logf2k) concave
on (0, 1). Then lk.T has a unique optimal design for each n.

In general, uniqueness is quite difficult to prove. At present, very few other
positive results concerning uniqueness are available.

3. An algorithm for computing optimal designs. Theorem 1 suggests that we
should find a design T= (t0, ", t,/l) for which F/(T) 0, 1,..., n, where

(3 1) Fi(T)-- ! (k’Tf)(k)(ti+)-(lk’Tf)(k)(ti-)’ k even,
t 2f<k)(ti)--(k.Tf)<k)(ti --)--(k,7"f)<k)(ti + ), k odd.

Thus, setting F(T) (F(T),. , F, (T)) t, we see that we are looking for a zero of the
vector valued function F. Such zeros will be candidates for optimal designs. Chow



242 R. L. EUBANK, P. L. SMITH AND P. W. SMITH

(1978) has shown that for 1,.. , n,

Fi(T)

where we recall t0:=0 and t,/l := 1. Consequently, the Jacobian matrix of F at T,
A(T) :=[(OFi/Otj)(T)], is tridiagonal with nonzero elements given by

OFi k(ti ti-1)k-1 1
Jo - + r(ti- ti-1)] dr, 2 < < n,(3.3)

c3ti-1 (k-l)!
(1--r)kr-lf(ik/[ti

(3.4)

Of (ti ti-1)k-1 fl
Oti (k-l)!

(1 -r)-=r (kr- 1)f(2k)[ti_ + r(ti ti-1)] dr

+ (ti--ti)k-l IO1--1)!
(1-r)r-2(k(1-r)-l)f(2)[ti+r(ti+-ti)]dr’

l <=i <=n,

Ofi k(ti+l. 2 ti)k-1 IO rkf(2k[t, + r(t+ ti)], 1 <- <- n 1.(3.5) cti+-l (k ii (1 ,/.)k-1

When f is 2k times continuously differentiable and f(2k)> 0 we can use Newton’s
method to find a T* Dn which is a zero of F. Such a T* will be an optimal design
candidate and may be constructed using the algorithm presented below. If, in addition,
f satisfied the conditions of Theorem 2, then the T* located by the algorithm will be
the optimal design.

ALGORITHM
Step 1. Select an initial T (to,’", t,/).
Step 2. Check to insure that T D,,.
Step 3. Compute F(T) and A(T).
Step 4. Compute b A(T)-F(T).
Step 5. Stop if b is small or the maximum number of iterations has been met.
Step 6. Set ti ti- bi, 1,. , n, and return to Step 2.

As was indicated above, the algorithm (when it converges) finds a design T*
which satisfies a necessary condition for design optimality. In order to enhance our
chances of finding a "good" design, care should be taken in Step 1. An initial design
choice which usually yields good results is the nth element of an asymptotically optimal
design sequence (cf. Sacks and Ylvisaker (1966)). Such a sequence can be constructed
using the density

(3.6) h(x)--lf(2k)(x)12/2k+l/f
0

]f(2k)(s)[2/2k+lds

in the following manner. Let H denote the distribution function corresponding to h
with associated inverse (or quantile) function H-*. Then it can be shown (cf. Eubank,
Smith and Smith (1981a), (1981b) and/or Sacks and Ylvisaker (1966), (1970)) that
the nth element of an asymptotically optimal design sequence for/,T consists of the
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points

(3.7) ti=H_l(i) i=0,...,n+l
n+

The design sequence {T,},=I obtained by solving (3.7) for successive values of n is
asymptotically optimal in the sense that

v(6)
(3.8) lim

n- infT-o. V(/k.T)-- V(/3)
1.

Although this relationship between optimal and asymptotically optimal designs per-
tains to large n, it is often the case (as will be discussed in the examples) that the
asymptotics carry over to small n at least to the extent that the values of asymptotically
optimal designs provide a good indication of the locations of the optimal design points.

In some cases H-1 has a closed form making asymptotically optimal designs easy
to compute. However, even when this is not the case, H-1 can be readily evaluated
through numeric tabulation of H and subsequent interpolation.

If after one or more iterations the check in Step 2 fails, this indicates that the
algorithm has moved out of the feasible region, Dn. Such an occurrence is usually
indicative of a poor choice for an initial design. In this event one alternative, of course,
is to simply reinitialize with another design and try again. Alternatively, one might
reduce the size of the step taken in Step 6, i.e., take

(3.9) ti ti cebi

for some 0< a < 1. More generally, a modified version of the algorithm could be
utilized, where for instance, after the ith iteration the new design points are taken as

(3.10) tj tj-aSib, ] 1,..., n,

for some 0 < a < 1 where 0 < 6 _-< 1 is the largest value such that the resulting design
remains in D,,. We have not tested this last modification since it would only reduce
convergence time and since, for all the problems we have considered, convergence
has always occurred (in terms of a relative change in the design points between
successive iterations of less than 10-11) after only 4 to 7 iterations using an asymptoti-
cally optimal initial design.

The integrals computed in Step 3 of the algorithm will usually require evaluation
by numerical methods. This can be readily accomplished through the use of a Gaussian
quadrature rule.

We conclude this section by presenting several examples which illustrate the use
of the algorithm and Theorems 1 and 2 in the computation of optimal designs. For
simplicity the X process implicit in each of the following examples is taken to have
covariance kernel (2.4). When exhibiting a particular design we present only those
values which are in the interior of [0, 1].

Example 1. Consider first the case of

1 t6(3.11) f(t) ...
This regression function furnishes an example of a function which satisfies the condi-
tions of Theorems 1 and 2 and, hence, in this case for k 1, 2, 3, we are assured of
unique optimal designs for all values of n. In addition, through the use of this function
it will be possible to examine instances when the use of uniformly spaced design
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points, either for estimation or for initialization of the algorithm, is a sound strategy,
as well as instances when it is not. We now consider the construction and properties
of various designs for this regression model.

In computing optimal designs for this model, asymptotically optimal designs were
utilized as starting values. For a regression function having the form (3.11) the
asymptotically optimal designs are simple to compute since the H-1 function is given
by

I!3/11 whenk=l,
H-(x) 5/9 when k 2,

when k 3.

It is important to note that for k 3, the asymptotically optimal designs consist of
uniformly spaced design points. These are, in fact, seen to be the optimal designs.
Therefore, in the case of f(t) (1/6!)t6 with k 3 sampling the Y process at uniform
intervals is not only sound but an optimal strategy. This is not the case, however, for
k 1 and 2.

The optimal designs of size n 1, 3, 5, 10, 20 for this regression model were
computed for k 1, 2, 3. The variances of/k,r corresponding to these designs are
presented in Table 1 along with, for comparison, the variances obtained through the
use of asymptotically optimal and uniform designs. These values may be compared,
with regret, to the values of V(/)= IIf()ll,. provided at the bottom of the table.

Examination of Table 1 reveals that, as one might suspect, the substantive gains
from the use of optimal (as opposed to asymptotically optimal) designs occur for small

TABLE
Variance of lk.r for various designs when f(t) (1/6!)t6

k" 2 3

3
5

10
2O

Asymp-
totically

Optimal optimal Uniform
designs designs designs

184555.05063 185382.42720 267426.49874
163646.59657 163765.35862 184532.68263
160614.32569 160651.69363 169799.77924
159033.14199 159039.58083 161751.23364
158570.29681 158571.25684 159315.97500

Asymp-
totically

Optimal optimal Uniform
designs designs designs

5224.46233 5225.98932 52838.98710
5186.20258 5186.27201 5190.99885
5184.41623 5184.42633 5185.41386
5184.03539 5184.03592 5184.12677
5184.00260 5184.00262 5184.00958

Optimal
designs

252.00984
252.0O015
252.00001
252*
252

V(/) 158440 V(/) 5184 V(/) 252

* Agrees with V(/) to 6 decimals. ? Agrees with V(/) to 8 decimals.

n and/or k. Asymptotically optimal designs perform quite well in this case even for
relatively small n over all values of k. In contrast, for k 1, uniformly spaced design
points tend to perform poorly, relative to optimal or asymptotically optimal designs,
especially for small n. The use of uniform designs would seem acceptable for large n
when k 2 and, of course, the uniform, asymptotically optimal and optimal designs
all agree when k 3.

Through the use of asymptotically optimal designs to initialize the algorithm it
was possible to obtain convergence to the optimal designs, in every instance, in 5 or
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fewer iterations. However, uniformly spaced design points tried as starting values
resulted in a failure of the check in Step 2 of the algorithm for n => 10 when k 2
and even for n as small as 3 when k 1. In the instance of k 2 it was found that a
step of size a .29 in (3.9) could give convergence (to the extent of 5 digit accuracy)
after 41 iterations. (Values of a > .3 were all apparently too large to provide similar
results.) No such value of c could be found when k 1. Keeping in mind the criterion
(2.8) that is utilized for locating an "optimal" design point, this latter fact comes as
no surprise when one compares, for instance, the uniform 3-point design (.25, .5, .75)
with the optimal design (.65828, .81674, .92042) for this case.

Example 2. As an example of a regression function which is not a polynomial,
we now suppose [ has the form

8 t7/2/(t)

where the factor 8/105 is introduced to simplify subsequent numerical presentations.
Both Theorems 1 and 2 are applicable to this function when k 1 but not when k 2
or 3 as, in these latter cases, f() is not in C[0, 1]. Consequently, this will provide an
illustration of the performance of the algorithm under conditions other than those of
Theorem 1 or the ideal conditions of Theorem 2.

As in the previous example, the H-x function has a closed form. In this case,

X
/2 when k 1,

H-(x)= x/ whenk=2,
x7/2 whenk=3.

The variances of k.r corresponding to optimal, asymptotically optimal and
uniformly spaced designs of size n 1, 3, 5, 10, 20 are presented in Table 2 for k 1,

TABLE 2
Variance of k,Tfor various designs when f(t) (8/105)t7/2

k" 1 2 3

3
5

10
2O

Asymp-
totically

Optimal optimal Uniform
designs designs designs

94.98829 95.12777 102.67984
86.63789 86.65974 88.60695
85.34369 85.35069 86.22809
84.65509 84.65631 84.92172
84.45077 84.45096 84.52462

Asymp-
totically

Optimal optimal Uniform
designs designs designs

9.00467 9.00471 9.00532
9.00031 9.00031 9.00041
9.00006 9.00006 9.00009
9.00001 9.00001 9.00001
9* 9* 9*

Asymp-
totically

Optimal op.timal Uniform
designs designs designs

2.00009 2.00018 2.00039
2" 2.00001 2.00010
2* 2* 2.00004
2 2 2.00001
2t 2-t 2*

V(/) 84.375 V(/) 9 V(/) 2

* Agrees with V(/) to 6 decimals. " Agrees with V(/) to 7 or more decimals.

2, 3. As in the previous example, optimal designs were computed by use of asymptoti-
cally optimal starting values. In all instances convergence occurred after at most 7
iterations. Examinations of the values in Table 1 lead, again, to the conclusion that
the use of optimal designs (rather than asymptotically optimal designs) will be of the
most value when n is small. It should be remembered, however, that in contrast to
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the results presented in Table 1, those given in Table 2 were obtained, for k 2, 3
when Theorem 1 is not applicable. This suggests that the algorithm may still perform
well under moderate departures from the assumptions upon which it is based.

Example 3. Finally, consider the case of f having the form

(3.12) f(t) (t- 1/2)8_ (1/2)8 + 8(1/2)7t.
This regression function provides an example of optimal design duplicity, as well as
an illustration of the sensitivity some functions exhibit with regard to the selection of
an initial design.

Using n 1 with k 2, one finds that V(/.,7-) has a local maximum (rather than
minimum) at TO= {.5} with V(/2,7-o)= .74681. There are two optimal designs Ta=
{.23079} and Tz= {.76921} where V(/.,r)= V(/,7-)= .72007. Choices of starting
values such as .6 or .4 lead to convergence to TO whereas, for instance, the choices
.2 and .8 results in convergence to T and T respectively. It should be noted that
To is also the uniform and asymptotically optimal design for this case. We therefore
have an instance when the use of either uniform or asymptotically optimal (in lieu of
optimal) designs is not only a poor, but is in fact the worst, strategy.

The function (3.12) has also been considered in Book (1976) where the graph of
I[f-2,7-fllR versus tl is seen to have a "W-shape." Although there is little difference,
in this case, between the variance at the local maximum and at the two minima, it is
clear that functions may be constructed for which this difference is arbitrarily large.

In the examples, we have considered only regression functions for Which the H-1

function has a closed form. This has been for the sake of illustration and has the
consequence that the asymptotically optimal designs perform better, for estimation
purposes, than might otherwise be the case. Unfortunately, situations where H-1 is
of a closed form are rare in practice. The reader is referred to Eubank (1979) for
several examples of the evaluation of H- by numerical methods.

All the computations in this and subsequent sections were performed on either
the IBM 360 computer at Arizona State University or the CDC 6600 at Southern
Methodist University.

4. Application to location or scale parameter estimation. Suppose a random
sample, Z1, , Zv is obtained from a distribution of the form F(z) Fo(Z/B), where
Fo is a known distributional form and/3 is an unknown scale parameter. Fo is assumed
to be absolutely continuous with associated probability density function fo. Let
Oo(t) :=F- (t) and define the density-quantile function as do(t):=fo(Oo(t)), 0 <- <= 1.
The sarriple quantile function is defined by t(t)=Z(), (f-1)/N<t<=ffN, =1, N, where Z0) denotes the ]th sample order statistic.

Parzen (1979) has shown that, for N sufficiently large, a model for scale parameter
estimation is

(4.1) do(t)t(t) [3do(t)Qo(t) + trX(t), [0, 1],

where tr B/x//" and X(. is a Brownian bridge process. Eubank (1981) has shown
that the problem of optimal design selection for model (4.1) is identical to the problem
of selecting an optimal spacing for the sample quantiles utilized in constructing the
asymptotically best linear unbiased estimator (ABLUE) of/ (cf. Sarhan and Green-
berg (1962) for discussions and examples of the more classical approach to the optimal
spacing problem).

Given a design T Dn (classically referred to as a spacing in the context of this
problem) the ABLUE of/,/7, is, in fact, the corresponding generalized least squares
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estimator of/3 formed from model (4.1). Since, for a Brownian bridge process, k q,
it follows from property (ii) in 2 that only those observations which correspond to
the design points, tl,’’’, tn, in the interior of [0, 1] are used for estimation. Thus,/7-
is of the form i=1 c(ti)do(ti)O(ti) where explicit expressions for the c(ti) can be found
in Sarhan and Greenberg (1962). The optimal spacing problem consists of finding a
spacing (design) for which the variance of fiT is a minimum or, equivalently,

(4.2) ARE(fiT) V([)/V([T),
the relative efficiency of/T with respect to/, is a maximum. Equation (4.2) can be
shown to provide the asymptotic (as N c) relative efficiency of the ABLUE with
respect to the maximum likelihood estimator of fl (cf. Eubank (1981)), which indicates
the reason underlying the use of the ARE notation.

Upon examination of (4.1) there may appear to be a disparity between this model
and the regression model (1.1) (and, consequently, between the optimal spacing and
optimal design problems) due to the factor tr which appears in (4.1). The presence
of this term implies that the variance of /T is not I[,Td011;,= as in (2.1) but rather

,d011. However, tr although unknown, is independent of T. Consequently,
to minimize the variance of /37- it suffices to minimize II,d0[l= and the optimal
spacing problem is therefore equivalent to the optimal design problem discussed in
the previous two sections.

At present the literature on optimal spacings is composed of numerous articles
cataloging the optimal spacings for various distribution types (cf. Eubank (1981) for
a list of references). Thus the classical approach to the optimal spacing problem has
been to consider each distribution separately. As the Brownian bridge process corres-
ponds to the special case of k and q both equal to 1, it now follows that the algorithm
presented in the previous section may also be used for the computation of optimal
spacings. Two important consequences of this fact are"

(i) Model (4.1) in conjunction with Theorems 1 and 2 and the algorithm of 3
provide the first simple, unified framework for the computation of optimal spacings.

(ii) Through reference to the optimal spacing literature, comparisons may be
made between designs (spacings) obtained from the algorithm and those computed
by other authors using the classical approach which involves a search using global
optimization for each distribution.

It is important to note that, due to the particular characteristics of a distribution,
it is sometimes possible to show uniqueness for optimal spacings when Theorem 2 is
not applicable. Such results may be helpful in providing an indication of how our
algorithm will perform under nonideal conditions. We illustrate this and the other
comments with an example.

Let F0 be the distribution function for the Pareto distribution, i.e.,

In this case

(4.3)

and

Fo(x)=l-(l+x)-, x,,>0.

do(t)Qo(t) ,[(1 t)-(1 t)+}/]

(4.4) [do(t)Qo(t)]"= 1 + (1 t)

Theorem 2 is therefore applicable and insures a unique optimal design when u <-1.
The unique optimal spacings for u .5 obtained from the algorithm with n 1, 3, 7
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TABLE 3
Optimal spacings (designs) ]’or the Pareto, u .5, 2, k

n" 3 7

tl
t2
t3

t5
t6
t7

ARE(r)

,=.5 =2

.35961 .618O9

.77461 .72136

=.5 =2

.16295 .34049

.35048 .63042

.58405 .85886

.94657 .92597

,=.5 ,=2

.07805 .17865

.16078 .34519

.24934 .49868

.34549 .63789

.45215 .76118

.57488 .86617

.72776 .94889

.98700 .98088

are presented in Table 3 and agree with those obtained by Kulldorf and V/innman

(1973) using global optimization methods. Also given in Table 3 are the results
obtained from the algorithm when p 2. Even though neither Theorem 1 nor 2
applies, it is still true (cf. Kulldorf and Vinnman (1973)) that the optimal spacings
for the Pareto are unique in this case as well. The fact that the spacings computed by
the algorithm agree with the optimal spacings for , 2 given by Kulldorf and Vinnman
(1973) is an important illustration of the fact that unique optimal designs exist for a
wider class of functions than those satisfying the hypotheses of Theorems 1 and 2
and, in such instances, may be computed with this algorithm.

If, instead of scale parameter estimation, location parameter estimation is of
interest, the distribution function has the form F(z)=Fo(z-/3). A model similar to
(4.1) holds in this case as well. To obtain an algorithm for optimal spacing computation
in this instance, it is only necessary to interchange the roles of do and do" Q0 in the
previous discussion.

The example presented in this section illustrates how the algorithm presented in
3 may be used for optimal spacing computation, and, in addition, provides an

indication of how it performs under departures from the "ideal conditions" of Theorem
1 or 2. For these reasons it has been useful to consider a situation where the optimal
spacings had been obtained by other methods and were, therefore, available for
comparison purposes. However, the value of this algorithm to the practitioner will lie
in its use for the computation of the optimal spacings in situations which have not
been considered in the literature and for which existing results are not available. It
is our belief, based on comparison with the classical results, that this algorithm will
be a valuable tool for this purpose even under moderate departures from the conditions
of Theorem 1 or 2. We also conjecture that, since the algorithm is based on the local
behavior of the d (or d Q) function near an optimal spacing element, optimal spacings
can be obtained more rapidly and efficiently through the use of this method rather
than an ad hoc global optimization technique. Unfortunately, the computational
aspects of optimal spacing construction are typically not reported in the literature on
the subject, and consequently it is difficult to obtain comparisons which support this
contention.

5. Summary and discussion. In this paper an algorithm has been presented for
the computation of optimal designs for certain time series models. This algorithm
locates a design which satisfies a necessary condition for optimality provided f(2k) is
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continuous and of one sign on [0, 1]. If, in addition, log f(2k) is concave on (0, 1) the
use of this algorithm should provide the optimal design. The algorithm has also been
shown to be useful in the selection of order statistics for location or scale parameter
estimation. The advantage of this approach to spacing selection over classical tech-
niques is that it provides a unified approach to optimal spacing selection which obviates
the need for global optimization.

Experience with this algorithm indicates that it works rather well even when the
conditions of Theorem 1 are only approximately satisfied (e.g., Example 2 of 3 and
the case of , 2 in 4). However, it may be more sensitive in such cases to the choice
of initial designs. While uniformly spaced starting values are easily input and may
produce the optimal design, they can also give poor or misleading results. Generally,
better results may be obtained by initializing with an asymptotically optimal design,
and, consequently, this method is recommended even though one must begin by
evaluating the function/_/-1 as in (3.7).
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OUTFLOW BOUNDARY CONDITIONS FOR FLUID DYNAMICS*

ALVIN BAYLISS" AND ELI TURKEL

Abstract. A radiation boundary condition is derived for the Euler equation linearized about a constant
state with a mean flow. Since nonlinearities and viscosity are not important in the far field, this boundary
condition is also useful for high Reynolds number Navier-Stokes flow. The use of the radiation boundary
condition allows both an acceleration to a steady state and a constriction in the size of the computational
domain. This results in savings in both computer storage and running times. Results are presented for both
the Navier-Stokes and Euler equations. A variety of schemes have been used in conjunction with the
boundary condition. These include explicit and implicit finite difference schemes and spectral methods.
The effectiveness of the radiation condition is evident in all these cases.

Key words, acceleration of convergence, exterior regions, fluid dynamics, radiation boundary conditions,
subsonic outflow boundary.

1. Introduction. The numerical computation of steady-state fluid flows in
exterior regions is frequently accomplished by integrating the time-dependent
equations until a steady state is achieved. Viscosity effects are generally important
only in localized regions, e.g., boundary layers. Thus the equations of fluid dynamics
are basically hyperbolic in most regions of space and so admit wave-like solutions. It
follows that a steady state can be achieved only by the propagation of energy outside
the region of interest. In many problems this is accomplished by the radiation of
energy to infinity.

In order to numerically solve a problem that is posed in an exterior region, it is
usual to simulate the problem in a finite computational region. One alternative is to
map the exterior region into a finite domain. This can create substantial errors,
however, since one can not resolve the waves near infinity [6]. Instead, one usually
computes in the physical domain and introduces artificial boundaries so that the
computational domain is finite. When the flow is subsonic normal to the artificial
surface, boundary conditions must be imposed along the artificial surface [12]. These
boundary conditions should simulate the propagation of waves out of the computa-
tional domain. When this is not done, spurious reflected waves can be generated at
the artificial boundaries. The resultant influx of energy into the computational region
can delay convergence to a steady state and also degrade the accuracy of the steady-
state solution. To preserve the accuracy, it is often necessary to place the artificial
surface far from the region of interest. This results in a significant increase in both
computer storage and running time.

Rudy and Strikwerda [14] developed a nonreflecting boundary condition by
analyzing a simplified one-dimensional model. There is a free parameter which was
chosen, for the one-dimensional case, to optimize the rate of convergence. For the
two-dimensional problems, the parameter was chosen by computational experimenta-
tion. In some cases the use of their boundary condition led to dramatic accelerations
in the rate of convergence to a steady state [14], [15].
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23665.
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University of Tel-Aviv, Tel Aviv, Israel.

25O



OUTFLOW BOUNDARY CONDITIONS 251

In this study, a boundary condition is developed which utilizes the structure of
the outgoing waves in either two or three space dimensions. This condition is a
generalization of one introduced in [2] for the wave equation. This boundary condition
results from matching the solution to a functional form which is an approximation to
an outgoing wave. It is easily shown that in the far field the fluid dynamics equations
reduce to a convective wave equation. Hence, one can construct boundary conditions
for the Euler equations which approximate outgoing waves. Since the viscosity terms
in the Navier-Stokes equations are usually negligible in the far field, these boundary
conditions are equally valid for these equations. The use of these boundary conditions
can permit a substantial reduction in the size of the computational domain as well as
an increase in the rate of convergence to a steady state. Using the results of [2] a
family of boundary conditions can be developed, although only the first member of
the family is studied in this paper. This condition is derived in 2, while computational
results are presented in 3.

2. Derivation of radiation boundary conditions. In high-Reynolds number flows,
the effects of viscosity are usually restricted to boundary layers in the vicinity of
bodies. In the far field, the viscosity effects are small compared with the truncation
error of the numerical scheme. Hence, it is legitimate to derive our far-field boundary
conditions based on the linearized inviscid equations of motion. The linearization is
about the steady state and is based on the assumption that the flow approaches a
steady state.

Gustafsson and Kreiss [7] have shown that the problem in an exterior domain
can be restricted to a bounded domain only when the dependent variables approach
a constant state in the far field. For nonlinear problems, it is possible for shocks to
form outside the domain of integration and to affect the solution even when the flow
is smooth in the far field [9]. We assume that this does not occur. In particular, we
assume that the gradients of the velocity and pressure are small in the far field.

We therefore consider the Euler equations linearized about a constant state.
After a rotation of the coordinate system we can assume that this steady state is given
by u uoo, v 0, p poo, p poo where u and v are the x- and y-velocity components,
p is the pressure and p is the density. We stress that the linearized inviscid equations
are used only in deriving the far-field boundary conditions. The computational results
in the next section are based on solutions of the nonlinear Navier-Stokes equations.

In the far field we have

(la) tt + utx + p---- 0,
p

(lb) t3t + uoot3x + P___r_y= 0,
p

21c) p, + up, +oc (x + ,, o.
Here,/3 p -po, t u uoo, and 3 v are the perturbed flow variables. Manipulation
of (1) shows that/3 satisfies a convective wave equation

(2) tt + 2u,t- (c :z :z :zu )p,x c oop,, O.

It is clear that the behavior of (2) is similar to that of the wave equation, provided
that the normal outflow speed is subsonic, i.e., u< c. When the outflow is supersonic,
no boundary conditions can be specified. Instead, all variables should be calculated
by some numerical procedure, e.g., extrapolation. The accuracy of this procedure is
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not crucial since the errors do no propagate into the region. We therefore concentrate
on the subsonic case.

Let Moo uoo/coo denote the steady-state far-field Mach number. For the subsonic
case, Moo < 1, one boundary condition must be specified at the outflow boundary. This
situation occurs frequently in transonic calculations. In many codes either p poo is
specified or else the problem is underspecified with all the variables extrapolated (see,
e.g., [16] and [15]). Computations presented in [14] demonstrate that the boundary
condition p poo can lead to reflections which delay the approach to a steady state.
Underspecification can lead to the wrong steady-state solution (see [7]), and so
checking that the solution is smooth is not sufficient to justify the use of extrapolation
for all the variables [16]. The use of a radiation boundary condition accelerates the
convergence to a steady state while maintaining a well-posed problem.

In order to simplify the procedure, we introduce a change of variables"

(3) =(1-M2)-l/2x, r=coo(1-M)l/2t+Moo.

Using these new independent variables in (2),/3 satisfies the wave equation

(4) /3,. (/3e +/3,) O.

We also introduce polar coordinates

(5) d
. :2 + y2, tan 0 --y

to study the behavior of the solutions to (4).
Lax and Phillips [10] have shown that for large time and large d, p has the

asymptotic form

(6) /
f(r- d, )

dl/2

In fact, (6) is an asymptotic representation for outgoing wave solutions to (4). We
now wish to develop boundary conditions which match the solution to the functional
form (6). It is easily seen that the condition

(7)

is exact [or all functions which identically have the form (6).
The boundary condition (7) is the first member of a family of radiation boundary

conditions developed in [1] and [2]. There it is shown that (7) yields a well-posed
problem and the solution is more accurate as d approaches infinity. The results
[10] justify the use of (7) as + m. Hence, the use of (7) can be expected to accelerate
the approach to a steady state. In addition, it can be expected that (7) will allow the
artificial surface to be brought further in without loss of accuracy as compared with
the boundary condition p

Introducing the physical coordinates (t, x, y), and the total pressure p, we can
rewrite as

1 [ x Moo ] x P-Poo=O,(8) coo(1-M2oo)1/2 1- (1-M)a/2 P, +Py + 2----
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where
2

d2 x 2

We can then use the Euler equations (1) to eliminate the spatial derivatives of p. The
resultant equation is

1 pooc 2
X Y [l)t "Jr- Uool)x]q-p P-’---’--’ O,(9) (cL uo)/P’- coo uo -[u,-uov,]-OOcl 2d

If the computational domain is a long thin rectangle, 0 N x N L, 0 N y N b, with b/L << 1,
then (9) reduces to

1
(10) pt-ocu,+a(p-p)=o, =,
which is the optimal condition of Rudy and Strikwerda [14].

For axisymmetric cylindrical coordinates (t, z, r), (7) is replaced by

(7’)

with d=z/(1-M)+r. Similarly, in (8) and (9) (x, y) is replaced by (z,r), and
the inhomogeneous term is (p-p)/d rather than (p-p)/2d.

Note that at the steady state (9) does not enforce p p at the outflow boundary.
However, p is equal to p only at infinity and not along any finite boundary. Instead,
(9) is an improvement based on an asymptotic expansion in the reciprocal of the
distance [2]. Since the gradient of v is small in the far field, p is approximately equal
to p. In fact, the use of zeroth-order extrapolation for the velocities, a common
numerical boundary condition, approximates the condition v u 0 and enforces
p p in the steady state.

In the implementation of (9), we have generally neglected the spatial derivatives
of v: Furthermore, the steady states 0, u and c are usually not known. Hence;
these values are replaced by the solution at the previous time step. The finite difference
form of this modified radiation condition is

+ Oi,(c
i,]P’ -P’ 0, d,

(
Yi,j n+l Oi,jt n+l

where Oii [(c" 2 2/2 "+ "+,i) -(u,i: We calculate u,i and v,i by zeroth order extrapola-
n+ltion, and P,i by (11). The solution of (9) in conjunction with a one-dimensional

implicit algorithm is discussed in the next section.
Until now, we have discussed the boundary conditions applicable at the down-

stream boundary. However, boundaries tangent to the mean flow also arise in practice.
These boundaries are characteristic boundaries based on a linearization about the
steady state. It is found that the extrapolation of all the variables can introduce
oscillations. These oscillations delay the convergence to a steady state and can also
degrade the accuracy of the steady state when the boundary is close to the region of
interest. Since one does not want the artificial top boundary to be too far away in
order to save on computer storage and running time, it is advisable not to extrapolate
all the variables.
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The use of the boundary condition (9) or (11) has resulted in dramatic accelerations
to the steady state and has also permitted substantial constrictions in the computational
domain. In the algorithm at the top boundary, it is advisable to replace poo by p" since
p is not close enough to poo when the top boundary is brought far in.

An alternative for the top boundary is to express (2) in terms of the convective
derivative

Then (2) becomes

D 0
=--+ Uoo
Dt Ot x

DZff 2(12)
Dt2 co(px+p) O.

This leads to the radiation boundary condition

co PP-------- 0.(13a) pt-oo--(xut+ yvt)+
2d

The condition

(13b) p, Ooocoovt O,

based on the one-dimensional characteristic theory, also provides improvement similar
to (11) for the top boundary. The advantage of (13) is that it is equally valid for
supersonic flow. We recall that even for supersonic flow, one boundary condition is
required along the top boundary since the flow is subsonic with respect to the normal
(i.e., v) velocity. Nevertheless, many people have used extrapolation for all the
variables at the top boundary. For the variable v, zeroth order extrapolation is
equivalent to

(13c) vx =0.
The results of Table 1 show that (13c) can delay the achievement of a steady state
and degrade the accuracy of the resultant solution, especially when the top boundary
is close to the region of interest.

3. Computational results. To validate the effectiveness of the boundary condition
(9) or (11), we have tested it for a variety of problems and schemes. The first set of
tests is based on the full nonlinear, time-dependent and compressible Navier-Stokes
equations with the viscosity given by Sutherland’s law. The equations are solved using
the MacCormack two-step algorithm [11].

We first consider a rectangular domain with a uniform flow with a Mach number
equal to 0.8. In the center of the domain, the initial velocity, pressure and density
are changed to a different constant state (see [14]). Analytically, this perturbation
should propagate downstream and exit through the downstream boundary. When the
outflow boundary condition was chosen as p poo, the numerical solution had not
converged after 20,000 iterations. Detailed output indicates that long-wavelength
perturbations oscillate between the inflow and outflow boundaries, preventing the
achievement of a steady state [14]. This perturbation decays slowly as a result of the
dissipation in the scheme and in the equations. As a second boundary condition, we
chose (10) with an optimal a, chosen by experimentation. This condition was proposed
in [14] and accelerated the iteration procedure so that a steady state was achieved in
3600 iterations. With the radiation condition (11), a steady state was achieved in 1850
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iterations. Thus, an acceleration by a factor of two was achieved compared with (10)
without the need for a free parameter. Compared with the boundary condition p po,
(9) improved the convergence by a factor greater than 10.

As a more realistic problem, we consider the Navier-Stokes equations for subsonic
flow over a fiat plate. In this case, we apply (11) at both the characteristic top surface
and the outflow boundary. We also consider the effects of varying the position of the
top boundary as well as acceleration of the convergence. The same set of vertical grid
points are used in all the runs, so reducing the height of the top boundary reduces
the number of mesh points and hence the computational effort. The height of the top
boundary is measured in boundary layer thicknesses.

The results of Table 1 show that (9) is comparable to the condition in [14] (i.e.,
(10)) when extrapolation is performed along the upper boundary. The use of (9) or

TABLE
Two-dimensional MacCormack scheme for flow over a flat plate using the
compressible Navier-Stokes equations. Usually the origin is at (1.0). * Indicates

inaccurate steady state.

Position of top b.c. at top Outflow b.c. No. iterations

1.0 (13c) (10) a=0.3 12800
1.0 (13c) (9) 12500
1.0 (13c) (9) origin= (0, 0) 14000
1.0 (13a) (9) 8800
0.6 (13b) (10) a=0.3 12850
0.6 (13a) (10) a=0.3 13350
0.6 (13c) (9) 13950*
0.6 (13b) (9) 8800
0.6 (13a) (9) 9100
0.4 (13a) (9) 9400
0.4 (13b) (9) 9500

(13) at the top, together with (9) at the outflow, significantly accelerates the conver-
gence to a steady state. Thus, when (13) is used at the upper surface, the imposition
of (9) at the downstream boundary is an improvement over (10) or p p. When the
upper boundary is close to the flat plate, extrapolation at the upper boundary
significantly degrades the accuracy of the steady state and delays the achievement of
the steady state but (9) or (13) yields acceptable results.

As an additional test, we consider subsonic flow about a NACA-0012 airfoil at
a 0 angle of attack. A nonorthogonal grid is used and the Euler equations are
integrated using a finite volume technique [13]. Different time steps are used at each
mesh point so that the difference scheme is not consistent with the time-dependent
equations. The free-stream Mach number is 0.4. The origin for the radiation condition
(9) is chosen at the lower left corner. In Table 2 we present the results for different
exit boundary conditions. The methods denoted by * are boundary conditions without
the lower-order terms involving p-poo. The number of time steps for max (Op/Ot) to
be less than 10-4 is given. We also show 1/N (id(h-ho)2)1/2 where h is the specific
enthalpy. Since h h0 in the steady state, this is a measure of the accuracy of the
steady state solution. We see from Table 2 that all the radiation-like boundary
conditions are considerably better than p poo specified at the outflow boundary. In
particular, they allow the outflow boundary to be placed immediately beyond the
airfoil. Underspecification by extrapolating all the variables deteriorates the accuracy
of the steady state in addition to retarding the achievement of the steady state.
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TABLE 2
Finite-volume technique for Euler equations about NACA-O012

airfoil. * Indicates that lower order terms were not included.

Downstream b.c. (h ho)2 10-4 No. steps

p =poo 6.68 >9000
(9) 5.96 600
(9*) 5.97 600
(10) 5.91 601
(10") 5.90 599

Extrapolation 30.03 2111

When the steady state contains a shock, the use of the radiation condition does
not seem to significantly accelerate the achievement of a steady state. In this case,
the correct formulation of the inflow data is more important than the outflow boundary
condition.

As a further example, we consider the one-dimensional nozzle equations,

(14)

(Ap), + (Apu)x O,

(Apu)t +[A(pu2 +p)]x Axp,

(AE), + [Au(E +P)]x 0.

where A(x) is the cross sectional area of the nozzle. One method used to solve these
equations is a linearized implicit Euler method as suggested by Briley and McDonald
[4] and Beam and Warming [3]. The inflow is subsonic with both u and E specified.
We consider only flows that are subsonic at the outflow with the exit pressure given.
A shock forms when the exit pressure is within the proper range.

The boundary condition p poo is implemented within the code by a linearization
technique similar to that employed for the difference scheme. Let Av v ll/l- v n.
Then the condition pn/l= po is implemented by

2u A(p-p
(15) - A(Ap) uA(Apu + A(AE)

y 1

Similarly, the radiation condition

(16)
0p 0u

Ot pc-+a(p p) 0

is implemented as

(1 + a At)(u")
2

(17)

A(Ap)- (1 + aAt)u" +
y-

e

y 1] A(Apu)

+(1 + te At)A(AE)
aAtA(p-pll)

We note that as a oo, (17) reduces to (15). We further note that the condition p poo
is a physically relevant boundary condition. Hence, the use of (16) is not consistent
with the time-dependent equations. Only in the steady state do we recover the accuracy
of the scheme.
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In Table 3 we present the results for a selection of shock-free computations.
Since the analytic solution is known for both smooth and shocked flows, exact errors
can be calculated. The results of Table 3 show that the radiation condition (16)
accelerates the achievement of a steady state even with the use of implicit methods
and large time steps. The characteristic condition, a 0, produces no reflections in
one dimension, and so is an appropriate radiation condition. The correct steady state
is achieved due to the proper choice of initial conditions. The choice ce 0.278 was
suggested in [14]. Similarly, gains in efficiency are obtained when a Chebyshev method
(see [5]) is used to obtain the solution (see Table 3b).

When the analytic steady-state solution contains a shock, the use of the radiation
condition does not accelerate the achievement of a steady state. The value of the back
pressure determines the location of the shock. Since we begin with a smooth flow,
the use of (16) can delay the correct formation of the shock (see Table 4).

TABLE 3a
MacCormack scheme for nozzle equations (14). Time steps chosen so that
max (At/Ax)(lul/c)<-0.9 with 33 mesh points. Exit Mach number is 0.58.

No artificial viscosity is needed.

Exit 15 b.c. L steady-state error 10-4 No. steps

p=poo 6.32 1670
(16) a 0.0 6.81 482
(16) a =0.278 23.14 477
(16) a 1.0 42.62 510
(16) a 10.0 9.28 1139

TABLE 3b
Chebyshev collocation scheme ]:or nozzle equations (14). Time steps chosen
so that maxNAt([u[+c)<-0.1 with N=33. Higher modes are filtered ]:or

stability.

Exit b.c. L2 steady-state error 10-4 No. steps

p =po 2.31 19,100
(16) a=0.0 5.19 4,334
(16) a =0.278 24.23 4,271
(16) a 1.0 47.04 4,044
(16) a 10.0 19.57 10,214

TABLE 3C
Implicit linearized backward Euler scheme for nozzle equations (14). The
radiation condition is implemented as in (17). Artificial viscosity is added for

stability. The time steps are chosen so that max (mt/mx)(lul/c)- 10.0.

Exit b.c. L steady-state error x 10-4 No. steps

p=poo 11.44 153
(16) a=0.0 8.11 52
(16) a 0.278 9.33 118
(16) a 1.0 8.40 182
(16) a 10.0 11.16 158
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TABLE 4
MacCormack scheme [or nozzle equations (14) when steady solution contains
an imbedded shock. Time step chosen so that max (At/ Ax)(lul / c) 0.9 with

33 mesh points. L error excludes shock region.

Exit b.c. L steady-state error x 10-4 No. steps

p =poo 20.29 499
(16) a =0.0 18.14 473
(16) a =0.278 27.03 718
(16) a 1.0 16.78 571
(16) a 10.0 20.52 640

4. Conclusion. Time-dependent codes are frequently used to achieve a steady
state. For large Reynolds number situations, the steady state is achieved by allowing
the energy to propagate to infinity. The boundary condition (9) simulates the radiation
of energy to infinity, and so allows a more rapid achievement of a steady state. In
addition, the application of (9) at characteristic boundaries is found to permit a
substantial constriction in the size of the computational domain.

The efficiency of the boundary condition has been shown for a variety of situations.
Further examples, for time-dependent problems, are given in [2] and [17]. A one-
dimensional test shows that the boundary conditions are also useful for implicit codes
with large time steps and for global methods such as a Chebyshev collocation algorithm,
as well as for the standard explicit methods. This is true even though the boundary
condition p p is physically relevant. Nevertheless, the use of a radiation condition
allows the attainment of an accurate steady state in addition to accelerating the
approach to a steady state. Imbedded shocks within the flow seem to reduce the
efficiency of the radiation boundary condition.
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THE CELL DISCRETIZATION ALGORITHM FOR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS*

JOHN GREENSTADTt

Abstract. The cell discretization algorithm has been developed for the solution of partial differential
equations. Its application to boundary value problems involving self-adjoint elliptic equations is described,
including the treatment of eigenvalue problems. Some discussion of its relationship to the finite element
method is also included. Finally, various representative problems are solved numerically, by means of a
Fortran program which implements the algorithm. The solutions give some indication of the behavior of
the method for Dirichlet, Neumann and mixed boundary conditions. Some problems from the literature
are also solved, so that comparisons can be made with other methods.

Key words, partial differential equations, cell discretization, finite element methods

1. Introduction. The cell discretization algorithm (abbreviated CD) is a pro-
cedure for reducing problems involving partial differential equations to discrete form,
so that they can then be solved on digital computers. Work on this method was started
in the mid-1950s, and the primary motivation was to develop a method sufficiently
general that it could be applied in a straightforward way to problems involving irregular
geometries. Although the initial efforts to formulate such a general method used the
finite-difference approach, it was soon realized that this approach is too limited in
too many ways, so that an approach based on subdomains as the principal discrete
elements was adopted. At about this time, the well-known finite element method
(FEM) was being developed, which uses the same basic idea of decomposing the
domain in which the problem is posed into subdomains, each with its own approximate
representation of the solution function.

The CD approach was formulated in variational terms from the start, but the
initial functional was the least squares integral (the method of Trefftz) rather than the
Dirichlet integral, on which the (generally preferable) Rayleigh-Ritz method is based.
Moreover, the connections between the intracell representations, which must be made
at. the cell interfaces, were imposed in the form of what are now known as penalty
terms (in this case, the integrals over the interfaces of the squares of the mismatches
between adjacent representations). As is currently well known, penalty functions were
first used by Courant in 1943 [3], but he did not there apply them to interfaces. The
formulation of CD based on interface penalty functions was published in 1959 [6].

The present formulation treats the interface relationships quite differently, in that
the penalty terms were abandoned (in 1967, see [7]), and the interface connections
were made in the form of explicit, exact constraints, so that the discretization method
reduces to the solution of a constrained variational problem, instead of an uncon-
strained one involving penalty functions. There are certain computational and pro-
cedural advantages to this which will be made clear as the algorithm is described. The
discrete equations resulting from this procedure originally involved Lagrange multi-
pliers, which made their solution by iterative means exceedingly complicated. Descrip-
tions of this approach were given in an IBM report issued in 1967 [8], and in a talk
at a Dundee Conference in 1971 [10].

To remove these complications, the discrete variables are pretransformed in such
a way that the interface constraints become identities, and do not appear explicitly.
The resulting minimization problem, from which the discrete equations are derived,
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is again unconstrained (but without penalty terms), and involves a positive-definite
quadratic form. It is well known that the resulting discrete equations can be solved
by the Gauss-Seidel method, among others. A description of this stage of cell
discretization appeared in an IBM report in 1972 [11]. In this report, the solutions
(by means of a Fortran program) to various model problems were shown, demonstrat-
ing numerically (but not proving mathematically) that the method worked, and that
it deserved further investigation. In the time since 1972, CD has been applied to the
nuclear reactor multigroup problem, and has yielded very good numerical results for
some extremely large problems, in both 2 and 3 dimensions. Furthermore, after
substantial effort was made to make the program run more efficiently, the solution
times became comparable with those for the standard reactor codes. (This work will
be described in a separate paper.)

In addition, various technical problems associated with the method were identified
and solved during this time, such as the proper treatment of Neumann and mixed
boundary and interface conditions, the improvement of the "relaxation" algorithm
(namely, by the replacement of the Gauss-Seidel method by the generalized conjugate
gradient method [2]), the use of extrapolation in eigenvalue problems, etc. On the
theoretical side, nothing has been proved with regard to convergence, partly because
the methods used for the FEM do not carry over to CD. The use of a posteriori
interface constraints, coupled with a freer choice of cellwise approximations, suggests
that the "minimizing sequence" idea must be generalized to a "minimaxing sequence",
for which the analysis is more complicated. The methods used to analyze CD are
probably closer to those devised for the Weinstein method of intermediate problems
[19], rather than to those suitable for the analysis of the FEM. These matters are
discussed further in 4.

The current formulation of CD is contained in a 1980 IBM report [12], of which
this paper is a condensation. Thus, we shall have to refer the reader to that report
for many of the details of the algorithm. However, we shall show in this paper that
cell discretization is not a subset of the finite element method and, indeed, does not
much overlap with it.

Although we describe here the application of CD to the elliptic case only, the
method is also applicable (at least in principle) without much modification, to the
parabolic and hyperbolic cases as well. An outline of these considerations may be
found in an IBM report issued in 1967 [9]. However, we have had no numerical
experience with time-dependent problems.

2. Discretization procedure. We shall consider the self-adjoint elliptic partial
differential equation (PDE)"

o ( +(2.1) -i=1 x/ ai](X
Ox] ]

]=1

This equation is to be solved in a domain , which is bounded, open, connected, etc.
in R (n _-> 2), and whose boundary (rectifiable, without cusps, etc.) is F. We also assume
that {ag]}, bl and b2 are integrable over various subdomains, surface segments, etc.

We first partition fl into K subdomains {k;k 1,’’’, K} (or cells), some of
which will be contiguous with each other, i.e., if flk and fl, are two contiguous cells,
then the intersection of their closures, flk fl,, has a nonvanishing surface measure.
Thus, e.g., cells whose closures overlap only in a point are not contiguous. (Points
play no role in CD.) We shall denote the intersection of lqk and 1), by Fkm, their

interface. The interior of Fkm will be denoted by Fkm.
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For convenience, the exterior of I) in R" will be denoted by lq0, so that the
"interface" segments {Fko} are really the boundary segments of l). In Fig. 1 is shown
a simple two-dimensional illustration of all these features. Note, e.g., that lz and ’6

FIG.

are not contiguous neighbors, nor are 3 and f5. ’3 and "4 are not neighbors at all.
Note that the cell structure in lq is quite general in that, for example, the cells are
.not required to be triangular, quadrilateral, etc., nor are the vertices of contiguous
neighbors required to coincide. This flexibility makes CD potentially very adaptable
to irregular geometries.

For each value of k, we assign to lk a separate approximation k(X) to the
dependent variable if(x). This approximation will depend on a finite set of unknown
parameters {Ok,; tx 1, ", Mk}, but its functional form must be specified in advance.
Note that each Mk may be different. Approximations of this type are also quite general,
and are analogous to those used in the Ritz method. They need not be polynomials,
and examples will be exhibited in which trigonometric functions were used. For linear
problems, such as the one being considered, the most sensible choice for 4’k is

M

(2.2) 4’k(X; Ok)= 20k,.Cbk,.(X).
tx=l

The basis functions {4)k,(X)}, as we shall call them, are assumed to be linearly
independent in Ok and must also be assumed to satisfy certain additional "complete-
ness" requirements on the boundary of Ok, which we shall explain in 4.

To describe a cell boundary Fk in more detail, we must introduce some notational
conveniences. Let the set of contiguous neighbors of Ok be labeled by
{ml, m2," ", mjk}. We shall frequently denote this set of labels by the symbol m[k],
and can thus define Fk to be

(2.3) Fk LJ Fkm[k],
m[k]

i.e., the union of all the interfaces which Ok shares with its contiguous neighbors.
Another notational convention will be to replace the symbol x by the symbol s when
x is understood to label points on an interface.

We next select, for each interface l)k,, a set of linearly independent weight
functions {w,(s); 3’ 1,..., Lkm} which need only be defined on Fkm itself. The use
of these weight functions is the most distinctive feature of CD, and we shall have
much more to say about the nature of the {w,}.

We use these weight functions to apply what we shall call moment collocation at
the interfaces {Fkm}. Let us denote by Ak,(s) the mismatch between 6k(S) and 6,(s)
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on Fkm. Thus:

(2.4) /km(S) " (clk(S, Ok)-- ICm(S, Otn))sFkm.

Now, instead of requiring Akin (S) to vanish identically (or at selected interface points),
we shall require only "weak" or "moment" continuity, in the sense that"

(2.5) Ir Ak,,(S)W,(s) dFk, O,
ktrt

where dFk,, represents the surface element on Fk,. Moment collocation of this kind
does not seem to appear in the FEM literature, but it was used (for boundary conditions
only) by A. Weinstein [19, p. 68] in his method of intermediate problems, which he
used to solve for the vibrational modes of clamped elastic plates. Weinstein, however,
like Rayleigh and Ritz, dealt only with single domains, and never applied this colloca-
tion method to interfaces. It is important to note that no effort is made in CD to
ensure interface continuity of any order, but only this "weak" continuity. Hence the
cell method is always a priori a C-1 method.

A more general definition of Ak, olten proves useful. It involves the "covariant"
normal derivative, which appears in a natural way in variational treatments, and which
is defined by’

(2.6) OOk= nk,ai -x/Oglkm i=1 Fkr
]=1

This definition carries the implication that the derivative is in the direction from k
to fL., evaluated at Fk,, whose unit normal is {n ,}.

With the convention that Om/Onkm is the normal derivative at Fk,, taken in the
same direction as OOk/Onk, (i.e., from lk to f,), the most general interface mismatch
we shall consider has the form"

Oltk-Rk)-(PrnOrn-t--Orn 04’--------R,,,)(2.7) Ak"(s)=--(PkOk +Oko--k Onk,,

with Pk, Qk, etc. all being functions of s (i.e., evaluated on Fkm). We shall refer to
this Ak, as one of "Type 2", whereas, the Akin defined in (2.4), we call "Type 1".
(The same terminology is applied to the interface conditions containing Akin. The
Type 2 conditions are useful when the interface separates different media. They are
of particular use in imposing exact conservation conditions across interfaces. For
example, to impose the conservation of total "current" across Fk,n, we set the Ps and
Rs to zero in (2.7), and set the Qs to unity. We then impose (2.5) only for 3"-1
(assuming that w, is a constant). This is a particularly advantageous feature of CD,
in that important conservation conditions can be carried over exactly to the discrete
equations, in the very process of discretization. However, it is necessary to take account
of possibly conflicting "natural interface conditions", which are induced by the vari-
ational procedure, and which can make the discrete problem insoluble. This difficulty
can be circumvented in a systematic way by adding certain "nullifier" terms to the
original functional. This point is treated fully in Appendix C of [12]. (Our computer
program does the necessary correction automatically, when any imposed interface
condition can lead to a potential inconsistency.)
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If the approximations (2.2) are substituted into the collocation condition (2.5),
this condition is discretized, and takes the form:

M Mm
U8(2.8)

tz=l v=l

where

(2.9)

and

(2.10) Wm =- Ir Rwm dFm,
km

with corresponding expressions for the other discrete quantities.
Ukm as a matrix UkmIf we regard {0k,} as the vector 0k with Mk components, "v

of order Mk Lk,, and Wkm as a vector with Lk,, components, etc., then (2.8) can be
written in matrix form as follows"

(2.11) UmO- UmOm Wm- Wm.

The boundary conditions also fit naturally into this framework. If we assume that, for
m 0 (i.e., in I)o), @o 0 (so that/90 0) and Wok 0, we then have:

(2.12) UoOk Wko

for all k which label boundary cells.
In [6] and [7], variational formulations were used to derive the discrete equations

corresponding to the continuous equation (2.1). We choose the functional used in [7],
i.e., the generalized Dirichlet integral"

(2.13) [4,]-- 1/2 X a,+1/2bO- b20 dO
,j Ox Ox

where dfl stands for the volume element in f. When we substitute the representation
(2.2) for 0, we obtain:

k21
(k)(2.14) cI){ffk} 1/2Y. aq

k i,j OXi OX
+1/2b(k)’’2 )Ok) }

As mentioned in the Introduction, we do not use penalty terms such as were used in
[6]. These were of the form

(2.15) Ak,, =-- hk, Ir A, dFk
km

with arbitrary Akin. Not only is the choice of values for the {hk,} ambiguous, but the
inclusion of the penalty terms also causes the discrete equations to have the undesirable
property that they link noncontiguous cells directly. This constitutes a form of "action
at a distance" in the discrete equations, which is not consistent with their role as
representatives of differential equations, which are local in nature. For these reasons,
we have concluded that it is preferable to solve the constrained minimization problem
consisting of minimizing {k} while having the {Ok} satisfy the constraints (2.11).
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When we substitute (2.2) into (2.14), we obtain the discrete functional in matrix
form:

K

(2.16) q{Ok} Y’. {O[SkOk O[Tk}
k=l

where

(2.17)

and

(2.18)
k

In the next section, we shall show how, by transforming {Ok} to new variables
{rk,,} and {Pk}, we can reduce the constrained minimization in the variables {0k} to
an unconstrained minimization in the variables {rkm} and {Pk}. The resulting discrete
equations turn out to have many attractive properties with regard to computation.

3. Transformation of the discrete equations. Because of their crucial role in
describing the interface conditions, we should expect the matrices {Uk,} to play an
important role in the transformation to new variables, as indeed they do. The first
step is to collect all {Uk,,tka} into one matrix Uk. Recalling the notation introduced in
the last section, this means:

(3.1) Uk =--{Ukml, Ukm2,’’’, Ukmlk},
Thus, for all of the Jk faces of fk (which are the same as the interfaces it shares with
its Jk contiguous neighbors), we have collected the arrays of the coefficients of 0k into
one matrix. Since all of the matrices { Uk,,} have Mk rows, it is clear that Uk also has
Mk rows. Recalling that there are Lk,, columns in Uk,,, the quantity

(3.2) Lk---- Lk,ka
re[k]

is the number of columns in
In order to proceed further, we must make a very important assumption about

Uk, namely, that Uk is offull column rank, i.e., the set of columns of Uk form a linearly
independent set. If this condition is not met, Uk will be called degenerate. If Uk is
degenerate, the attempt to transform to new variables leads to very severe complica-
tions in the resulting discrete equations (including "action at a distance"). For details
about this state of affairs, we refer the reader to Appendix A of [12]. (In our computer
program, we never proceed further with a degenerate Uk, but instead try to remove
the degeneracy by increasing Mk.) Since Lk (the total number of interface conditions
in cell fl) obviously cannot be greater than Mk (the total number of 0s in this cell),
the difference M-Lk, which we shall denote by N, must be nonnegative. However,
because a vanishing Nk leads to programming complications, it is preferable to keep
Nk positive, in which case we must require that L <

When Uk is not degenerate, we can find matrices
and Mk Nk respectively, all of whose Mk columns are linearly independent, and
which satisfy the following equations:

(3.3a) UTVk L
(3.3b) UZk =0
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where I is a unit matrix of order Lk Lk. (In future, any unit matrix which arises will
be understood to be of the appropriate order.) Similarly, 0 is of order Nk Lk. Besides
satisfying (3.3a), we can choose Vk so that it also has the property (whose importance
will become clear later)’

(3.4) VSkZk --0.

A fairly efficient algorithm for finding Vk and Zk, given Uk and Sk, is also covered in
Appendix A of [12].

Once having found Vk, we repartition it into Jk submatrices { Vkm}, each of the
same order as its corresponding Uk,. Thus, Vk has the form { Vk,,,1, Vk,:,’" ", Vk,,,,, }.
Relations (3.3) and (3.4) can then be recast into "interface" form:

(3.5a) UT, Vk, 6,pI,

(3.5b) U[.Zk O,

(3.5c) V[,nSkZk =0
for all m[k] and all p[k]. 8m, is, of course, the well-known Kronecker symbol.

We are now ready to change variables, from 0k to trk,, and pk, as follows:

(3.6) Ok Vkt,(trk, + Wk,) + ZkPk.

rkp must obviously be a vector with Lkp components (as must Wk), and pk must be
of order Nk. Hence, (3.6) can be rewritten in terms of the matrix-vector product:

O’kpl \
(3.7) O (V, V, ., V, Z) + a constant.

With the transformation in this form, it is clear that, since the Mk Mk coefficient
matrix in (3.7) is nonsingular by construction, the number of independent scalar
quantities (degrees of freedom) in {trkp, Pk} is the same as that in Ok (namely, Mk).

If we substitute for Ok in U[,Ok, using formula (3.6), we obtain

U[,Ok U[,Io Vkp(rkp + Wkp) + ZkPk}
(3.8) TE U[.V;(r + W) + U.Zo

2 trnp (O’kp + Wkp) "t- O" Ok O’km "-t" Wkm
p[k]

Twith the help of (3.5a) and (3.5b). Similarly, UmkOm=O’mk nt- Wink SO that (2.11)
becomes"

(3.9) U,Ok TUmkOm O’km -- Wkm O’mk Wink Wkm Wink.

Hence, in the transformed variables, the interface conditions reduce to the extremely
simple form"

(3.10) trk, r,k =0.
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Equation (3.10) tells us that, in the subsequent calculations, we may simply identify
r,,k with o’k,,, so that we are effectively dealing with one (vector) variable on
instead of two. By this means, we have reduced the total degrees of freedom in the
problem, while retaining the correct interface constraints implicitly. The relation
between crk,, and r,,k will arise explicitly only when differentiation is performed. This
can be taken care of by simply making use of the relation:

(3.11) Ocr"------A I (I is of order Lkm x Lk,,)
O’km

which will come into play when we differentiate the transformed version of the
functional (2.16). We obtain the latter by again substituting for 0k according to (3.6).
The result is"

(cr, o) Y. r r

k=l p[k]
q[k]

zszw oZT
(.2)

+(E ( w[ )VSZp+ VpSZp)
p[k]

q[]

We have divided this expression (in which both p and q range over all the contiguous
neighbor-labels) into four grouped parts. Starting with the fourth group, we observe
that it is a constant, and does not matter, because is to be differentiated. The third
group, on the other hand, vanishes identically because of (3.5c). This has the very
important effect of decoupling the s and ps, so that the first group contains only s
and the second group contains only ps. Thus, the differentiation of , which now
consists of two disjoint quadratic forms, will result in two sets of uncoupled discrete
equations.

To simplify the differentiation, we replace k by r and define:

(3.13a) Hp VSV,
(3.13b) A ZSZ
so that the significant part of (, p) reduces to:

(, p)= E E 7w)- Ev
p[r] p[r]

(3.14)

We are now ready to differentiate with respect to (not forBetting (3.11)),
and set the result to zero, which gives us:

a
HW+ H..+ HW.Okm p[k] q[m] p[k]

(3.15)

VTm =0.
q[m]



CELL DISCRETIZATION ALGORITHM FOR ELLIPTIC PDE 269

If we then define

(3.16a) Ak., =Hk., +H,kk,

(3.16b) Gkm -- nkmpWkp-- nmkkWmq 4- VTmTk 4- VTmkTm,
p[k] q[m]

then (3.15) can be written (remembering that O’k O’k,.):

(3.17) mkmO’km + ., H,mpo’,p 4- HmkqO’mq Gkm.
p[k]m q[m]k

These discrete equations for the o-s are in the standard form for iterative solution.
The quantity o-, can be separated out, and expressed in terms of the o-s associated
with the "nearest neighbors" of Fk,. We note again the unusual feature that the
geometric elements with which the cr variables are associated are interfaces.

The decoupling of the o’s and ps has the additional effect that every p is associated
with only one cell. This is evidenced by the fact that each p can be solved-for
independently of all other variables. In fact, the differentiation of with respect to

Pk gives the result"

(3.18) O--=Akpk--ZTk =0
Opt,

which can be solved immediately for Pk (assuming Ak is nonsingular).
In order to be able to solve (3.17) and (3.18), we must assume that all the matrices

{A,} and {A} are nonsingular (there are special exceptions, e.g., the Neumann
problem in a single cell). If they are not, we must consider either the problem or the
discretization ill-formulated. Experience shows that a straightforward choice of basis
functions for a straightforward problem leads to no difficulties; examples will be shown
in 5. In these cases, we have solved (3.17) by the generalized conjugate gradient
method [2]. This is an "iterative" form of the classical CG method, and it has performed
for us very well.

The decomposition of 0 into two other variables, one of which can be thought
of as belonging to the "interior" of f and the other to a face (or a boundary segment)
of fk, is reminiscent of the representation of the classical electrostatic potential in
terms of an interior source function and a dipole layer on the boundary. While this
analogy is not exact, a relationship can be shown between the two representations.
We shall not pursue this here, but again refer the reader to [12] for details.

Another unusual feature of this form of the discretization is the fact that the o-s
cannot be localized, in the sense that they cannot be associated with points. This
localization would be possible only if the weight functions {w,,} could be 8-functions
(or 8-distributions) defined on the Fs. However, as we shall show in the next section,
the {w} must have certain regularity properties, i.e., they must lie in certain function
spaces, and it turns out that they cannot be 8-functions. Thus, each o- can only be
associated with an entire interface (just as a Fourier coefficient of a function must be
associated with the entire interval in which the function is defined). For this reason,
we have the curious feature that (3.17) is a system of equations linking the variables
on an interface to the variables on its "nearest neighbor" interfaces, because the
"nearest neighbors" of Fk, are all the other faces of fk and 11,.

4. Some theoretical observations. We shall sketch here some theoretical features
of the CD method. We are making no claim to a complete theoretical treatment
(which would include, for example, a convergence proof), or anything like it. We shall
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simply note a few important aspects of CD which can be discerned without a deeper
analysis.

As with the FEM, the Rayleigh-Ritz and the Weinstein methods, the theoretical
underpinning of CD involves functional analysis, and particularly the properties of
certain special function spaces. First we observe that, in order for {k} in (2.14) to
have a meaning, each approximation Ok must have a gradient whose square is integrable
over fk. Out of functions with this property, the Sobolev space W can be constructed
(see, e.g., [15, Chap. 3]). This space is also often denoted by H1, since it can be
interpreted as a Hilbert space in a natural way.

As for the domain Ok, in which these functions are defined, certain restrictions
are put on its shape (in order to obtain reasonably strong theorems), but these mostly
amount to the exclusion of cusps and crinkles, and in any case, do not rule out any
reasonable sort of cell that would arise in practice. Included in these restrictions is
the rectifiability (or piecewise differentiability) of every interface Fk,, since we must
be able to form all the necessary surface integrals.

The most important aspect of the behavior of Ok itself is what happens to it when
the boundary segment [’kin of fig is approached from the interior of Ilk. In an
appropriate sense, the limiting values of Ok form the trace of 4’k on [’kin, which we
shall denote by Tr,, (fig). Based on Sobolev’s work, J. L. Lions et al. [14] proved that
the set of traces of {4’k} on I’km actually form a Hilbert space, which is denoted by
H1/2(Fk,,,). Roughly, this notation indicates that the "th" derivative of Tr,, (k) has
a Lebesgue integrable square over [’km (naturally, all fractional derivatives in this
theory have a rather indirect definition). Another of these "trace theorems" shows
that the trace functions associated with tgk/On coincide with the Hilbert space
H-1/E(Fkm). This means that Tr,,, (04,k/On) on Fkm must be integrated "21- times" to
have a Lebesgue integrable square, which shows that it is a much "rougher" function.

Because we wish to preserve the maximum generality in the class of approxima-
tions {4’k}, we shall find that certain restrictions have to be put on the weight functions
{w,}. The trace functions Tr,, (Ok) and Trm (OOk/On) are multiplied by Wm, and the
product integrated over Fk,, in the interface conditions (2.5) (using the generalized
definition of Ak,). In order to ensure that these integrations lead to finite results, the
A and w are constrained to lie in dual function spaces. Integrated products of the
type appearing in (2.5) are called duality pairings, and are written:

(4.1) (Ak., w.)---- fr Ak.W. dFk.,
km

and Ak,, and w,, are regarded as lying in dual spaces.
The spaces HS(Fk,,) and H-S(Fk,,) (for s >0) are defined so that they are dual

spaces [14, p. 36]. Hence, if Ak,, 6 H’(Fk,,), then Wn H-(Fk,), etc. Now, if Ak,,, is
of Type 1, it contains only Tr,,, (Ok) and Trk (Ore), both of which belong to H/E(Fkm),
as noted previously. Therefore, w,, may belong to H-X/E(Fkm) at worst (i.e., it may
also belong to a "smoother" family of functions Ht(Fkm), with >-1/2). On the other
hand, if Akin is of Type 2, it may belong to H-/E(Fkm), so that Wm may belong to
H1/’(Fkm at worst. Hence, no matter what type Akin is, the weight function can belong
to no "worse" a space than H-X/E(Fkm). These relationships are independent of n,
the dimension of the Euclidean space in which 12 is defined.

On the other hand, it has been shown [15, p. 109] that, based on the Sobolev
imbedding theorem, the smallest space which contains the 6-function does depend
on the dimension t, of the space on which the functions are defined. In fact, this space
is H-v/2-, with e >0. Thus, even when fig is in R E (so that u 1 on the Fs), a
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6-function on an interface would have to be in H-1/2-e, which is still too rough for
a weight function. Thus, it is clear that no w, can contain a 6-distribution concentrated
on the interface Fkm, and therefore, (2.5) cannot take the form:

(4.2) (Ak,, W,,) f Akm(S)8(S--S v) dFkm Ak,,(S) =0.

Hence, the interface collocation in CD cannot be a point collocation, and therefore
cell discretization cannot be equivalent to the finite element method or any other
method using point interface collocation.

If this argument were reversed, i.e., if we were to allow a weight function to
contain a 6-function, then Tr,, (k) could not belong to H/E(Fkm), but would have to
be a more regular, or "smoother" function, in which case ffk itself would have to
belong to a correspondingly smoother Sobolev space in Ok. In fact, the FEM does
insure the consistency of its point collocation method, by constructing representations
(or approximating subspaces) which are sufficiently regular. (It would appear that the
"patch test" of Irons [18, p. 174] is intended to ascertain whether the smoothness of
the representation in the so-called nonconforming case is adequate for stability.) This
regularity requirement, however, carries with it the drawback that, in case the original
problem has a solution which becomes "rough" at the boundary, it becomes more
difficult to approximate it well with the smoother representations. We shall see a
concrete numerical example of this in the next section.

The use of moment interface collocation does not by any means relieve CD of
its own approximation problems. While we are not in a position to prove the conver-
gence of the representations used in CD, we can point out at least one of the
characteristics of moment collocation which would certainly figure in a deeper analysis.

Let us begin by thinking of the set {w,,3}, i.e., all of the weight functions
associated with k, as being defined over the entire perimeter of flk, rather than on
a particular interface Fk,,. (Of course, the support of each w would still be on a single
interface.) These weight functions are Lk in number, where Lg is defined as in (3.2),
and we assume that they are part of a product-space. To keep this argument simple,
we shall restrict ourselves to interface conditions of Type 1, in which case the
product-space of the weight functions could be H-/2(Fk). (For convenience, we shall
temporarily suppress the index k, which labels the cell we are discussing.) This space
contains H(F), so any discontinuities of the ws across the intersections of the interfaces
need not worry us. (We assume, of course, that the ws are all linearly independent
of each other.)

Let us next consider the dual Hilbert space, H1/2(F), and a set of functions {r/(s)}
defined on F (with tr 1,. ., m), which form a basis for H1/2(F). Out of this set, we
shall choose (perhaps with the aid of the Schmidt orthogonalization process), L of
the r/s, with the property"

(4.3) (rl’ wV)= fr rl(s)wV(s) dF=
Let us next consider the set of traces, on F, of the set of basis functions {b. (x)},

M in number. For convenience, we shall denote Tr (4. (x)) by .(s). For the special
case of a Type 1 interface condition, definition (2.9) can be rewritten"

(4.4) Iv "(s)w(s) dr=- U""
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We next recall that when U" is nondegenerate, we can find V" such that condition
(3.3a) holds. In our present notation, this means:

(4.5) E V"’U’

If we substitute for U from (4.4), we obtain:

(4.6) V st,(s) w (s)dr=6v.

Comparing this with (4.3), and recalling that the ws are linearly independent, we see
that the following must be true:

(4.7) r/(s) E V,(s)=-E V Tr (bg(x)),

which means that the traces of the basis set {b,} must span the subspace which is dual
to that spanned by the weight functions. The failure of this property is the functional
meaning of degeneracy, as compared with the algebraic meaning, as defined in 3.
There would appear to be a certain similarity of the nondegeneracy requirement to
the "rank condition" in the FEM [15, p. 382].

Our last speculation will be about some of the factors that would figure in a
convergence proof for CD. In the finite difference and finite element methods, the
key parameter that characterizes the discretization is h, the grid spacing, or the "size"
of an element of the partition of the domain f. On the other hand, in the Rayleigh-Ritz
or Weinstein methods, the key parameter is the number of terms in the expansion of
the trial function. In the cell discretization method, both of these parameters occur,
for each cell, as well as the number of collocation moments, on each interface. Hence,
we have to deal with three sets of characteristic parameters of the discretization: the
cell sizes {hk}, the number of moments {Lk,,} on each interface, and the number of
terms {M} in each intracell expansion. We may think of these sets of parameters as
"global" vectors, so that we can refer simply to h, L and M.

We are going to consider a sequence which will correspond to the minimizing
sequence of the Ritz method, and we shall number the vector parameters which
characterize this sequence as follows: {hi, h2,’" ’}, {L1, L2," ’} and {M1, M2,’" ’}. If
we say that, for example, L1 > L2, we shall mean that {Lk,,}l >= {Lk,,}2 for all k and m,
with strict inequality at least once. The same applies to the other parameters. The
functional , defined in (2.16), is thus a function of the three parameter vectors, h,
L and M. Since it happens that, in most of our numerical work, we have not been
concerned so much with h, as with L and M, and in part, to highlight the peculiarities
of the convergence problem for CD, we shall keep h fixed in the argument which
follows. (For comparison purposes, however, we shall show the results, in the next
section, of a study of the error as a function of h).

What happens to the functional (L, M) when L or M is varied? Consistent with
the restriction of nondegeneracy, it is possible to find, for each choice Li, a sequence
{MiI, Mi2,’" "} such that Ma >Mb for a > b, and such that can be evaluated. It is
a fundamental principle of analysis that the addition of degrees of freedom in a
function enables it to take on a minimum value which is no higher than before, i.e.,

(4.8) dP(Li, Mia) <= dP(Li, Mib) for a > b.

For an elliptic operator such as that in (2.1), the corresponding functional (2.13)
(and hence (2.14)) can be made positive semi-definite by the addition of a constant
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[20, p. 3]; hence, is certainly bounded below. On the other hand, the sequence

(4.9) {(Li, gi), (Li, M/2), dP(Li, Mi3), "}

is monotone nonincreasing, as indicated above. Hence, we expect that the sequence
in (4.9) will have a limit for each choice Li. We are assuming that each Mia ultimately
becomes infinite, and the choice of {bk, } was such as to render it capable of representing
any admissible Ok "perfectly". We shall thus have an "exact" solution for each set of
interface constraint parameters Li, with a corresponding limiting value, i.

The same fundamental principle of analysis can also be interpreted as the assertion
that any decrease in the degrees of freedom--as by an increase in the number of
constraints--will cause the minimum value of to be no lower than before. Therefore,
we can expect that, for a fixed M consistent with nondegeneracy, we will have
dP(Li, M)>= dp(L, M) for > j. Thus, we can contemplate a double sequence of values
of : for a fixed Li, a nonincreasing sequence of (Li, Mia) going to a limit i, and
for increasing i, a nondecreasing sequence {/}.

We shall also assume that the set {w,} was chosen so that increasing Lk, without
limit on each Fk,, would result in "exact" continuity of p across each interface ("exact"
means, of course, almost everywhere). This is based on the lemma [13, p. 240] that,
if {Wm} is a set of elements dense in the inner-product space H(Fk,,), and if

(4.10) (Ak,, w,) 0

for all w H(Fk,), then Ak, is the null element in H(Fk,), which means that ,k t#,
almost everywhere on Fk,, ("weak continuity"). We are therefore entitled to hope
that, in the limit, the approximation {Ok} would be equal to the solution ff almost
everywhere in I) and, since (4’) is assumed to exist, each i is bounded above by
this value. Thus we have a nondecreasing sequence {/} which is bounded above and
which, therefore, converges.

Out of this double sequence, we could choose, by some variant of the Cantor
diagonal process [17, p. 17], a single "diagonal" sequence:

(4.11) {O(L, Ma), O(L2, M2), ’}

which would converge to the correct value (p). This latter sequence would be the
theoretical counterpart of the manner in which the problem would be successively
solved approximately in the CD method.

Even assuming convergence, the analysis of error estimates is very different from
that for the FEM, in that the space of approximants is not merely a subspace of the
admissible solution candidates (but is in some ways a superspace). Insofar as the errors
in the representation {Ok} depend on the parameters {tkm} and {Mk}, rather than only
on the cell-size modulus h, the error estimates would resemble those for Fourier
series, rather than power series.

5. Numerical examples. As the reader will have gleaned by now, the cell discretiz-
ation method is applicable, in principle, to very irregular geometries with quite irregular
cell structures. It is therefore a source of great regret that we are not in a position to
describe numerical tests in which these features are exhibited. Unfortunately, we have
so far been afforded the opportunity to implement CD in rectangular geometry alone.

Part of the reason for this is that the original Fortran program was deliberately
kept as simple as possible, so that the question of whether the ceil method worked
at all could be answered. When this answer turned out to be affirmative for several
model problems, a great deal of effort was devoted to speeding up and generalizing
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the program so that it would prove practical for the solution of multigroup nuclear
reactor problems. This effort succeeded, in that our program turned out to be reason-
ably competitive with existing nuclear codes, in terms of both execution times and
the sizes of the problems solved. (This work will be described in a separate publication.)

Although the application of CD to problems involving irregular domains and cell
structures is, as we have said, quite straightforward conceptually (in that no new ideas
are involved beyond what has been described), its implementation in a program would
require very complicated logistical procedures, involving, for example" the input
descriptions of irregular cells; interface and boundary shapes (in 2 and 3 dimensions);
the automatic identification and organization of contiguous-neighbor relationships;
the calculation of various integrals over irregular cells and interfaces, etc. We hope
some day to be able to produce such a program.

Meanwhile, we can still present the outcome of numerical tests which show the
behavior of CD in other respects than the geometrical. We have applied it to Dirichlet,
Neumann, mixed and eigenvalue problems, with interesting results. In order to have
the reader understand these, it is necessary that we give a few details of the actual
Fortran program.

The available basis sets are all built out of certain "factor" functions, each with
a single argument. The most important of these which have been included in the
existing program are listed in Table 1. The factor functions fi(u) we shall use are
defined as follows:

(5.1a) [(u)=P_(u), i=1,...,

(5 lb) fi(u) u -a i= 1

(5.1c) {/(u)} {1, sin u, cos u, sin 2u, cos 2u,...}

TABLE
"Factor functions" used to form basis sets.

No. Type Interval

Legendre polynomials [- 1, 1]
2 Powers [0,
3 [-1, 13
4 Trigonometric functions [-Tr,
S [-7r/2, 7r/23
6 [-7r/4, rr/4]

(where Pg(u) is the ith unnormalized Legendre polynomial). Out of these factors,
basis sets {b, (u)} are then constructed as follows’

(5.2a) , (u)=- f,,(ua) (1D),

(5.2b) cb,(u)--f,,(ua)f,(u2) (2D),

(5.2c) c,(u)=f,(u)f,(Uz)f,(u3) (3D).

The notations "(1D)", etc., indicate which basis functions are for 1-, 2- and 3-
dimensional geometries.
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The weight functions are formed from the same factor functions as the correspond-
ing basis sets. If u and u2 are the appropriate variables on Fkm, we define"

(5.3a) wV(u)= 1 (1D),

(5.3b) w v (u) fvl (u 1) (2D),

(5.3c) w(u) fv(ul)fv2(u2) (3D).

The correspondence between the single index/x (as used in the previous sections)
and the set of factor indices (/x l,/z2,/x3) is set up in two ways (many others are
possible). The first we shall call Type 1, and it is illustrated in the 2D case by the set
of products of powers:

(5.4) {b.} {1, ul, u2, u 2 2. 3 2 2 3
1,/21/22,//2, u l, U lU2,/./1/,/2, u2; "}

so that the zeroth "level" basis set consists of a constant, that of the first level consists
of all linear monomials, that of the second level of all quadratic monomials, etc.

Type 2 combinations are correspondingly illustrated by’

(5 5) {b,}={1; ul, ulua, u.; u "1 UlU2, UlU2, UlU2, U2, "}

where the zeroth level is again a constant, but the first level contains all bilinear
monomials, the second level all biquadratic monomials, etc. The assembly of the other
factor functions (Legendre, trigonometric) into basis functions is done by the same
rules. In all cases, a linear transformation of the arguments is used to match the fixed
range of u-values to the actual intervals in the x-variables for a given rectangular cell.

Initially, a choice of level is made for any cell Ok (based on a rule of thumb
derived from experience) which in most cases will prevent degeneracy. If degeneracy
nevertheless occurs, the level is stepped up by one. Also, if Ak(=--ZSkZk) is singular
(or very badly conditioned), the level is likewise stepped up. However, in some cases,
as we shall show below, no amount of "escalation" can remove degeneracy.

Case 1. Eigenvalue problem in square. We shall use this simple eigenvalue prob-
lem to illustrate much of the behavior of CD for various choices of basis sets, interface
conditions, etc. (The simple extension of the basic method to eigenproblems is
described in 12, App. D].)

The equation to be solved is:

(5.6) -V20 =h0
in the square domain shown in Fig. 2, with its four cells indicated. 0 0 on the
boundary, and the lowest eigenvalue which we are to find has the value: 7r2/2
4.934802. The corresponding eigenfunction is 0 =A sin 7rx/2 x sin Try/2. We shall
display results in tables, which we hope will be mostly self-explanatory. All calculations
were done in IBM/370 double-precision (about 16 digits).

In Table 2 are shown the values of A obtained using Legendre polynomials for
various values L of the number of interface conditions and values M for the number
of terms in the expansion. The trend to small A s for a fixed L, and the trend to larger
As for a fixed M (as described in 4) are plain to see. The slight deviations from this
pattern are due to variations in the termination of the iterations for O, and perhaps
to rounding error (since we are dealing with full matrices up to order (66 x 66)). The
blank entries are for those combinations of L and M for which degeneracy occurs.
The expansion is of Type 1, and the corresponding degree for each M is shown. The
final line contains the maximum departure of from zero at the boundary for the
first case in the corresponding column (i.e., the case with smallest M). (The common
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=0

FIG. 2

TABLE 2
Values of A for Case 1 with Legendre polynomials (Type 1).

L: 2 3 4 5 6

M Deg.

6
10
15
21
28
36
45
55
66

2 4.212005
3 4.117036
4 4.115908 4.924406 4.935142
5 4.115859 4.920742 4.934768
6 4.115858 4.920645 4.934671 4.934805 4.934802
7 4.115858 4.920403 4.934642 4.934803 4.934802
8 4.115858 4.920403 4.934642 4.934801 4.934803
9 4.115858 4.920378 4.934641 4.934801 4.934805
10 4.115858 4.920378 4.934641 4.934801 4.934804

4.934804
4.934802
4.934803

err. 4(-1) 3(-2) 5(-3) 9(-5) 4(-5) 3(-7)

convention is used of placing the appropriate exponent of 10 in parentheses following
the significant figures.) Recalling again that CD yields discontinuous solutions in
general, we can use the departure from zero on the boundary as a rough measure of
the error in .

In Table 3a are shown similar results when powers of u in the base interval [0, 1]
are used for the factor functions. For the selected values shown, comparison with
Table 2 indicates that the results for are substantially the same as before, except
that a severe deterioration sets in for larger values of M, especially for M 45. This
is a consequence of the much poorer condition of the matrices formed by integration
of the basis functions, such as those in (2.17). The collocation error of at the
boundary is actually worse for L 6 than for L 5, clearly because of rounding error.

However, when the base interval (for u i) is changed to [-1, 1], the results are
very much better, as shown in Table 3b. The reason for this is that the odd and even
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TABLE 3a
Case with powers in [0, 1] (Type 1).

L 2 3 4 5 6
M 6 15 15 28 28 45

Degr. 2 4 4 6 6 8, 4.212005 4.924405 4.935144 4.934808 4.934777 4.989074
O.err. 4(-1) 3(-2) 5(-3) 9(-5) 4(-5) 5(-4)

TABLE 3b
Case with powers in [- 1, (Type 1).

L 2 3 4 5 6
M 6 15 15 28 28 45

4.212005 4.924405 4.935142 4.934805 4.834804 4.934802
err. 4(-1) 3(-2) 5(-3) 9(-5) 4(-5) 3(-7)

TABLE 3C
Case with Legendre polynomials (Type 2).

L 2 3 4 5 6
M 9 16 25 36 49 64

Degr. 2 3 4 5 6 7
4.212005 4.923545 4.934676 4.934801 4.934804 4.934804

err. 4(-1) 4(-2) 4(-3) 3(-4) 2(-5) 1(-6)

TABLE 3d
Case with trigonometric functions in [-’rr/2, -tr/2] (Type 1).

L 2 3 4 5 6
M 6 15 15 28 28 45

4.935264 4.946600 4.963376 4.936114 4.936125 4.934855
err. 4(-1) 6(-2) 2(-2) 4(-3) 3(-3) 5(-4)

TABLE 3e
Case with trigonometric [unctions in [-zr/2, zr/2] (Type 2).

L 2 3 4 5 6
M 9 16 25 36 49 64
X 4.395264 4.949639 4.958855 4.935983 4.935969 4.934846
err. 4(-1) 6(-2) 1(-2) 2(-3) 1(-3) 2(-4)

TABLE 3f
Case with trigonometric [unctions in [-zr/4, 7r/4] (Type 1).

L 2 3 4 5 6
M 6 15 15 28 28 45
A 4.132851 4.923178 4.934802 4.934802 4.934747 4.934906
err. 4(-1) 3(-2) 4(-8) 5(-8) 1(-7) 4(-7)
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powers are mutually orthogonal in [-1, 1], which has the effect of improving the
condition number of each matrix of integrals, so that larger orders are better condi-
tioned than before.

In Table 3c, the results for Legendre expansions of Type 2 are shown. In this
case, the numbers M of basis functions required for nondegeneracy are different from
those for a Type 1 expansion, because the complete biquadratic contains more terms
than a complete quadratic. The accuracy does not seem better than for the Type 1
expansion, although more degrees of freedom are used; this has been our finding in
most cases.

The next choice of factor functions, the trigonometric functions in the base interval
[-r, 7r] is completely unsatisfactory, in that degeneracy occurs for all values of M.
This is due to the combination of the symmetry of the rectangular cells, and the
peculiarities of the factor functions. If we consider a basis function b,n (u, v) such that

cos mu} cos nv}X(5.7) b,n(u, v)=
sin mu sin nv

then the values for U’v on the faces u +r are given, according to (2.9), by:

(5.8)

x x dv
sin +mTrJ sin nv sin yv

cos +mTr} x {0 or ’rr}.
sin +mrr

If we now compare the "left-face" value (-mr) with the "right-face" value
(+mTr), we see that the cosine, being an even function, gives the same value on both
faces, whereas the sine, which is odd, gives only the value zero on both faces. Hence
the elements of U on the left and right faces can be paired, since they are identical.
This means that for every column in U, there is another, identical column, thus
rendering U degenerate. The set of basis functions defined in (5.7) even violates the
conditions of the classical Stone-Weierstrass theorem [20, p. 9] in that the basis set
does not separate the points on F, i.e., there are distinct points (Ul, vl) and (u2, u2) on
the boundary of each cell, for which it is not possible to find a basis function b such
that t(/,/1, /)1)# t(U2, U2). Thus, the functions {d),,,(u, v)} cannot even be dense (in
the limit) in the space of continuous functions on the cell perimeter. This example
illustrates the importance of a basis set which can be dense in H(tIk) and in H(Fk).

If we now reduce the base interval to [-r/2, 7r/2], the situation changes. The
results for Types 1 and 2, as shown in Tables 3d and 3e, are respectable, although
quite different from the polynomial results. However, when the base interval is reduced
further to the "unusual" value of [-7r/4, 7r/4], the results shown in Table 3f are at
first similar to those in Tables 3d and 3e, until L takes the value 3, when the exact
solution is suddenly achieved! The reason for this strange occurrence is as follows:
The true solution of the problem is 4’ A sin rx/2 x sin Try/2, as remarked previously.
In Ill, the x and y values satisfy O<-_x, y_-< 1, so that when we switch to the base
variables u and v, say, whose values satisfy -Tr/4<-u, v <_-7r/4, the appropriate
transformation is

(5.9) x=-- u+ y---- v+



CELL DISCRETIZATION ALGORITHM FOR ELLIPTIC PDE 279

Hence 0 becomes:

O(u, v) a sin (u +) sin (v +)
(5.10) =A sin u cos -+cos u sin sin v cos+ v sin

A
{sin u sin v + sin u cos v + cos u sin v + cos u cos v },

which is a linear combination of products of the first three factor functions shown in
(5.1c). It is only when L 3 that the weight functions include sin u and cos u, thus
forcing the expansion to fit the solution exactly. The same argument can be made for
the other three cells. For higher values of L, there is nothing to prevent the CD
approximation from fitting the true solution exactly, except the obvious appearance
of rounding error effects. This is also a very good example of the effect, on the solution,
of the "approximating power" of the basis set and the weight functions for a particular
problem.

Case 2. Neumann problem. We shall illustrate the utility of the "nullifier" boun-
dary correction alluded to before (and described in detail in Appendix C of [12]). We
shall try the simple problem of solving Laplace’s equation in the square -1 -< x, y -< 1,
with the boundary conditions’

(5.11)
Ox

(-1, y)= --X-X (+1, y)= 1, y(X,-1) y (x, +1)=0.

When this is solved without the boundary-condition correctionusing a power
expansion in the base interval [-1, 1], four equal cells, Type 1 expansions and
L 3the result is (coefficients are correct to 4 figures):

0.3 .04336-.2398x 1.874x2- 3.749x 3 2.187x4,
(5.2)

0.,4 .04336 .2398x + 1.874x2- 3.749x3 + 2.187x4

where we have written 01.3 to mean "01 and 4,3", etc. These solutions (correctly) do
not depend on y. Although they are far from the exact solution (which is x +
constant), the values of the boundary normal derivatives are almost exact:

(001’3 (01/t2’4 =0.9992.(5.13)
\ OX ]x=-I \ OX ]x=+l

Note also that 1,3(0, y) 2,4(0, y). The difference (max -min ) is .125, which
indicates that 0 is very fiat. It would seem that the variational procedure is attempting
to approximate the solution 4 =constant, which would minimize by making it
vanishmexcept that at x -1 and x 1, the slope is required to be unity. This strange
"solution" results from the fact that, without the boundary-condition correction, this
is not a properly posed problem and, in reality, has no solution.

However, when the b.c. correction is included, the solution turns out to be

(5.14) ///1,3 02,4 X (to machine precision),

which is one of the exact solutions.
Case 3. Eigenproblem in L-shaped domain. We shall now consider a problem

that does not have a known analytic solution. It is the same eigenvalue problem as



280 joiN GREENSXAOr

Case 1, except that cell 4 is deleted, leaving an L-shaped domain. We have used a
Legendre polynomial expansion of Type 1, which appears to be the most resistant to
rounding error and, indeed, all of our subsequent examples will be solved with this
basis set. In Table 4 is shown the sequence of eigenvalues for various values of L

TABLE 4
Case 3. L-shaped domain
Legendre polynomials (Type 1).

L M ,
6 7.310712

2 15 9.479742
3 15 9.757295
4 28 9.6445O6
5 28 9.690872
6 45 9.652736
7 45 9.667149
8 66 9.650338
9 66 9.656302
10 91 9.647602

(and M). The true value is given as A 9.63972 by J. A. George in [5]. The lack of
agreement with George’s result is no doubt a result of the singularity in the solution
at the reentrant corner (at (1, 1)), which causes it to be poorly approximated by
polynomials. Hence, of course, the eigenvalue is also ill-determined. Because of the
generality of the basis functions allowed in CD, the singular factor r2/3 (where r is
the distance to the reentrant corner) could have been incorporated. This procedure
would address the problem of spanning "rough" spaces on the boundary, which was
touched on in the previous section. However, we must again plead the inadequacy of
our program in not including this feature.

Case 4. Effect on accuracy of mesh refinement. Although our main interest in
this work has not centered on the change of accuracy with cell size, it is instructive
to observe the effect for the simple square-shaped and L-shaped eigenvalue problems
of successive halvings of the cell face lengths. For each computation, we assess the
rough error (as defined, before), by noting the maximum departure of the solution
from zero on the boundary.

We have solved the eigenvalue problem for values of L (the number of interface
moments) running from 1 to 5. The values of M (the total number of intracell
coefficients) were chosen so as to prevent degeneracy, and to make the progression
of maximum errors as smooth as possible, as far as the L-values were concerned. The
initial value of unity for h, the cell side, was halved repeatedly, until there were 5
values for h. This set of values for L and h gives a sample of 25 cases for each problem.

The results for the square are given in Table 5a. We have included in this table
the total number of interface variables for which we had to solve (i.e., all the trs). As
can be seen, this number can get quite high. In spite of this, the generalized conjugate
gradient method takes a very small number of iterations to get the estimated 0-error
low enough (--a factor of 0.1) for each new estimate of A. For each case, the mean
number of iterations was calculated, and appears in the table. This excellent rate of
convergence is probably a result of the preconditioning effect of the diagonal coefficient
matrices {A}, as shown in (3.17). It would be interesting to observe numerically what
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happens to the eigenvalues ot the iteration matrix before and after this preconditioning,
but we have not yet had the opportunity for such a study.

In order to test whether the error is substantially influenced by the regularity ot
the cell structure, the case for L 2 was redone, for all 5 h-partitions, but with
randomly generated hs. These values were produced independently for the x- and
y-directions, with the only restriction imposed that the ratio of largest to smallest h
was not allowed to exceed 10. As can be seen from the last section of Table 5a, the
effects of the nonuniform partition showed up essentially only in the average number
ot iterations. The "hmax" is the largest h in both directions. In those cases where the
error seems to be smaller than for the uniform mesh, it is probable that this is due
to the sometimes smaller hs at the corners, where the worst error generally occurs.
A similar study for the L-shape, shown in Table 5b, reveals that not only is a, not

TABLE 5a
Case 4. Parameter study for square eigenvalue problem (various L and h values).

L
M h’ .5 .25 .125 .0625

15

Tot. vars. 4 24 112 480 1984
Avg. iter. 3 9 21 47

A 4.117036 4.695822 4.872347 4.919009 4.930842
Max. err. 4.0(-1) 1.4(-1) 3.8(-2) 9.6(-3) 2.4(-3)

2
21

Tot. vars. 8 48 224 960 3968
Avg. iter. 2 5 9 21 43, 4.924406 4.934309 4.934774 4.934801 4.934802
Max. err. 2.6(-2) 1.3(-3) 7.6(-5) 4.7(-6) 2.9(-7)

3
28

Tot. vars. 12 72 336 1440 5952
Avg. iter. 3 8 18 40 90

A 4.934768 4.934804 4.934802 4.934802 4.934802
Max. err. 1.7(-3) 1.1(-4) 7.6(-6) 4.9(-7) 3.0(-8)

4
36

Tot. vars. 16 96 448 1920 7936
Avg. iter. 3 7 15 28 62, 4.934805 4.934802 4.934802 4.934802 4.934802
Max. err. 3.3(-5) 9.8(-7) 4.2(-8) 6.4(-10) 4.4(-11)

5
45

Tot. vars. 20 120 560 2400 9920
Avg. iter. 4 10 21 47 106

A 4.934802 4.934802 4.934802 4.934802 4.934802
Max. err. 3.0(-6) 8.4(-8) 2.9(-9) 3.3(-10) 6.8(-11)

With randomly selected cell partitions (L 2 only)

L
M hmax: 1.5 .67 .39 .21 .12

2
21

Tot. vars. 8 48 224 960 3968
Avg. iter. 4 9 17 45 75

,l 4.873809 4.933892 4.934714 4.934798 4.934801
Max. err. 9.6(-2) 2.2(-3) 7.0(-5) 1.9(-5) 1.6(-7)



282 JOHN GREENSTADT

TABLE 5b
Case 4. Parameter study for L-shape problem (various L and h values).

L
M h" .5 .25 .125 .0625

15

Tot. vars. 2 16 80 352 1472
Avg. iter. 5 12 24 50

A 7.127977 8.677621 9.323416 9.535168 9.603818
Max. err. 1.03 .71 .42 .25 .16

2
21

Tot. vars. 4 32 160 704 2944
Avg. iter. 2 7 12 23 47

9.479742 9.577621 9.613936 9.629377 9.635605
Max. err. .37 .28 .18 .11 .072

3
28

Tot. vars. 6 48 240 1056 4416
Avg. iter. 2 10 22 47 95

9.631882 9.625882 9.633852 9.637379 9.638792
Max. err. .21 .15 .096 .061 .038

4
36

Tot. vars. 8 64 320 1408 5888
Avg. iter. 3 9 17 32 64, 9.644506 9.639103 9.639428 9.639603 9.639676
Max. err. .14 .095 .060 .038 .024

5
45

Tot. vars. 10 80 400 1760 7360
Avg. iter. 2 13 26 53 110

9.654209 9.643454 9.641149 9.640288 9.639948
Max. err. .086 .062 .039 .025 .015

well-defined numerically, but the maximum error in if, which always occurs at the
reentrant corner, is very large, and really does not decrease much.

In order to try to throw some light on this behavior, we attempted straight-line
fits of the logarithm of the error versus the logarithm of h, on the assumption that
the error would turn out to be proportional to a power of h, as is true for the
finite-difference and FEM methods. This assumption turned out to be very accurate,
as is revealed by the results shown in Table 6. The actual equation used has the form

-logl0e a + b(-logloh)

where e is the maximum error in at the boundary. The best-fit values of a and b
are shown, as is the correlation coefficient r of each regression. For L > 1, the error
seems to depend on the 4th power of h in the square case, although this varies for
particular values of L and M.

On the other hand, it is extremely interesting that for the L-shape problem the
error appears to depend on a power of h which is suspiciously close to ! It seems
reasonable that, if the factor r2/3 (r being the distance from the reentrant corner) had
been incorporated into the basis functions (and the appropriate inverse power into
the weight functions) the dependence of e on h would then have been the same as
in the square case. This is a fascinating supposition which, alas, we cannot test at this
time.

The rest of our cases are simple examples taken out of L. Collatz’s well-known
book 1 ].
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TABLE 6
Case 4. Log-log regressions of error vs. h.

Uniformly partitioned square

L a b

.3400 1.8437 .99842
2 1.6400 4.0528 .99987
3 2.8000 3.8867 .99989
4 4.5000 4.9829 .99867
5 5.8000 3.9199 .98773

Randomly partitioned square

2 1.8892 4.9870 .98629

L-shape

-.0318 .68963 .99871
2 .39800 .60791 .99580
3 .66000 .60459 .99837
4 .83800 .62458 .99932
5 1.0420 .61788 .99718

Case 5. Temperature distribution [1, p. 361]. This example, shown in Fig. 3, is
noteworthy in that the boundary values have two jumps, one at each of the upper
corners. We have solved this case for L =4 (M 28) with the domain divided by
vertical lines at x 1/2 and , and with a horizontal line at y 1/2, giving a total of 6 cells.
The solution values are given in Table 7a only for x {, 32-, , 1} (because the solution
is symmetric around x 1/2) and for y {0, , 1/2, , , -, 1}. Clustered values occur in the
table when the output points fall on an interface; the values may be different in the
2 (or 4) different cells which happen to abut the point. The discontinuity of the solution
may easily be seen, as may a kind of "Gibbs phenomenon" near the corners where
the boundary values are discontinuous.

V2=O

0 =1

FIG. 3
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These effects are mitigated by choosing the dividing lines at x .1 and .9, and
at y .9. The upper corners where the discontinuities lie are thus isolated in two small
cells, and the remaining large cells have only "smooth" interface conditions. The
results (Table 7b) show less of the Gibbs effect, and the values agree better with those
given by Collatz (Table 7c), which were computed by a standard difference method.

TABLE 7a
Case 5. Temperature distributions6 equal cells.

x g g

1.004 1.010 .9938 .9962 .9857
.9371 .9415 .9446 .9729 1.009
.8659 .8866 .8829 .9265 .9902
.7462 .7696 .7328 .9168 .9299
.7615 .8105 .7406 .8972 .8176
.5706 .5961 .7730 1.075
.3244 .3692 .4010 .5088 .9148
.003372 .008991 .1281 .08733 .3377

TABLE 7b
Case 5.6 unequal cells.

x 5 g

1.002 .9993 .9994 .9994
.9367 .9467 .9735 1.011
.8631 .8825 .9303 1.010
.7495 .7800 .8690 .9726
.5764 .6177 .7589 1.007
.3249 .3635 .5278 1.017
.04311 -.01658 -.01372 .5018

TABLE 7C.
Case 5. Collatz’ values.

x -g

.9387 .9466 .9687

.8616 .8789 .9292

.7501 .7789 .8654 1

.5809 .6213 .7545
3306 .3708 .5313 1
0 0 0

Case 6. Mixed boundary-condition temperature distribution [1, p. 410]. This case
offers another opportunity to use the boundary compensation procedure used in Case
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2. The problem is fully explained by Fig. 4, and the calculation was done with L 4
and 4 equal cells. Collatz does not give a table of values for this case, but only various
approximate values of (0, 0), of which the most accurate appears to be (0, 0)=
.82156. Without the b.c. correction, CD gives the value 51.33, but with the correction,
the CD value is .8217, which agrees very well with Collatz.

Case 7. Acoustic vibration in a room [1, p. 451]. In this 3-dimensional problem,
whose geometry is shown in Fig. 5, we wish to find the fundamental mode of vibration

-1

I an

-72=1

I0

-1 aV + @ oan

FIG. 4

FIG. 5

of the air in the boxlike room with one doorway from floor to ceiling in each of the
front and back walls. Therefore, we must solve the Helmholtz equation:

(5.16) -\ax2 aY 2 az2)
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with 0 on walls, ceiling and floor, and O6/On 0 in the two doorways. By setting

7rz
(5.17) 4’ P(x, y) sin

4

we automatically have O(x, y, 0)= O(x, y, 4)= 0, and (5.16) reduces to
2

(5.18) 0--/ cy----
with

P(0, y) P(6, y) 0,

(5.19) P(x,O)=P(x, 4)=O, 0-<x-<2, 4-<x =<6,

OP
(x, O)

OP
Oy y (x, 4) 0, 2-<x-<4.

With interface divisions at x 2 and 4, y 2, and z 2, we form 12 cells in 3D and
6 cells in 2D. To apply interface moment collocation up to the third order, we take
L 4 in 2D, and L 10 in 3D. The results are"

(5.20a) h 1.238138 (2D cells),
2

A=.7329+/) =1.3498(5.20b)

(5.20c) h 1.228986 (3D cells).

(Collatz, lowest mode),

In this example, we would not expect Collatz’ result to be very accurate, since
his mesh spacing was unity, so that only 15 interior nodes were used for his 2D
calculation; the CD solution is almost certainly better.

6. Concluding remarks. In the description of cell discretization just presented,
we noted a few directions that extension and generalization could take. We wish now
to amplify these observations.

The most obvious next step is, of course, the programming of CD for irregular
geometries. This is no mean task, mostly because the handling of irregular geometrical
objects in a computer is inherently complicated and difficult. An additional feature,
which should be in a "next" program, is the facility for having different kinds of basis
functions in different cells, as well as the facility for having weight functions which
are not so closely related (as to functional form) to the intracell basis functions. This,
of course, includes the possibility of having functions which are nonanalytic at various
important points (as described for the L-shape problem, for example).

The basic approach of CD can obviously be applied to partial differential
equations, or systems of equations which are of higher order, or not self-adjoint (by
the use of dual dependent variables), or which involve time. Moreover (although no
work has actually been done on this problem), there does not seem to be any real
difficulty in applying CD to integro-differential equations, such as Boltzmann’s. In
this case, the interface moment collocation could be done in phase space, rather than
just in configuration space, with the result that the splitting of the velocity space into
"outward" and "inward" directions would be quite natural in terms of cell specification.
In this way, some of the problems which arise in neutron or photon transport
calculations, arising from the necessity to approximate discontinuous distribution
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functions (across boundaries) by means of continuous functions (usually polynomials)
alone would be avoided.

The CD approach can even be applied to the calculation of molecular wave
functions in quantum chemistry. The classical scheme of Roothaan [16] has been
expressed in terms of the cell method, with most of the details worked out (unpub-
lished). Interestingly, it turns out there are no 3- or 4-center integrals appearing in
this formulation, but difficult integrations over irregular volumes and surfaces arise
in their place. However, if the cell interfaces are placed away from the nuclear centers,
the interface collocation can then be done in places where the wave functions do not
vary so rapidly as they do near the nuclei.

Finally, we should mention another method, developed by Delves and Hall [4],
which bears a closer resemblance to CD than does any other method. They have
integrated the additional terms in the functional (which we referred to as a "nullifier")
into their basic method, and do not regard them as an afterthought. The result is a
very natural treatment of the interface problem, with which they have been able to
treat quite irregular geometries.
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ON GENERATING ORTHOGONAL POLYNOMIALS*
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Abstract. We consider the problem of numerically generating the recursion coefficients of orthogonal
polynomials, given an arbitrary weight distribution of either discrete, continuous, or mixed type. We discuss
two classical methods, respectively due to Stieltjes and Chebyshev, and modern implementations of them,
placing particular emphasis on their numerical stability properties. The latter are being studied by analyzing
the numerical condition of appropriate finite-dimensional maps. A number of examples are given to illustrate
the strengths and weaknesses of the various methods and to test the theory developed for them.

Key words, orthogonal polynomials, recurrence relations for orthogonal polynomials, Stieltjes
procedure, discretized Stieltjes procedure, Chebyshev algorithm, modified Chebyshev algorithm,
condition numbers

1. Introduction. Let dA(t) be a nonnegative measure on the real line R, with
compact or infinite support, for which all moments

(1.1) B7lxr=IntrdA(t), r=0,1,2,...,

exist and are finite, and/x0 > 0. With dA there is associated a unique system of (monic)
orthogonal polynomials, i.e., a system of polynomials zrr Zrr(" dA) such that

(i) 7rr(t) has exact degree r and leading coefficient 1,

(ii) In 7rr(t)rrs(t) d)t (t){ >0=0 ifrs.ifrs,
In general, the system {zr} consists of infinitely many polynomials, but reduces to a
finite number N of polynomials fro, rl,"" ", 7rv-1, if A(t) has exactly N points of
increase. We denote such a measure by dAn(t), and call it a discrete measure and the
associated polynomials discrete orthogonal polynomials.

The problem we wish to consider is the actual (numerical) construction of the
polynomials 7rr(’ ;dA), given an arbitrary measure dA (t). The problem has received
surprisingly little attention in the literature, even though orthogonal polynomials
originated in connection with concrete questions of applied analysis (e.g., numerical
integration, least squares approximation, series expansions, continued fractions, etc.).
The reasons for this are probably twofold" In the first place, much of the practical
work involving orthogonal polynomials is based on special measures dA(t) of the
classical types, for which the orthogonal polynomials are explicitly known and the
constructive aspects are therefore trivial. Secondly, even in the case of general
measures, our problem has a straightforward mathematical solution: It is well known
how to express, or how to compute, orthogonal polynomials in terms of the moments
(1.1). This point of view, in fact, is typical for the "pre-computer" era; when executed
in finite precision on a computer, however, the approach via moments is utterly
ineffective on account of the explosive growth of rounding errors. Other more effective
procedures have been proposed and analyzed by Forsythe [6] for discrete orthogonal
polynomials, in connection with least-squares data fitting, and more recently by Sack

* Received by the editors September 9, 1981, and in final form January 6, 1982. This research was
sponsored in part by the National Science Foundation under grant MCS-7927158.

t Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.

289



290 WALTER GAUTSCHI

and Donovan [25], Gautschi [11], [13] and Wheeler [29], for continuous distributions,
in connection with the problem of Gaussian quadrature. It is our purpose, here, to
bring this work into better historical perspective, to reorient it towards the problem
of constructing orthogonal polynomials (rather than Gaussian quadrature rules), and
to expand upon it and refine it in various directions.

First we must clarify what we mean by "constructing orthogonal polynomials."
We take the position, here, that the fundamental quantities in the constructive theory
of orthogonal polynomials are the coefficients in the basic three-term recurrence
relation. As is well known, every system {Trr(" dA)} of (monic) orthogonal polynomials
satisfies a recurrence relation of the form

rrk + (t) (t ak)Tr (t) rr_(t),

zr_a(t) O, ro(t) 1,

k=0,1,2,...,

where Ck, k are real constants with flk >0. It is the coefficients ak, [3k that provide
the key for the constructive use of orthogonal polynomials. There are many reasons
for this, chief among which are the following:

(i) The coefficients Cek, k provide a compact way of representing orthogonal
polynomials, requiring only a linear array of parameters. The coefficients of orthogonal
polynomials, or their zeros, in contrast need two-dimensional arrays.

(ii) Knowing the coefficients ak, flk it is easy to compute the polynomials 7rr and
their derivatives recursively by (1.2) and the relations obtained from (1.2) by differenti-
ation, for any fixed within or without the spectrum of dA. The procedure is not only
straightforward, but also quite stable, much in contrast to the evaluation of rr in terms
of its coefficients.

(iii) Equally simple is the evaluation of finite sums Y. c,Tr(t) of orthogonal
polynomials by Clenshaw’s algorithm (see, e.g., [14, 1.5.3]).

(iv) The functions of the second kind,

(1.3) p(z) In 7r(t)z t
dA (t), r O, 1, 2,

where z is outside the spectrum of dA, also satisfy the same recurrence relation as in
(1.2) (where is to be replaced by z), and in fact, under very weak assumptions on
the measure dA, represent the minimal solution of (1.2) normalized by p_l(Z)= 1.
They, too, therefore can be calculated accurately by known algorithms (cf. [18]).

(v) From the coefficients ak, flk we can construct the Jacobi matrix associated
with dA, i.e., the symmetric tridiagonal matrix

(1.4) J

which in turn allows us to compute the zeros of 7rn rapidly and efficiently as eigenvalues
of the nth order segment of J, using modern procedures of numerical linear algebra,
notably the QR (or QL) algorithm. The first components of the corresponding eigen-
vectors, indeed, also yield immediately the Christoffel numbers associated with dA
(see, e.g., [20], [16]).
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(vi) The coefficients ak, flk enter in Jacobi’s continued fraction associated with
the integral n dA (t)/(z t), as well as in the corresponding Stieltjes continued fraction
(cf. [14, 1.4.2]).

(vii) The coefficients k determine the normalization constants by virtue of
21 7"/’r (t) dh (t) 01 /r (cf. [3, Chapt. 1, Thm. 4.2(b)] or (2.2)).
We thus consider the following problem to be fundamental in the constructive

theory of orthogonal polynomials: Given dh(t), compute as many of the coefficients
ak, k in (1.2) as are desired.

The next important question concerns the "codification" of the measure dh" In
what form should dh (t) be given or what do we assume known about dh ? The classical
way of codifying dZ is through its moments (1.1). The problem then becomes: Given,
for some integer n > O, the first 2n moments/xo,/zx,’’’,/-/,2n-1 Of dh, compute the first
n coefficients ak,/3k, k 0, 1,’’’, n- 1. (It will be assumed throughout that /30
dh (t)-/.to, even though/30 in (1.2) is arbitrary.) The solution of this problem gives

us access to the first n + 1 orthogonal polynomials zro, zrl, ",

There are several known procedures for solving this problem, of which two will
be discussed in 2.1 and 2.3. Unfortunately, the problem itself is highly sensitive to
small perturbations in the moments, so that any algorithm which (theoretically) solves
the problem will be subject to severe growth of errors when executed in finite precision.
It is this unfortunate experience which motivates a careful study of the underlying
(nonlinear) map R2, ,, i.e., in the present case, the map from the first 2n moments
/z to the first n recursion coefficients a,/3k. What we need to know is the numerical
condition of this map, and of analogous maps for other related problems. This will
be the subject of 3, the particular map above being discussed in 3.2. The novelty
of our treatment, in part, consists in representing the respective map as a composition
of two maps, the first being from the moments (or related quantities) to the Gaussian
quadrature rule, the second from the Gaussian quadrature rule to the desired recursion
coefficients. Each component map can be analyzed individually with regard to its
numerical condition, which in turn yields a bound on the condition of the composite
map.

A better codification of the measure dh was first proposed by Sack and Donovan
[25] and involves the so-called modified moments v p(t)dh (t), where {p} is an
appropriate system of polynomials, often already orthogonal with respect to some
classical measure. An algorithm that obtains the recursion coefficients from modified
moments will be described in 2.4. The condition of the underlying map is studied
in 3.3, where the principal result (Theorem 3.1) supersedes earlier results of ours,
with regard to both generality and sharpness.

Methods based on the idea of discretizing the measure dA (t) were proposed in
[11] and [19], and will be further dealt with in 2.2, 2.5, and 3.4. They are applicable
whenever dh has the form dh(t)=w(t)dt, where w is continuous on some open
interval, or on the union of a finite number of open intervals, and zero on the
complementary set in R, whereby integrable singularities are allowed at the endpoints
of the interval(s). The methods, in fact, are applicable to more general measures which
in addition to the piecewise continuous component also contain a discrete point
spectrum.

In 4 the use and performance of the various methods discussed in 2 will be
illustrated by means of concrete and nontrivial examples involving orthogonal poly-
nomials with respect to both discrete and continuous (also piecewise continuous)
distributions dh. Detailed comparisons are made between the actual performance of
the algorithms and the expected performance based on the theory of 3.
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2. Basic procedures. There are essentially two classical procedures for generating
the recursion coefficients of orthogonal polynomials. The first is based on the explicit
inner product representation (2.2) of these coefficients, the constructive potential of
which appears to have first been recognized by Stieltjes. We call the resulting method
the Stieltfes procedure. The second method, due in the case of discrete orthogonal
polynomials to Chebyshev, derives the desired coefficients directly from the moments
of the underlying measure. We call this the Chebyshev algorithm.

Both procedures require substantial additional implementation work in order to
make them effective tools of modern high-speed computation. The Stieltjes method
can be implemented effectively by a discretization procedure proposed by Gautschi
[11]. The resulting discretized Stieltfes procedure, especially in the refined form
described at the end of 2.2, is by far the most reliable and the most generally
applicable procedure. Its major limitation is the possibility of relatively slow conver-
gence, particularly in cases of integration measures with infinite support. Chebyshev’s
algorithm, in a more effective form involving modified moments, has been rediscovered
by Sack and Donovan [25] and Wheeler [29]. We refer to their procedure as the
modified Chebyshev algorithm. Its major difficulties are two-fold. First, there is the
possibility of moderate to severe ill-conditioning, particularly, but not exclusively, in
the case of infinite intervals of orthogonality. Secondly, the algorithm requires the
accurate computation of modified moments, which is usually a highly nontrivial task.
The latter difficulty can be alleviated to some extent by a suitable discretization, as
is briefly proposed in [19, 5.3] and further discussed in 2.5. If modified moments
are easily available and ill-conditioning poses no problem, the modified Chebyshev
algorithm is certainly the method of choice, on account of its superior speed.

In the following subsections we present a more detailed description and discussion
of each of these individual procedures. Applications to specific examples will be given
in4.

2.1. Stieltjes procedure. It is well known that the system of (monic) polynomials
orthogonal with respect to the measure dA (t) satisfies a three-term recurrence, relation
of the form

7rk+l(t)-- (t--OZk)Trk(t)--[kTrk-l(t), k --0, 1, 2," ".,
(2.1)

qr-l(t) O, ro(t) 1,

where

(2.2)

I trr(t) da (t)
ak I rr2(t) da (t)’

k IR 7I’2k-1 (t) dA (t)’

k=0,1,2,...,

k=l,2,....

In particular, k 0 for all k >_- 1;/3o in (2.1) is arbitrary, but is conveniently defined
as/o Ia da (t).

The general formulas (2.1) were given already by Christoffel [4], who has different
expressions for the Ck, Bk. The formulas in (2.2) are due, independently, to Darboux
[5, pp. 411-413] and Stieltjes [26, Oeuvres I, p. 382]. Stieltjes observed how (2.1),
(2.2) can be used to successively generate rrl, rr2, rr3," . Indeed, since fro 1, the
first coefficient ao can be computed from (2.2) with k 0, which then allows us to
obtain ’rrl(t) from (2.1). Knowing r0, 7/’1, we can get al, B1 from (2.2), hence "rr2(t)
from (2.1), etc. We call this procedure, alternating recursively between (2.1) and (2.2),
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the Stieltfes procedure. Stieltjes did not elaborate on how to evaluate the integrals in
(2.2). Presumably, he considered this a straightforward task, since, given the first
2k + 2 moments in (1.1) and given the coefficients of zrk and zrk-1, it is an easy matter
to compute a and/ in terms of these quantities, and then to obtain the coefficients
of ,r/ from (2.1).

Unfortunately, in this form Stieltjes’s procedure is practically useless, since
rounding errors propagate very rapidly. As pointed out in [11], the rapid growth of
errors is a reflection of the highly ill-conditioned nature of the map from the first 2n
moments/xo,/x 1, ,/x2,-1 to the first n coefficients Co, , c,-1,/0, ,/3,-1. We
will have more to say about this in 3.2.

If the measure dA (t)= dAr(t) is a discrete N-point measure, the integrals in (2.2)
become sums and can be computed directly, without recourse to moments. In this
case, the Stieltjes procedure, also publicized by Forsythe [6], is generally quite stable,
although it may happen that the coefficients c,/3k, when k is approaching N, and N
is large, will suffer in accuracy (cf. Examples 4.1 and 4.3).

2.2. Discretized Stieltjes procedure. Suppose, to begin with, that

(2.3) dh (t) o(t) dt on (-1, 1),

where o is a nonnegative weight function with finite moments /Xr trco(t) dt, r
0, 1,. ., 2n 1, and 0> 0. Our objective is to compute a,/, k 0, 1,. , n 1.
In an attempt to escape ill-conditioning in the Stieltjes procedure we proposed in [11]
to approximate the integrals in (2.2) by a suitable quadrature rule,

(2.4) p(t)o(t) dt 2 w,,p(t,,)o(t,,) + Rl(pco), N > n,
m=l

with nodes t, t (-1, 1) and weights w,, w N,. >0. We require this rule to
converge as N co whenever p is a polynomial. It is easily seen that this procedure
amounts to approximating the desired orthogonal polynomials zrk, k 0, 1," , n, by
the discrete orthogonal polynomials zrk,r, k 0, 1,. , n, orthogonal with respect to

(N) (t(N)the N-point measure dAr(t) having abscissas .,,tm and jumps w,, o ). In fact, under
the assumption made, i.e., under the assumption

(2.5) | p(t) dx(t)- | p(t) dA (t), N oo, all p ,
,-

one can prove that [11

7r.r(t)zr(t) asN oo,

for each fixed k, 0 =< k =< n-.
An attractive quadrature rule to be used in (2.4) is Fej6r’s rule, i.e., the interpola-

tory quadrature rule with nodes at the Chebyshev points t =cos ((2m- 1)zr/2N).
Among the considerations favoring this choice are the following:

(i) .,,t(m and wN. are expressible in closed form in terms of trigonometric
functions (cf. [11], [12]). Accordingly, the Fej6r rule can be computed more rapidly
than, say, the Gauss-Legendre quadrature rule. Some relevant timings are given in
Table 2.1, where the method of Golub and Welsch [20] was used to generate the
Gaussian rule.

(ii) Convergence (2.5) takes place not only for continuous functions o, but also
for functions o that have singularities at the endpoints of [-1, 1], provided they are
monotonic and integrable [10].
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TABLE 2.1
Timings (in seconds) ]’or generating the n-point Fej#r and the n-point

Gauss-Legendre quadrature rule on the CDC 6500.

n Fej6r Gauss

10 2.0(-3) 4.3(-2)
20 6.0(-3) 1.5(-1)
40 2.2 (-2) 5.5 (-1)
80 7.8 (-2) 2.1 (0)
160 2.9(-1) 7.5(0)
320 1.1 (0) 2.9 (1)
640 4.5 (0) 1.1 (2)

(Numbers in parentheses indicate decimal exponents.)

(iii) The discrete polynomials zrk.N, or rather, their coefficients ak.lV,/k.r, can be
generated efficiently by the modified Chebyshev algorithm (see 2.4), which ought
to be quite stable on account of the point spectrum consisting of Chebyshev points
(cf. Example 4.2).

(iv) If to e Ps then R(pto)=0 for all p e 22n_1, whenever N_->2n + s, and con-
sequently our discretization process gives exact answers, when N _-> 2n + s, except for
rounding errors.

Nevertheless, when singularities are present, convergence in (2.5) can be rather
slow. An example in point is the case of square-root singularities, say to(t)=
tol(t)(1- t2)-1/2, where tol is smooth on [-1, 1]. In this case, the Fej6r rule converges
too slowly to be of practical use. Much more effective is the Gauss-Chebyshev rule

p(t)to(t)(1-t)-/ dt=-- p(tm)to(t.)+R(pto),

where again tm cos ((2m 1)zr/2N). Similarly, one may wish to apply a Gauss-Jacobi
rule in cases where to(t)=tol(t)(1-t)(1 / t), a >-1,/3/>-1 (cf. Example 4.10).

If the basic interval is not [- 1, 1], but [a, b ], -o __< a < b -< o, we select a monotone
function (a linear function, if [a, b] is finite) which maps [-1, 1] on [a, b] and use

(2.6) fab N

p(t)to(t) dt= E w,,p(b(t,,))to(qb(t,,))qb’(t,,)+R(pto)
m=l

in place of (2.4) (cf. [11]). This again leads to a discrete measure dAvy(t), the abscissas
and jumps now being b (t,,) and w,,to(4(t,,))cb’(t,,), respectively. In this way, arbitrary
finite or infinite intervals can be handled.

The method described, actually, has still wider applicability. We may indeed allow
dh (t) to be composed of a piecewise continuous weight distribution and a discrete
distribution, whereby the former is supported on the union of a finite number of
disjoint intervals, and the latter contains a finite number of distinct points. One or
both of the extreme intervals of the piecewise continuous component may extend to
infinity. To cope with this more general situation, all we need to do is to apply our
discretization process, with suitable functions b in (2.6), individually to each com-
ponent interval, add up all the contributions, and then add to the resulting discrete
measure the discrete measure of the given point spectrum. The convergence of the
process, of course, is in no way affected by the addition of the given point spectrum,
although its stability properties may be altered significantly (see Example 4.8).
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As a simple example, suppose to is piecewise constant on the continuous part of
the spectrum. Then the process not only converges, but in fact is exact for N_-> 2n,
since each integral in (2.2) for ak,/k, 0--<k <_-n-1, is integrated exactly by the
composite N-point Fej6r rule (cf. (iv) above; see also Example 4.7).

Our treatment of the piecewise continuous part of the spectrum can also be
interpreted as expressing the weight function in the form of a sum of individual weight
functions (each equal to zero, except in one of the component intervals). This suggests
further generalizations, whereby the weight function is assumed to be a sum of weight
functions, each supported on its own interval, and each treated by a separate quadrature
rule. Some of these intervals may then in fact coincide. This will be very effective in
cases where different components of the weight function (possibly on the same interval)
must be dealt with by different quadrature rules; see Examples 4.6, 4.9 and 4.10 for
illustrations.

2.3. Chebyshev algorithm. Chebyshev [2, Oeuvres I, p. 482], in the case of
discrete orthogonal polynomials, observed that the coefficients ak,/k can be obtained
directly in terms of the quantities

(2.7) o,k,t In rk(t)tl dA (t)

(for which Chebyshev used the symbol (k,/)), by means of

O’0,1
iX0 -- 0 O’0,0

O’0,0

O’k,k+l O’k-l,k(2.8) ak --,
r, r_,_

k-1,2,3,....
O’k,k

k-l,k-1

The , in turn, can be generated recursively from the moments by [2, Oeuvres I,
p. 482]

k k-,l+--ak-lk-,l--k-k-2,, k, k + 1,. , 2n -k- 1,
(2.9)

-1,0 0 01 l.

Given the first 2n moments o, 1," ’, 2,-a, this will produce the first n coefficients
ao,’’ ", a_x and 0,"" ’, B,-a. We refer to (2.8), (2.9) as the Chebyshev algorithm.

Being based on the moments , the algorithm unfortunately suffers from the
same effects of ill-conditioning as does the Stieltjes procedure, when implemented in
terms of moments. In many cases it is possible, however, to stabilize the algorithm
by introducing modified moments in place of ordinary moments.

2.4. Modified Chebyshev algorithm, Let {pk(t)} denote a system of (monic)
polynomials satisfying a recurrence relation

pk+(t) (t-- ak)Pk(t)- bkPk-(t), k O, 1, 2," ",
(2.10)

p_(t) O, po(t) 1,

where ak, bk are assumed known. We then call

(2.11) Vr In pr(t) dh (t), r=O, 1, 2,.
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the modified moments of the measure dh relative to the polynomial system {pr}. If
ak bk 0 for all k, then pk(t) k, and the modified moments reduce to the ordinary
moments (1.1).

Chebyshev’s algorithm generalizes very naturally to the case of modified moments.
One defines

(2.12) O’k IR zrn t)p(t) dh (t),

and obtains the first n coefficients ak,/3, k 0, 1, , n 1, from the first 2n modified
moments Vr, r 0, 1,..., 2n 1, by the following modified Chebyshev algorithm.

Initialization"
o’-1. 0, 1, 2,. , 2n- 2,

(2.13o)
O’o,l Pl, O, 1,. , 2n 1,

Pl
ao ao +--,

P0

(2.13k)

fl0 P0.

Continuation" For k 1, 2,. , n 1

O’kl O’k-l,l+ (Ok-X al)O’k-l,l k-XO’k-2,1

+ blO’k-,t-1, k, k + 1, , 2n k 1,

O’k,k + O’k- l,k
Olk ak -k

O’kk O’k 1, k

3k
O’kk

O’k-l,k-1

The algorithm is summarized schematically in Fig. 2.1, where the "computing star"
shows which of the trkl (indicated by black dots) are related to one another in the

Star

FIG. 2.1. The modified Chebyshev algorithm (schematically for n 5).
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identity (2.13k). The circled dot indicates the quantity which is computed in terms of
the others in the.star. The entries in boxes are those used to compute k,/. The
diagonal entries, incidentally, furnish the normalization constants

2(2.14) cr r(t) dA (t), k 0, 1," ’, n 1.

(Chebyshev’s algorithm proceeds similarly, except that it starts from the moments
and the left arm of the computing star is missing.) The algorithm (2.13), in a somewhat
different form, was first proposed by Sack and Donovan [25], and in the form given
here by Wheeler [29]. A derivation can also be found in [15].

The modified Chebyshev algorithm often proves to be exceptionally stable,
particularly when rk and Pk are orthogonal polynomials on finite intervals (see, e.g.,
Examples 4.4 and 4.5). On infinite intervals, disjoint intervals, and also in the case
of discrete spectra, the underlying map, however, is likely to become ill-conditioned,
sometimes even severely so (see, e.g., Examples 4.1, 4.3, 4.6, 4.7 and 4.8). Some new
theoretical insights into these questions of condition are given in 3.3.

2.5. Discretized (modified) Chebyshev algorithm. The tendency of becoming
ill-conditioned is one of the limitations of the modified Chebyshev algorithm. Another
is the difficulty inherent in the accurate calculation of the modified moments (2.11).
It is possible, however, as suggested in [19, 5.3], to apply the same discretization
dA(t)dAv(t) that was used in the Stieltjes procedure (cf. 2.2) to the modified
moments. One thus approximates ’r by

(2.15) 1]r’N fR pr(t) dAN(t),

and then calculates the associated recursion coefficients ak.r and/,r by the modified
Chebyshev algorithm. The procedure converges under the same conditions as the
discretized Stieltjes procedure. It is essential, however, that convergence (in relative
accuracy) be tested on the/.r, and not on the ’r.N, since the latter may vanish and,
besides, need not be required to have full relative precision (cf. Example 4.4). The
range of applicability of this procedure can be extended, as in the case of the discretized
Stieltjes procedure, to measures dA (t) composed of piecewise continuous components
as well as point spectra. It is important to realize, however, that any ill-conditioning
present in the modified Chebyshev algorithm will manifest itself also in its discretized
version. There are fewer problems of this kind with the discretized Stieltjes procedure.

3. Questions of numerical condition. The modified Chebyshev algorithm of 2.4
realizes the map Kn:R2n--> which associates to the first 2n modified moments
the recursion coefficients a,/3, k =0, 1,..., n-l, for the respective orthogonal
polynomials:

(3.1)
7" Eo, ,..., -], o Eo,. ., -, o,..., -].

Throughout this section we assume that/30 IR dA (t)= ’o.
For the purpose of studying the numerical condition of the map K,, it is convenient

to think of K as the composition of two maps,

(3.2) K,=Hn oG,,

where G is the map from the modified moments ,r to the Gauss-Christoffel quadrature
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rule,

T(3.3) G,’u "y, "Y [/1, ", /n, TI," ", Tn],

and H. the map from the Gauss-Christoffel quadrature rule to the recursion
coefficients,

(3.4) H,, "yp.

Here, A. A (") (n)r r are the Christoffel numbers and Gaussian abscissas (the zeros
of 7r.(. dA)), respectively, associated with the measure dA (t), so that

(3.5) fa f(t) dA (t) ,,=a Af(r) + R. (f), R. (P2.-1) O.

As one would expect, the map G, is the more sensitive of the two. The map H,
is usually fairly well-conditioned; its condition is discussed in 3.1. In 3.2 we briefly
recall the ill-conditioned nature of the map G when the vector v consists of ordinary
moments. The condition of G, in the general case of modified moments is studied in
3.3. As condition number of a map M: x + y from one finite-dimensional space into

another we generally adopt the quantity (see, e.g., [15])

IIxIIIIJM(X)II
(3.6) (cond M)(x)

Ilrll
y Mx,

where JM is the Jacobian matrix of M, and II, a suitable vector norm and subordinate
matrix norm. In cases where the vector x (or y) has components of widely varying
magnitude, this condition number may not be very meaningful on account of the
falsification introduced by the factor Ilxll (or 1/llrll). In such cases we use more refined
measures of the condition. Recall also that cond (H, G,)-< cond (H,) cond (G,).

3.1. Condition of the map H.. By virtue of (2.2) and (3.5), the map H, can be
described by

(3.7) /30

2

/ Y." (r)’v=l lvTrk-1

k=0, 1,2,...,n-l,

k=l, 2,...,n-1.

We are here in a case where the condition number (3.6) is often not appropriate,
since the Christoffel numbers a vary greatly in magnitude, particularly if the interval
of orthogonality is infinite. We therefore use the one-dimensional equivalent of (3.6),
applied to each ak and/k individually, considered as functions of one particular
or r. Thus, we write

(cond c)(A.)= a.(oc/oa.)] (if a # 0), etc.,
Ok

where in the case ak 0 the division by Ok is omitted.
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An elementary calculation then yields

(condak)(A) d’ =,r(),
=1 u=l

(3.8)
(cond fig)(A) d AlTr,(r)-/k"B’-I (Tv)[,

v=l v=l

(cond flk)(r)=2d{
v=l v=l

where

dk arrk(r,) rr,(t) d (t), k 0, 1,.. ", n 1,

k k A,k Cek

if Ck 0, r if ak O.

A suitable condition number, cond H,, for the map H, is now the maximum of all
the numbers in (3.8), as k varies over 0, 1, , n 1. Numerical values of this condition
number, for some classical polynomials, are shown in Table 3.1.

TABLE 3.1
The numerical condition of the map H. for some classical orthogonat polynomials.

n Legendre Chebyshev Laguerre Hermite

5 6.968 (0) 7.186 (0) 6.724 (0) 1.596 (1)
10 1.785 (1) 1.823 (1) 2.143 (1) 6.254 (1)
20 4.530 (1) 4.742 (1) 4.269 (1) 2.042 (2)
40 1.071 (2) 1.135 (2) 8.525 (1) 6.181 (2)
80 2.526 (2) 2.644 (2) 1.761 (2) 1.807 (3)

It is seen that the map H, in these cases is relatively well-conditioned, cond H, growing
about linearly in n. The well-conditioning of H,, however, is not always assured; see,
e.g., Examples 4.1, 4.3 and 4.8.

The coefficients ak, Bk are less sensitive to perturbations in the A than to perturba-
tions in the r. Indeed, from (3.8) it follows immediately that

(cond Crk)(h) _<-- max [A k
v,k

(cond/3)(A.) =< 2.

If the polynomials are orthogonal on [-1, 1] with respect to a symmetric weight
function, then the bound in the first inequality is < 1.

Results in terms of the "global" condition number (3.6) are comparable to those
in Table 3.1 in the case of Legendre and Chebyshev polynomials, but completely
unrealistic in case of Laguerre and Hermite polynomials. For Laguerre polynomials,
e.g., the condition numbers based on (3.6), using the uniform norm, range from
1.06 105 for n 5 to 7.65 106 for n =40. This is a rather striking example of how
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the introduction of inappropriate norms in the study of condition may completely
distort the true nature of sensitivity.

3.2. Condition at the map Gn in ease at ordinary moments. We assume in (3.3)
that v is the vector of ordinary moments,

/ --[/.0, it/, 1, it/,2n-1], [.r-- trdA(t).

The map G, then amounts to solving the nonlinear system of equations,

(3.9) Y. A,r =/zr, r 0, 1, 2,..., 2n 1.

If F, is the map y- v defined by (3.9), its Jacobian JF. is readily computed to be

JI.=TA,
where

A=diag (1,.. , 1, A1,. , A,),

1 1 0 0

rl r, 1 1
2 2r r 2r 2r.

2n --1 2n --1_r r. (2n 1)r:"-2 (2n 1)r2."

Since Jo. -1JF,,, we have according to (3.6),

(cond G,,)(v)=

From the analysis in [11], in particular Theorem 2.1 and the discussion preceding it
(which assumed [0, 1] as the support of dh (t), but extends easily to arbitrary measures
on the positive real line), one gets

max (1 + r) I-[

or, equivalently,

> I1 11 1 [r. (- 1)]2
(3.10) cond

=llrll max=" min {(1 + r=)[r’.(r)]2}

where I1 11 max0=<r_<2n-1/Zr, I1 11- max (max a, max r) and supp (dA)e IR+. Since the
point -1 is well outside the spectrum of da, the lower bound in (3.10) must be expected
to grow rapidly to infinity as n + oo, on account of the asymptotic behavior of orthogonal
polynomials outside the spectrum (for relevant results see, e.g. [27, Thms. 8.21.7,
8.22.31).

Here also, the result (3.10) may be misleading if the interval of orthogonality is
infinite, since the moments r then likely grow rapidly. In analogy to 3.1, it is better,
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in these cases, to use the more refined condition numbers

2n--1 2n--1 Itz,(T-).+ 11E (cond A)(/xr)= E
r=0 r=0 /v

(3.11) v=l, 2,...,n,

Y (cond r,,)(/Zr)= X

and take as cond On the maximum of these 2n quantities. Unfortunately, they no
longer admit simple expressions in closed form, but can be readily computed, for
example by means of the algorithm for T-1 in [8, 4].

In Table 3.2 we illustrate the condition of the map Gn for the examples dA (t) =dt
on [0, 1], dA (t) In (l/t) dt on [0, 1], dA (t) e -t dt on [0, oo] and dA (t) e -t2 dt on
[0, oo]. The third column gives the lower bound in (3.10), the fourth column the
maximum of the 2n condition numbers in (3.11), and the last one the actual error
growth observed. The latter is taken to mean the largest relative error in the ak, ilk, k
0, 1,’’’, n-l, divided by the machine precision, in our case 3.553 10-15. The
coefficients ak, fig were computed by Chebyshev’s algorithm; cf. 2.3. (Since the
moments of the Laguerre distribution are integers, we first subjected them to random
perturbations at the level of the machine precision before applying Chebyshev’s
algorithm.) In the first two examples, for n 12 one of the k (the last one) came out
to be negative; hence no results are shown for n 14. Note that the second and fourth
example involve nonclassical orthogonal polynomials.

It is seen that in the first two examples, where the interval of orthogonality is
finite, the observed error magnification indeed follows the trend predicted by either
of the two condition numbers. In the last two examples, involving infinite intervals
of orthogonality, this is only true for the condition number based on (3.11); the other
grossly overestimates the error growth, for reasons explained earlier.

TABLE 3.2
The condition of the map Gn in the case of ordinary moments and dh (t) to(t) dr.

to(t) n cond Gn (3.10) cond G, (3.11) err. growth

2 1.997 (1) 4.132 (1) 2.400 (1)
on [0, 1] 5 6.803 (4) 3.802 (5) 6.280 (4)

8 7.080 (8) 6.161 (9) 8.977 (8)
11 1.111 (13) 1.302 (14) 2.108 (13)
14

In (l/t) 2 4.863 (1) 1.932 (1) 2.655 (1)
on[O, 1] 5 2.133 (5) 7.071 (4) 2.411 (4)

8 2.391 (9) 7.370 (8) 8.010 (7)
11 3.889 (13) 1.156 (13) 3.851 (12)
14

e 2 1.665 (1) 1.549 (1) 3.500 (0)
on[0, o] 5 4.416 (6) 9.665 (3) 5.991 (2)

8 7.006 (13) 5.968 (6) 1.600 (5)
11 1.078 (22) 3.829 (9) 6.508 (7)
14 8.170 (30) 2.521 (12) 9.164 (9)

e 2 6.823 (0) 2.106 (1) 1.162 (2)
on [0, o] 5 2.698 (4) 4.691 (4) 8.070 (3)

8 8.044 (8) 1.073 (8) 3.890 (6)
11 6.445 (13) 2.555 (11) 3.274 (10)
14 1.001 (19) 6.243 (14) 5.373 (13)
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3.3. Condition of the map G. in case of modified moments. We now assume in
(3.3) that the vector v contains the modified moments,

/2 IV0, /,tl,""" /22n--1], /"r pr(t) dA (t),

where {Pk } is a system of (monic) polynomials orthogonal with respect to some measure
dt(t),

dl(t) O, r s.

The support of dl(t) may be finite or infinite, and need not necessarily coincide with
the support of dA (t). The condition of the map G in this case has previously been
studied in [13]. Our treatment here improves upon that work in several respects. First,
we obtain considerably more realistic bounds for the condition number. Secondly,
our new bound is valid irrespectively of whether dl(t) has finite or infinite support,
in contrast, e.g., to Theorem 2.1 of [13]. Finally, the bound can be evaluated exactly
by Gaussian quadrature, in contrast, e.g., to the bound (2.33) in [13], where L,., and
hence k <,2), does not allow exact evaluation by quadrature. The improvement is achieved
by employing the more natural L2-norm in place of the L-norm used in [13], and
rests on the fact that for any real matrix A,

(3.12) IIAII2 /p(ATA) <= /tr (ATA) IIAIIF,

where p(. denotes the spectral radius, tr(.) the trace, and [1" [[ the Frobenius norm

[[AI[F ii 32i, A [ai].

As before, we let r r") A A ") denote the Gaussian abscissas and Christoffel
numbers, respectively, belonging to the measure dA (t). Furthermore,

h(t) =/2 (t)[1-21’(r)(t-r)],
(3.13)

k(t) 12(t)(t-r),
v 1, 2,.’., n

will denote the fundamental Hermite interpolation polynomials associated with the
abscissas r,.. , r,, i.e.,

h(r.)=6.o h’(r,)=O.
(3.14) u,/x 1, 2,. ., n,

k() 0, k’(r) ,,
where 8,,, is the Kronecker symbol and l, are the fundamental Lagrange interpolation
polynomials.

It will be convenient to consider not the map v y in (3.3), but the map

G - y,

where ; is the vector of normalized modified moments

r d-1/2, d p2 (t) dl(t), r O, 1,..., 2n 1.

This has the theoretical advantage of making the independent of the normalization
of the orthogonal polynomials {Pk}. For algorithmic purposes, however, the passage
from v to ; is not required, and in fact not recommended; cf. 2.4. The additional
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diagonal map introduced,

D,’vg,

of course, is harmless, since each individual transformation Vr r involves just one
multiplication and is therefore perfectly well-conditioned.

For the map (, we now have’
THEOREM 3.1. The condition of the map r,, in the sense of (3.6), with [1" the

Euclidean norm, can be estimated as follows:
11/’71 ffa v=l( h2(t)+l’2k2- ) }1/2(3.15) (cond 0.)(;)-<_,7- v(t) el(t)

where

2n-1
~2 2(3.16) [[;I}2 Z Pr, 11112 (/ 2v + 7.v).

r=0 v=l

Proof. The map , amounts to solving the system of nonlinear equations

( ,
where

r(’) d-; 1/2 Apr(rv), r O, 1,. , 2n 1.

The Jacobian Jd. () of (, therefore, is the inverse of the Jacobian c of , so that

(3 17) (cond ()()

An elementary calculation yields

(r) D-PA,
where

and

D diag (d/, d]/2, d 1/22.-1 ), A=diag.(1,. ., 1, A1,. , A.),

Therefore, using (3.12),

(3.18) }I(y)]l I[A-P-DI] [IA-e-tDll.
As previously observed in [13], the inverse of P can be expressed in terms of the
expansion coefficients in

2n 2n

hv(t)= Y. a,p,_l(t), k(t)=
t=l t=l

as
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Since

one obtains

On the other hand,

1 dl/2 b(A-1p-tD),.+,,,. tx-1 vtx,

IIA-P-aDII2 E d,-a a 2v. +--b,,z
.=1 tx=l /.

II fNt
2n 2n

h 2 (t) dl(t)= E a.p,_l(t) Y’. ap_a(t) dl(t)
=1 =1

E a,avK In p,-a(t)pK-l(t) dl(t)

2n

E d.-aa 2

tz=l

by virtue of the orthogonality of the Pr with respect to dl(t). Similarly,

Therefore,

L 2n

k2(t) dl(t) E d, lb 2

tx=l

IIA-aP-aDII-- v=lL h(t)+-k(t)dl(t),
which in view of (3.17), (3.18) proves the theorem.

We remark that the integral in (3.15), since the integrand is a polynomial of
degree -<4n-2, can be evaluated exactly (up to rounding errors) by the 2n-point
Gauss-Christoffel quadrature formula associated with dl(t). This causes little problem,
since dl is usually one of the standard integration measures and, besides, the integrand
is positive. Furthermore, the integrand is conveniently evaluated in the form

( 1 ) Y." [Pv(t--r)]-4([1--2r(t--r)]2+h-2(t--%)2)
(3.19) L h(t)+Sk2(t)

v=l /v (E;--1 [Pv(t--%)]--l)4

where

fi 1
o. (r. -r.), .

=1 =1 "/’v Ttz

71 (t-r.)as follows directly from (3.13) and the fact that /(t) landl(t)=p
for the Lagrange polynomials. Of course, the evaluation of (3.19), as well as of Ilyll
in (3.16), requires knowledge of the Gaussian abscissas and Christoffel numbers for
aa(t).

We will have occasion to comment further on the result (3.15), when we discuss
specific examples in 4. Suffice it to say, here, that Gaussian abscissas r that are
distributed approximately uniformly (as they tend to be for discrete orthogonal
polynomials based on an equally spaced point spectrum) give rise to integrals in (3.15)
that are likely to be very large for large n on account of the violent oscillations of h
and k near the extreme nodes r,. Abscissas r,, on the other hand, that are distributed
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more like Chebyshev points are expected to yield much smaller values for these
integrals, hence better condition for the map G,.

The s.harpness of (3.15) can be tested by considering dl(t)= dA (t), in which case
the map G, essentially reduces to the (well-conditioned) map H1. The integral in
(3.15), nevertheless, does not appear to allow an easy evaluation or estimation in
simple form, except in special cases. One such special case is the Chebyshev measure
dA (t)= (1-tz)-1/2 dt on [-1, 1], for which the integral in question can be evaluated
by the Turin quadrature formula [28],

f(t)(1-t2)-l/2dt i [Af(r)+A’f’(r)+Af"(r)]+R,(f),
v=l

where rv =cos ((2v-1)Tr/2n), which is exact for all fP4n-1 and known in closed
form [22]"

Av A ___._=( 2=--n - 4
3r, A"=4n.,l-r,-n

One finds, in view of (3.14),

’. h2g(t)+TTk2g(t) (1-t2)
ltx=l At,

since h(r)< 0 for all v. Observing that

= n3 Y sin2
v=l 2n n3 2

one gets

.(t)+--k (t) (l-t2) dt<rr+
1.=1 At. 4zr

Finally, since uo zr, Ur 0 for r > 0, hence o #, r 0 for r > 0, and since

=1 +r)=(2/n)+(n/2), we obtain

+
asn

admittedly a somewhat too optimistic result (made so by the factor 1/IITII in (3.15)).
The same considerations apply to the example dl(t)=(1-t)-/ dt on [-1, 1]

and dA (t) dAb(t) the discrete N-point measure with abscissas at the Chebyshev points
t =cos ((2m- 1)/2N), m 1, 2,..., N, and jumps equal to /N, provided that
nN.

3.4. The condition underlying the discretized Stieitjes procedure. It is not entirely
clear what should be the appropriate map that underlies the discretized Stieltjes
procedure. In the simplest case dA (t) a,(t) dt on [-1, 1], the input data surely include
the values a,(t)) of the weight function at the discretization points t), m
1, 2,..., N, but may also include these points themselves, as well as the quadrature
weights-w,, From these data the procedure then determines the desired coefficients
ak,/3k, k 0, 1, , n 1, or more precisely, their discrete approximations
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Olk,N, k,N, k 0, 1, .., n 1. Analogous considerations apply to the more general
measures dh (t) considered at the end of 2.2.

The map in question, therefore, is similar to the map Hn considered in 3.1, and
in fact may be thought of as an approximation Hn.N of H. Since our interest is in the
condition of these maps, where orders of magnitude is all that matters, we may as
well take the condition of H, as indicative of the sensitivities inherent in the discretized
Stieltjes procedure. It will be seen by numerical examples that cond/-/ indeed agrees
reasonably well with the actual error growth observed in the discretized Stieltjes
procedure.

4. Examples. The purpose of this section is to illustrate the performance of the
procedures of 2, and the underlying theory of 3, in a number of examples that we
hope are representative. All computations reported were carried out on the CDC 6500
computer in single precision, except for the computation of errors, which was done
in double precision.

4.1. Discrete orthogonal polynomials.
Example 4.1. The discrete orthogonal polynomials tr(x) of Chebyshev.
These are orthogonal with respect to the N-point discrete measure with abscissas

at the integers 0, 1, , N- 1 and jumps equal to 1/N"

1 N-1

tr(k)ts(k)=O, rs, r,s=O, 1,. ,N-1.(4.1)
N =o

We prefer to deal with the (monic) polynomials

rz
(4.2) r(X (2r) N-t(Nx),

which satisfy the recurrence relation (2.1) with

= 1- k=0,1,’",N-1,

(4.3)
1 -(k/N)

o=1, 4(4-1/k)’ k 1,2, ,N 1,

and have their point spectrum on the interval [0, 1]. As N , the polynomials (4.2)
tend to the monic Legendre polynomials (shifted to the interval [0, 1]).

We first illustrate in Table 4.1 the ill-conditioning of the map G, from the ordinary
moments

1 k
r=0, 1,..’, 2n-1,dX(t)

o

TABLE 4.1
The condition of the map Gn in the case of ordinary moments and discrete

Chebyshev measure dh (t) dhr(t), N 20.

n cond Gn (3.10) cond G. (3.11) err. growth

2 1.957 (1) 4.110 (1) 2.456 (1)
5 6.109 (4) 5.047 (5) 2.110 (5)
8 5.318 (8) 1.768 (10) 1.028 (10)

11 4.366 (12) 1.406 (15) 3.286 (14)
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with N 20, to the n-point Gauss-Christottel formula, in the format that was already
used in Table 3.2. As is evident from Table 4.1, Chebyshev’s original algorithm rapidly
loses accuracy, at the rate of somewhat more than one decimal digit per degree!

More stable, though not entirely unproblematic, is the modified Chebyshev
algorithm, which we illustrate in Table 4.2 by recording the bound (3.15) for the
condition of 0n, as well as the actual error growth observed. The latter is now defined
as the L2-norm of the relative errors in the coefficients Crk, k, k =0, 1,’’’, n- 1,
divided by e x/n, where e is the machine precision. We feel that this is the appropriate
measure, since the result (3.15) is based on the Euclidean norm. The modified moments
chosen are those relative to the (monic) Legendre polynomials for the interval [0, 1].

TABLE 4.2
The condition of the map n in the case of Legendre moments and discrete Chebyshev measure

dh (t) dhc(t), N 10, 20, 40, 80.

N n cond (n err. growth N n cond err. growth

10 5 2.515 (0) 4.713 (0) 40 15 2.020 (1) 1.679 (2)
10 6.311 (4) 7.349 (4) 25 1.311 (6) 1.016 (7)

20 5 7.859 (-1) 3.537 (0) 35 5.015 (14) 1.110 (15)
10 1.932 (1) 1.105 (2) 80 10 4.885 (-1) 3.126 (0)
15 2.952 (4) 1.421 (5) 20 6.480 (0) 1.240 (2)
20 3.328 (10) 9.646 (10) 30 3.936 (3) 8.320 (4)

40 5 6.463 (-1) 2.106 (0) 40 4.800 (7) 1.013 (9)
10 9.953 (-1) 7.182 (0) 50 1.738 (13) 1.759 (16)

The magnitude of cond n is solely determined by the integral in (3.15), since

I111 and I111 in this example both have order of magnitude 1. The steady growth of
cond n can be explained by the fact that as n approaches N, the Gaussian nodes of
dAr(t) become more and more equally distributed. (They are equally spaced when
n N.) The Hermite interpolation polynomials h and k in (3.13) therefore exhibit
the violent oscillations characteristic of equally spaced nodes, which accounts for the
large values of the integral in (3.15). Chebyshev nodes on [0, 1], according to this
explanation, ought to result in substantially smaller conditions, a fact that will indeed
be confirmed in the next example.

The error growth shown in Table 4.2 is consistently somewhat larger than what
is indicated by cond Gn. This is because the growth of error in the coefficients ak, flk
includes also the effects of the map Hn, the condition of which is shown in Table 4.3.

One might think that the large oscillations of h and k could be filtered out by
choosing a measure dl(t) in (3.15) which is very small (or even equal to zero) near
the end zones of the interval [0, 1]. While this indeed reduces the magnitude of the
bothersome integral, the other factor ]1711 in (3.15) increases so much more that the
condition of (n in fact gets worse.

Substantially more stable is the Stieltjes procedure, measured both in terms of
the condition of the map Hn (cf. 3.4) and in terms of actual performance. For N 10
and 20, cond Hn is less than 22.08 and 50.80, respectively, for all n _-< N, whereas the
actual error growth observed is by factors of at most 10.86 and 16.66, respectively.
For N-40 and N 80 we have the situation indicated in Table 4.3. It shows that
ill-conditioning and consequent instability set in as n approaches N, relatively late
for N- 40, but sooner for N 80. The condition of/-/n is seen to correctly predict
the trend of instability, but overestimates it by several orders of magnitude.
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TABLE 4.3
Stability of the Stielt/es procedure for the discrete Chebyshev measure dh (t) dAvy(t), N =40 and 80.

N n cond H,, err. growth N n cond H, err. growth

40 -<-35 -<7.2 (3) -<2.4 (1) 80 _-<50 -<2.6 (3) _-<1.95 (1)
36 1.030 (5) 2.122 (2) 55 4.751 (6) 7.015 (3)
37 1.755 (6) 3.835 (3) 60 2.937 (10) 4.284 (7)
38 4.419 (7) 9.216 (4) 65 2.220 (12) 1.088 (12)
39 1.641 (9) 3.361 (6) 70 2.172 (12) 1.668 (15)
40 1.205 (11) 2.487 (8) 75 2.006 (12) 1.668 (15)

We report these results solely to illustrate the behavior of the various procedures
in a typical case of a discrete measure involving equally spaced points. There is, of
course, no need to apply these procedures, since the recurrence relation is known
explicitly (cf. (4.3)).

Example 4.2. Polynomials orthogonal with respect to the discrete inner product
N

[P, q]u Y. Wkp(tk)q(tk),
k=l

where tk tu) are the Chebyshev points on [-1, 1] and wk w) the weights of the
N-point Fej6r quadrature rule. This example is of interest in connection with our
discretization of the Stieltjes procedure (cf. 2.2).

It seems natural, in this case, to run the modified Chebyshev algorithm with the
modified moments relative to the (monic) Chebyshev polynomials of the first kind.
The map (, then turns out to be perfectly well-conditioned; see Table 4.4. ForN 10,
20, 40, 80 and for selected values n =< N, we found cond (, never to exceed 1.2, and
to be usually less than 1. The map Hn, likewise, appears to be quite well-conditioned.
Accordingly, both the modified Chebyshev algorithm, as well as the Stieltjes procedure,
perform exceedingly well. The respective error growths are shown in the last two
columns of Table 4.4.

TABLE 4.4
Performance of the modified Chebyshev algorithm and the Stieltjes procedure in Example 4.2.

err. growth err. growth
in Chebyshev in Stieltjes

N n cond t, cond Hn algorithm procedure

10 5 1.169 (0) 6.968 (0) 1.969 (0) 3.750 (0)
10 8.925 (-1) 2.133 (1) 1.969 (0) 1.472 (1)

20 5 1.169 (0) 6.968 (0) 1.969 (0) 6.000 (0)
10 9.152 (-1) 1.785 (1) 1.994 (0) 9.969 (0)
20 6.473 (-1) 5.054 (1) 1.045 (1) 2.053 (1)

40 10 9.152 (-1) 1.785 (1) 1.994 (0) 1.200 (1)
20 6.684 (-1) 4.530 (1) 5.996 (0) 1.200 (1)
40 4.597 (-1) 1.213 (2) 3.146 (1) 2.697 (1)

80 20 6.684 (-1) 4.530 (1) 5.996 (0) 2.300 (1)
40 4.773 (-1) 1.071 (2) 9.998 (0) 2.300 (1)
80 3.250 (-1) 2.827 (2) 7.948 (1) 8.435 (1)
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Example 4.3. "Truncated Charlier polynomials", orthogonal with respect to the
inner product

N-1 e-aa k

[P,q]N= E k
p(k)q(k), a.>O.

kO

For No, these become the Charlier polynomials, whose recurrence formula is
known explicitly.

The modified Chebyshev algorithm, at least when used in conjunction with
modified moments based on Laguerre polynomials, performs rather poorly on this

e.xample. The main reason is the rapidly deteriorating condition of the respective map
G. This is illustrated in Table 4.5 for the case a 1 and N -40. Practically identical
results are obtained for larger N, and quite similar ones for smaller values of N.

TABLE 4.5

Performance of the modified Chebyshev algorithm
with Laguerre moments in Example 4.3.

N n cond 0n err. growth

40 2 4.113(0) 0.0
4 1.832(3) 1.365(2)
6 3.963 (6) 5.622 (4)
8 2.006 (10) 2.217 (9)

10 1.793 (14) 2.907 (13)

For comparison we give in Table 4.6 some analogous information for the Stieltjes
procedure.

TABLE 4.6
Performance of the Stieltjes procedure in Example 4.3.

N n cond Hn err. growth

40 5 8.130(0) 5.995(0)
10 2.740 (1) 1.027 (1)
15 4.635 (1) 2.241 (1)
20 6.661 (1) 3.547 (1)
25 7.215(5) 8.444(7)
30 1.532 (11) 7.290 (14)

4.2. Polynomials orthogonal on an interval.
Example 4.4. An example of Christottel [4, Ex. 6]: dA (t)= to(t)dt with to(t)=

[(1-k2t2)(1-t2)]-1/2 on [-1, 1], 0<k <1.
What intrigued Christoffel was the fact that the associated orthogonal polynomials

{rrr(t)}, when considered as functions of x o to(t) dt, constitute a sequence of doubly
periodic functions orthogonal in the sense

K

7rr(t)rrs(t) dx O,
K

rCs,

where K denotes the complete elliptic integral K 0 to(t) dt.
Since (1-k2t)-/2 is analytic in a neighborhood of the segment [-1, 1], the

desired polynomials must be "close" to the Chebyshev polynomials of the first kind.
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This suggests the use of the latter as input to the modified Chebyshev algorithm, i.e.,
the construction of the desired recursion coefficients from the modified moments

(4.4) ur I_ pr(t)w(t) dt

with respect to the monic Chebyshev polynomials po-To, p(t)= T(t)/2-, r-
1, 2,.... These moments can be computed as follows. Letting first cos o in (4.4)
gives

1 fo cos rd,q?
g’’/2’ ’r k2 / d, r > 1(4.5) uo (1 k2 cos2 (1 cos2 q)

Now put 0 7r/2-q in the Fourier expansion

(1 k2 sin
. 0)1/2= C0(k2) + 2

,=1" C" (k2) cos 2nO

and substitute the result in (4.5). By the orthogonality of the cosine functions one
immediately obtains

(4.6)
o rCo(k),

1,,2m=(-1)m22m_xCm(k2), m=1,2,3,...,

while of course /"2m--1 O, m 1, 2, 3," ’. On the other hand, y, Cn (k2), n
O, 1, 2,. ., is a minimal solution of the three-term recurrence relation

(4.7) n + Y,,+I + ny,+ n y,,-1 O, n 1, 2, 3,
q

satisfying

(4.8) yo+2 y,, 1,
n=l

where

k2

q =2_k2+2(l_k2)l/2

(see, e.g., Luke [23, p. 36]). Our algorithm in [9, Eq. (3.9)], in conjunction with the
normalizing condition (4.8), then yields the Fourier coefficients C,(k2), hence the
modified moments (4.6), very accurately and efficiently. The algorithm works well
even when k2 is quite close to 1. Note, in fact, that (4.7) is a difference equation of
the Poincar6 type, with characteristic equation

2 l+q2

u +u+l=0, 0<q<l,
q

having two real roots Ul, u2 with lull > 1 > lull and

q
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(The minimal solution yn Cn (k2) "corresponds" to U2o) If k2-- 1- e, 0 < e << 1, then

1 1+= 1-4
l+4x/+Se + 12e4+16e2+o(e2), e-0,

so that for k2= .999, for example, we have e 10-3, hence

lull
which is still an adequate separation of the roots.

In addition to the modified moments being accurately computable, it turns out
that the modified Chebyshev algorithm is extremely stable. For all values of k2 that
we tried (0 < kN.999), and for degrees n up to 80, the error growth factor never
exceeded 3.258, and the condition number cond , never 3.153.

We have also used the discretized Stieltjes procedure, as well as the discretized
modified Chebyshev algorithm (cf. 2.2 and 2.5), with good success, using the
Gauss-Chebyshev quadrature rule in place of Fej6r’s. The advantage of testing
convergence on the relative accuracy of the coecients ., rather than on that of
the modified moments v, (cf. 2.5), can be clearly demonstrated in this example.
The modified moments indeed decrease very rapidly (unless k is close to 1), so that
insistence on high relative accuracy in these moments would not be meaningful. For
example, if k= .5, n 20, we find that

max Iflk’N--k 0-14
0k,- 2 8.81 X 1 for N 60,

while for the same value of N,

max
0r2n-1

the maximum being attained for r 36, where 2.3825 x 10-25.
Example 4.5. Logarithmic singularity: dA (t) In (l/t) dt on [0, 1].
The modified moments relative to (shifted) Legendre and Jacobi polynomials are

known explicitly for this measure, and even for more general measures such as
dA (t) t(1 t) In (l/t) dt, a, fl >-1 (cf. [1], [7], [17], [21]). The modified Chebyshev
algorithm, based on Legendre moments, produces results which are essentially accurate
to machine precision; the largest error growth factor observed in the range 1 N n N 80
is 2.82. The reason for this excellent performance is to be found in the well-conditioning
of the maps d, and H,, for which we show in Table 4.7 the bound (3.15) for cond
and cond H, computed on the basis of (3.8).

TABLE 4.7
The condition of the maps n and Hn in Example 4.5.

n cond t,, cond H

5 5.903 (0) 7.835 (0)
10 1.090(1) 2.040(1)
20 2.058 (1) 4.623 (1)
40 3.981 (1) 1.095 (2)
80 7.818 (1) 2.548 (2)
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The discretized Stieltjes procedure, in contrast, converges rather slowly, making it
difficult to obtain an accuracy much higher than 6 or 7 significant decimal digits.

Example 4.6. Half-range Hermite measure dA (t)= e dt on [0,
Here, the map Hn is quite well-conditioned (cond Hn -< 2.28 102 for n -< 80), in

contrast to the map G,, which becomes rapidly ill-conditioned if modified moments
relative to Hermite or Laguerre polynomials are used, which appear to be natural
choices. Interestingly, Laguerre polynomials give significantly worse conditionings
than Hermite polynomials, which is also borne out by a correspondingly faster error
growth in the coefficients ak,/k; see Table 4.8. Accordingly, the modified Chebyshev
algorithm is not effective in this example. Acceptable results, with some effort, can
be had by the discretized Stieltjes procedure, which for n =40, e.g., produces
Ok,/k, k 0, 1, ’, n 1, to about 12 correct decimal digits, requiring a discretization
parameter N 560. Much better results are obtained if the interval [0, oo] is decom-
posed as [0, 3] CI 1-3, 6] LI [6, 9] LI [9, oo] and the discretized Stieltjes procedure is
applied in the manner described at the end of 2.2, using Fej6r’s quadrature rule
(suitably transformed) in each subinterval. Again for n 40, this will yield 15 correct
decimal digits with N 80. The method is similarly applicable to more general
measures dA (t)= e dt on [0, oo], p > 1.

TABLE 4.8
The condition ofn in Example 4.6 for modified moments based on Hermite and

Laguerre polynomials.

Hermite moments Laguerre moments

cond t,, err. growth cond,, err. growth

2 1.554 (1) 5.713 (0) 7.270 (1) 2.296 (1)
4 2.524 (3) 3.261 (2) 1.349 (6) 1.045 (6)
6 6.739 (5) 6.300 (4) 1.297 (11) 9.663 (10)
8 2.206 (8) 2.386 (8) 3.127 (16) 3.112 (16)

10 8.026 (10) 2.696 (11) 5.547 (21)

4.3. Polynomials orthogonal with respect to multiple component distribu-
tions. As already observed in 2.2, the discretized Stieltjes procedure can also handle
measures dA (t) of a more general type, for example, measures on a set of disjoint
intervals or measures including a point spectrum. The discretized Stieltjes procedure
in these circumstances is often far superior to the modified Chebyshev algorithm,
which tends to become unstable. We illustrate this by a number of examples, of which
Example 4.11 may prove useful in the numerical solution of large systems of linear
algebraic equations by iterative methods I-31].

Example 4.7. Piecewise constant weight function: dA (t) to(t) dt, where to(t) 1
on [-1,-s] CI Is, 1] and to(t) 0 elsewhere, 0<so< 1.

Equivalently, dA (t) [tol(t) + to2(t)] dt, where to1, to2 are the characteristic func-
tions of the intervals [-1,-s] and Is, 1], respectively. The discretized Stieltjes pro-
cedure, as amended at the end of 2.2, works extremely well, even for s relatively
close to 1; the map H, remains well-conditioned. Some relevant data are given in
Table 4.9. (The discretized Stieltjes procedure in this example converges after one
iteration, if the discretization parameter N is chosen appropriately; cf. 2.2).

The modified moments ’r, r 0, 1,..., 2n- 1, based on Legendre polynomials
are easily computed (exactly) by n-point Gauss-Legendre quadrature. The ensuing
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TABLE 4.9
Performance of the discretized Stielt]es procedure in Example 4.7.

n cond Hn err. growth : n cond Hn err. growth

5 7.683 (0) 8.233 (0) .7 5 1.974 (1) 1.392 (1)
10 2.138 (1) 9.956 (0) 10 5.520 (1) 1.392 (1)
20 5.230 (1) 1.522 (1) 20 1.295 (2) 1.800 (1)
40 1.248 (2) 1.937 (1) 40 3.072 (2) 1.803 (1)
5 1.060 (1) 1.390 (1) .9 5 6.585 (1) 2.463 (1)

10 2.979 (1) 1.426 (1) 10 1.919 (2) 2.463 (1)
20 7.159 (1) 1.426 (1) 20 4.469 (2) 3.894 (1)
40 1.709 (2) 1.598 (1) 40 1.073 (3) 5.773 (1)

modified Chebyshev algorithm, however, becomes severely unstable, even for moder-
ately large sc, on account of ill-conditioned maps tn. This is documented in Table
4.10. The same is true for the discretized modified Chebyshev algorithm.

TABLE 4.10
Performance of the modified Chebyshev algorithm in Example 4.7.

s n cond tn err. growth : n cond On err. growth

.3 5 1.335 (0) 2.118 (2) .7 5 6.454 (1) 7.081 (2)
10 7.754 (0) 1.955 (2) 10 6.457 (4) 4.198 (5)
20 1.276 (3) 6.537 (3) 20 8.012 (11) 8.015 (12)
40 1.169 (8) 7.077 (8) 40 3.748 (26) 9.648 (15)

.5 5 4.830 (0) 1.914 (2) .9 5 9.263 (3) 1.244 (4)
10 3.658 (2) 1.640 (3) 10 1.171 (9) 1.838 (9)
20 7.650 (6) 4.445 (7) 20 2.630 (21) 8.940 (16)
40 1.057 (16) 3.683 (14) 40

By virtue of symmetry, the orthogonal polynomials {m} of Example 4.7 can be
expressed .in terms of polynomials orthogonal on a single interval. Indeed, letting
zr2r(t)=p+(t2), 7r2/l(t)=tp-;(t2), r=0,1,2,..., the polynomials p;(x) are

tl/2 + +orthogonal on [:2, 1] with respect to the weight function w (t)= If a ,/3 are
the recursion coefficients for {p+ (x)}, then

+flo 2(1- :), /3 =ao,
+

2k 2k-1 k 1, 2, 3,"
+

are those for the desired polynomials {re(t)} (cf. [3, Chapt. I, 8-9]). The discretized
+Stieltjes procedure could also be used to generate Ck, fig, but wouldthen require

an infinite process, rather than the finite one when applied directly to the weight
function to.

Example 4.8. Adding a point spectrum to the distribution dA (t) of Example 4.7,
where sc .5.

We make the distribution asymmetric if we add a point spectrum consisting of a
single point, say at tx 2, with jump wl 1. The effect of this is a slight worsening of
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the condition of n and a profound impairment of cond Hn. As a result, one now has
difficulty not only with the modified Chebyshev algorithm, but also with the discretized
Stieltjes procedure, although the latter "survives" a bit longer; see Table 4.11.

TABLE 4.11
Performance of the modified Chebyshev algorithm and the discretized Stielt]es procedure

in Example 4.8.

Error growth

n cond , cond H, mod. Chebyshev discr. Stieltjes

4 1.612 (1) 2.021 (1) 6.621 (1) 2.898 (2)
8 1.174 (3) 4.088 (1) 1.146 (7) 4.627 (2)
12 9.217 (4) 6.658 (1) 4.712 (11) 5.700 (2)
16 6.950 (6) 4.218 (4) 4.686 (17) 1.876 (4)
20 5.120 (8) 4.334 (9) 1.910 (9)
24 2.135 (10) 2.833 (14) 4.456 (14)

Adding another point,/’2 =-2, with jump W2-- 1, restores symmetry, but neither
significantly improves, nor worsens, the condition of Hn.

We know of no stable method to compute orthogonal polynomials of the type
introduced in Example 4.8.

Example 4.9.1 Adding a constant to the Chebyshev weight function: dA(t)-
[(1-t2)-l/2+a]dt on [-1, 1], a >0.

The discretized Stieltjes procedure applied directly to dA(t)=o)(t)dt, o)(t)=
(1-t2)-l/2+a converges extremely slowly, regardless of whether the discretization
is ettected by Fej6r’s or the Gauss-Chebyshev quadrature rule. The reason for this
is easily seen if one writes o)(t) (1 t2)-1/211 + a(1 t2) 1/2] and notes that the function
in brackets has infinite derivatives at +/-1. On the other hand, treating the two
additive components of w independently, as suggested at the end of 2.2, and applying
the Gauss-Chebyshev quadrature rule to the first, and Fej6r’s to the second, Stieltjes’s
procedure converges trivially. Results obtained for selected values of a in the range
0 <_-a <_-1000, and 0<_-n <= 80, are accurate almost to machine precision, the largest
error growth factor being 9.219(1). The condition numbers condH, are slowly
decreasing as a function of a, from the values for Chebyshev polynomials, when
a 0, to those for Legendre polynomials, when a oe (cf. Table 3.1).

Equally accurate, but considerably faster (by a factor of more than 10 for n 80)
is the modified Chebyshev algorithm, based on Chebyshev moments

Uo r + 2a,

Tr(t) dA(t)=-
a

Ur 2r-2(r2-- 1)’
r even 0,

ur 0, r odd.

The maximum bound (3.15) for the condition of t, is found to be 6.748 (for
a 1000, n 80), and the maximum error growth factor 1.146(1).

This example was proposed to the author by Professor M. Golomb.
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The recursion coefficients /3k, k > 0, behave as expected, when a varies from 0
to oo: There is a smooth (but not monotone) transition from the Chebyshev case to
the Legendre case.

Example 4.10. A weight distribution involving a modified Bessel function:
dA (t)= t"Ko(t) dt on [0, oo],/x >-1.

Gauss-Christoffel quadrature rules with this weight distribution are proposed by
Wong [30] to obtain asymptotic approximations to oscillatory integrals.

It is known that

X/Ze-’S(t)

where R and S are well-behaved smooth functions on their respective intervals and
Io is the "regular" modified Bessel function. For R, S and lo, high-accuracy rational
approximations are available; see Russon and Blair [24]. Using the "multiple
component" version of the discretized Stieltjes procedure, as described at the end of
2.2, we decompose the inner product (p, q) t"Ko(t)p(t)q(t) dt as follows,

(p, q) t"[R (t)p(t)q(t)] dt + " In - [Io(t)p(t)q(t)] dt

+ e-1 Io e-’[(1 + t)"-1/2S(1 + t)p(1 + t)q(1 + t)] dt,

and discretize the first integral by an N-point Gauss-Jacobi quadrature rule with
parameters c 0,/3 =/., the second by an N-point Gauss-Christoffel quadrature rule
relative to the weight distribution t" In (1 / t) dt on [0, 1 ], and the last one by an N-point
Gauss-Laguerre quadrature rule. The first and last of these quadrature rules are easily
obtained from the respective Jacobi matrices (see 1, Eq. (1.4), and the remarks
following this equation), while the second can be generated by the modified Chebyshev
algorithm, as indicated in Example 4.5.

In this way, the desired orthogonal polynomials (and Gauss-Christoffel quadrature
rules) can be generated accurately and in a stable manner. If/x 0, or/x 1/2, for
example, one gets the recursion coefficients Ogk,[k, O<-k <-n, accurately to 15
significant decimal digits by taking N- 100 for n 20, and N 160 for n 40. In
contrast, the discretized Stieltjes procedure based on the (transformed) Fej6r
quadrature rule requires N=230 for /z =0 and n 10, just to get six correct
decimal digits, and becomes prohibitively expensive for much larger values of n
or higher accuracy.

Example 4.11. Find a polynomial P,(t) of degree -<_n, with P,(1)= 1, such that
P2,,(t)w(t) dt min, where w(t)= e on [0, ], w(t)= 1 on [, r/], w(t)= 0 on [r/, 1],

and e >0,
The solution is known to be the polynomial orthogonal on [0, 1] with respect to

the weight function (1-t)w(t) (el. [3, Chapt. I, 7]). If rr,(.)= rr,(. (1-t)w(t)dt)
denotes the monic orthogonal polynomial, then P,(t)= rr,(t)/rr,(1), and the desired

2minimum value is /30/31’’’ ft,/ft,(I). The reeursion eoetiieients ak,Sk for {rrr} are
obtained in a stable manner by the discretized Stieltjes procedure, which can be made
to converge after one iteration. Selected results (for the minimum value of

P2,(t)to(t) dt) in the case 1/3, r/= 2/3, are shown in Table 4.12.



316 WAI.TF.I GAtJTSCH

TA3LE 4.12
Minimum values [or the extremum problem o[ Example 4.11.

n min P.w dt e n min P.o dt

.0 5 4.890 (-9) .6 5 7.984 (-7)
10 1.107 (-16) 10 1.551 (-12)
20 5.479 (-32) 20 5.733 (-24)
40 1.317 (-62) 40 7.653 (-47)

.2 5 5.382 (-7) .8 5 8.758 (-7)
10 1.107 (-12) 10 1.707 (-12)
20 4.038 (-24) 20 6.308 (-24)
40 5.347 (-47) 40 8.420 (-47)

.4 5 6.950 (-7) 1.0 5 9.386 (-7)
10 1.364 (-12) 10 1.842 (-12)
20 5.030 (-24) 20 6.802 (-24)
40 6.703 (-47) 40 9.075 (-47)
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RADIATION CONDITIONS FOR WAVE GUIDE PROBLEMS*

GREGORY A. KRIEGSMANNS"

Abstract. An incident mode propagates down a two-dimensional wave guide until it strikes a localized
obstruction which creates reflected and transmitted waves. The numerical determination of these waves is
difficult because the classical radiation condition does not apply for an infinite wave guide. In this note we
derive a sequence of "localized radiation conditions" which can be applied a few wavelengths away from
the scattering object. These conditions allow us to numerically solve the Helmholtz equation on a finite
domain.

Key words, wave guide, radiation conditions, Helmholtz equation, limiting amplitude principle, finite
difference scheme, numerical methods

1. Introduction and formulation. In this paper we describe a numerical method
for studying the interaction of an incident mode with a compact obstacle placed in a
parallel plate wave guide. The technique is essentially the numerical implementation
of an appropriate limiting amplitude principle [1]. This method has been recently
exploited to study the numerical solutions of the Helmholtz equation on exterior
domains [2]. The difference between the problem considered here and the scattering
problem is the geometry: the wave guide is infinite only in the z direction. Accordingly,
a different radiation condition is needed as Iz] o. We have generated a sequence
of boundary conditions which are analogous to those used for the exterior problem
[2], [3]. These "local" conditions are applied at +/-z and are responsible for numerical
errors which tend rapidly to zero as z >> 1. Our boundary conditions are distinctly
different from the "global" radiation conditions used on underwater acoustical prob-
lems [4]. The later become increasingly more accurate as the wavelength approaches
zero.

The determination of reflection and transmission coefficients for a wave guide is
often accomplished by using an appropriate variational technique. A nice account of
these methods can be found in [5]. Usually, the accuracy and validity of these methods
depend upon the assumptions that the obstacle is "small" and that only one mode is
present. In principle, no such restrictions are needed for the method described in this
paper. In practice, multimode propagation requires a larger wave number which
demands a finer mesh for resolution. This will increase computer running time and
become costly. Another problem arises from the complexity of the boundary condi-
tions. In this paper we present only the first two elements (in the infinite sequence of
boundary operators) which are easily implemented and are sufficient to handle two
propagating modes.

Consider the parallel plane wave guide shown in Fig. 1 where the dimensionless
variables y and z have been scaled with respect to the width (a) of the real guide.
We wish to determine the transmission and reflection coefficients produced by a
scattering obstacle placed in the wave guide. This obstruction may be a dielectric
target, a metal object, or an iris. The incident wave which scatters off the obstacle is
assumed to be given and is usually the lowest mode allowed in the wave guide. The
fields are taken to be time harmonic and proportional to exp (-itot).

* Received by the editors April 20, 1981, and in revised form December 15, 1981. This research was
supported by the U.S. Air Force Office of Scientific Research under contract 80-0016, the Office of Naval
Research under contract N00014-80-0196, and the U.S. Department of Energy under contract DE-AC02-
78ERO-4650.

" Department of Engineering Sciences and Applied Mathematics, the Technological Institute, North-
western University, Evanston, Illinois 60201.
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Y

OBSTACLE

FIG. 1. Schematic representation of the wave guide configuration.

Z

We are therefore concerned with solving the Helmholtz equation

(1.1) U,,z + uyy -t- k2n2u 0, Iz[ < 00, 0 < y < 1

subject to

(1.2) u(0, z) u(l, z) 0, Izl < oo

where k ato/Co and Co is the constant wave speed in the guide away from the obstacle.
If the obstacle is a dielectric, then n 2 is prescribed. If the obstruction is metallic, then
n2= 1 and

(1.3) u=0 on0.

In either case we have for z > zB

(1.4) u e -iklz sin ry + Rl e ikz sin lzry
/=1

where kl /k-/27r2 for 1, 2, 3, 4, .... The first term is the incident mode while
the infinite sum is the reflected field, UR. For z <-zB, u is given by

(1.5) u Y’. Tle -ik’z sin lry,
/=1

which is just the transmitted field ur. The problem is to determine the transmission
coefficients T and the reflection coefficients R. These coefficients depend upon the
incident mode and the obstacle. They are interrelated by the conservation law

(1.6)
k- k,{IT, I2-IR,]} k2 lul= Im (n 2) dxdy

/=1

where M=min{lll2k2/,tr2} and Im(n 2) is the imaginary part of n 2. When the
obstacle is "metallic" or a lossless dielectric, the term on the right-hand side vanishes
and (1.5) implies that the flux is conserved in the waveguide.

2. Numerical boundary conditions. We first restrict k to lie in the interval (r, 4zr)
which gives M 1 and insures that only the lowest mode propagates for Izl > zn (i.e.,
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likl--[kll, >= 2). Let us define the operator B by

(2.1) BI _0 ikl, 1, 2, ....
Oz

Applying B1 to UR gives

(2.2) BlUR , (kl- kl)R e ikz sin lzry O(e-lkEIZ).
/=2

If we apply the condition BlUR--0 at z z< o, then we introduce an error which
can be made small by choosing z large enough. Keeping in mind that a numerical
solution is sought, this shows the tradeoff between a larger numerical grid and a
smaller boundary error. Actually we can do much better, for

(2.3) BEBlUR O(e -Ikalz)

and Ik31 > Ik21 for any k. Thus for a fixed allowable error, we can pull zoo closer to the
origin and have a smaller numerical domain. Explicitly, we take

OUR 02UR
(2.4) B.BUR i(kx + kE)--z+ (k 2 + kkE)Ug +=y2 0 at z zoo.

This result follows from (2.1) and (1.1). Equation (2.4) is the boundary condition we
use in our numerical method described in 3. It is interesting to note that this procedure
can be continued any number of times. For any N _-> 1 we find

(2.5) Bi (UR) (--i)N PNIRI e ikz sin lzry
i=1 /=N+I

where PNI I-IiN= (ki kl). This formula is analogous to the boundary conditions presen-
ted in [3] and [2] for exterior scattering problems. It is important to note that our
boundary conditions are local in nature when the right side of (2.5) is neglected. They
are different from the global conditions presented in [4].

The same calculations can be performed on the transmitted field ur. We find that

(2.6) D, ur (i)N Y enITl e -ik‘z sin lzry at z =-zoo
m=l /=N+I

where D, O/Oz + ikm. We shall use this formula with N 2 and take

OUr. 02Ur
(2.7) -i(k + k2)z+ (k2+ klk2)ur +=Oy2 0 at z -zoo.

When k lies in the interval (4zr, 9zr) two modes propagate. To introduce a small
boundary error we must either take N 3 in (2.5) and (2.6) or increase the size of
zoo. We choose the latter tactic since the formula for B3B:zB UR becomes cumbersome.
We end this section by stating formulae for the first two reflection and transmission
coefficients when 4zr < k < 9zr. They are

--iB2(UR) e -iklz
(2.8) R= +e,

kl-k2
inl(UR) e -ik2z

(2.9) R2 +e,
k-k2
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+iD2(UT) e+iklz
(2.10) T1 +e,

kl-k.

--iOl(uT) e+ik2z
(2.11) T2 +e,

kl-k2
where e O(e-lk31z). These results follow from (1.4), (1.5), (2.1) and the definition
of D,. The functions UT and UR are evaluated at y 1/2 for R and Tx and at y 1/4 for
R2 and T2.

3. The numerical method. Our problem is to solve (1.1) subject to (1.2), (2.4)
and (2.7)numerically on the the finite domain 0 < y < 1, Izl < z(R), We find it convenient
to set

-iku=e sinry+v(y,z)

in this region, where v satisfies

(3.2)

(3.3)

(3.4)

(3.5)

Vzz + Vyy + k2n2v k2(1- n 2) e -ikz sin zry,

v(O,z)=v(1, z)=O,

B2Blv O atz=zoo,

D2Dlv O atz=-zoo.

If the scatterer is not a dielectric, n 1, and the additional condition

(3.6) v =--{e -iklz sin try} on

is necessary.
This is a well posed problem on a finite domain. There are many numerical

methods available for solving the elliptic p.d.e. (3.2). We shall use an iterative scheme
based on the limiting amplitude principle [1]. This principle states that the solution
of a hyperbolic partial differential equation with a periodic forcing function, e -kt, will
approach a time periodic solution with the same period as

The equation we solve numerically is

(3.7) nEwt, Wzz + Wyy + k2(n2- n)w + k2(n 2-1) e -i(klz+kt) sin zry

subject to the boundary conditions

(3.8) w(O,z)=w(1, z)=O,

(3.9) w {--e -iklz sin zry} e

(3.1 O) Wz + Ow, Io w dr’

(3.11) w-Owt - Io wdt’
and the initial conditions

-ikt on 0 (if n2= 1),

atz =zoo,

at z -zoo

(3.12) w(y, z, 0) wt(y, z, O) 0

where 0 (k 2 + kk2)/k(kx + k2) and/ k/(k + k2).



322 GREGORY A. KRIEGSMANN

The time dependent boundary conditions (3.10)-(3.11) were obtained by replacing
nl and DI with

0 k 0 0 kl 0
+ and
Oz - at Oz k at’

respectively, in equations (3.4) and (3.5). The resulting expressions were integrated
to give (3.10) and (3.11) with the aid of (3.12). Now (3.7) is a wave equation with a
potential and it may produce bound states which either grow exponentially in time
or oscillate in time with some frequency other than k. In Appendix 1 we show that
trapped modes do not exist when

(3.13) n_-> max {(k2n-Tr2)/kl, n2}.

Thus the limiting amplitude principle holds [1], and w e-iktv(y, z) as oo where v
satisfies (3.2)-(3.6).

We next replace B1, D1, B, and D2 in (2.8)-(2.11) by their time dependent
forms, mentioned above. For example, R is now given by

lOW .kl Ow] e iklz
(3.14) Rl=-i--z+t--- (/-k2)
where w is evaluated at y 1/2. Note that as oo, w v e -ikt and (3.13) reduces to (2.8).

4. The dillerence scheme. To solve the time dependent differential equation
(3.7) imposing the boundary conditions (3.10) and (3.11), we have used a standard
centered difference scheme for the initial value problem of a second order hyperbolic
equation with second order accuracy. Let the solution to the difference scheme be
if(f, m, n) where (], m, n) are evaluated on a grid

(4.1) z=-zo+]Az, y=mAy, t=nAt

with 0 -</" _-< N, 0 <- m -< M. Then for an interior point

(4.2) ff:(f, m, n + l) T(j + l, j, m + l, m, n, n -1)

is determined from the values of v at (] + 1, m + 1, n), (], m, n), (], m, n 1). On the
boundary z N Az zo z we use the differenced form of (3.10)

0 1.
2-t{w(N,, m, n + 1)- (N, m, n 1)}+ on--,ff(N,.,.,. + 1, m, n)- v?(N- 1, m, n)}

(4.3)
=(N,m,n)

where (N, m, n)= I" Arff dr’ and Ayr? is the difference approximation of wry. In
implementing (4.3) we use the fact that

At
(4.4) d(N+l,m,n)=rb(N,m,n)+-[Ayw(N)+Ayw(N-1)]+O(At2),
which is just the trapezoidal rule. The value of ff at j N + 1, m, n has to be eliminated
by use of the difference equation (4.2). Thus we obtain

(4.5) if(N, m, n + 1) B(N, m, m + 1, n, n 1).

A similar result holds for ff (1, m, n + 1).
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It still remains to apply the Dirichlet condition if there is an obstacle in the wave
guide. We simply use the discrete version of (3.9),

(4.6) ff =-sin zry., e -i(klzi’+kt"),
where (j’, m’) are mesh points on the body.

In closing this section, we shall describe our numerical method for determining
when ff has reached its time harmonic steady state. Recall that the reflected field
v(z > z) is given by

iwtv=,e

for large time. Thus, for large time, ffl becomes independent of time. We terminate
our computations when

max Ilff(n + 1, ], i)- if(n, ], i)[l< e
O<=j<--_N
O<=i<=M

for some prescribed e > 0.

5. Numerical experiments. Before proceeding to describe several numerical
experiments, we list here the parameters which remain constant throughout: Ay Az
0.1, At 0.05, M 10 and e .01. The first problem we tried was physically trivial
but was nonetheless fruitful from a numerical point of view. We placed a metallic
barrier, which completely closed the guide, at z 0 and set n2= n2 1. The exact
solution gives R1 -1, T1 0, T Ri 0 for ->2. Our code reproduced these results
nicely with an error of 2% for both R1 and T1 and an error of 0.1% for T and Ri
when -> 2. We found that varying zoo from 1.5 to 3.0 had little effect on the output
except by increasing the running time. More importantly, we found that differentiating
(3.10) and (3.11) and numerically implementing the second order boundary conditions
gives the same numerical answer to the third decimal place. However, if one time
derivative is replaced by -ik to yield a first order boundary condition, then the
numerical scheme becomes divergent.

The second problem we studied was more interesting both numerically and
physically. A metal barrier which only partially filled the guide was placed at z 0.
That is, ={(y, z)lz =0, 0<a-<y=<l} where 1-a is the barrier’s height. In Fig. 2
the results for a 1/2 and zoo 2 are shown. In this picture the numbers printed at the
mesh points are ten times the total field. Thus the dark regions correspond to
constructive interference, the light to destructive. Notice that the barrier casts a shadow
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FIG. 2. The total field’s amplitude, [u[, created by the lowest incident mode with k 3zr/2, Az Ay 0.1
and zoo 2. The obstacle is a metallic strip occupying the set of points {(z, y)[z =0, 1/2-< y _-< 1}. The dark
regions correspond to constructive interference, while the light regions correspond to destructive.
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TABLE
The reflection and transmission coefficients’ magnitudes for
k =3zr/2, Az =Ay=0.1, and zoo=2. The parameter 1-a is the

length of the metal strip which partially fills the guide at y O.

1.0 0.0 1.00
0.8 0.07 0.98
0.5 0.74 0.68
0.2 0.98 0.07
0.0 1.00 0.00

even though k- 3zr/2 (a moderate wave number) for this experiment. We also find
that RI =0.74, TI =0.68, and Ri- T/- O(0.001) for i_->2 which satisfies (1.6) to two
places. We next varied a while keeping k fixed. The results of these calculations are
shown in Table 1. Each run took about 23 seconds of CPU time on a CDC 7600.
For each value of a we increased zoo to 3 and found that the results changed only in
the third decimal place. As a final variation of this problem, a was fixed at 0.5 and
k was increased to 5zr/2. At this value of k two modes can propagate in the wave
guide. Since the lowest mode excites the wave guide and scatters from the barrier,
we expect energy to be coupled into the second mode. Indeed we find that IR11 0.50
and [RE[ =0.56. In these experiments n 2 n2= 1 and (3.7) just becomes the wave
equation.

The next problem we studied was quite different from a physical point of view.
A dielectricblock of width 2 and height 1 was placed in the guide and centered at
the origin. We took hE=1/2, n 1, k 3zr/2, and zoo 3. This situation models a
pocket of gas trapped in the wave guide. The solution follows from separation of
variables and shows that the wave is evanescent in the block and that very little energy
tunnels through. The results of our calculation are shown in Fig. 3 and are in agreement
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FIG. 3. The totallield’s amplitude, lul, created by the lowest incident mode with k 3zr/2, Az Ay 0.1,
and zoo 3. The obstacle is a dielectric block of n2=. It occupies the region {(z, y)]0= y =< 1, -1 =< z =< 1}.

with the exact answer. In particular we found that IRI 0.97, ITll 0.0, and IT, IRI
O(0.001) for i=>2, which are in error by at most 3%. A more interesting example
which cannot be solved exactly occurs when the block fills the region
{(y, z)10.2_-< y -<0.8, Izl_-< 1}, The results of this numerical experiment are shown in
Fig. 4. For this case IRxl-0.93, ITxl 0.36 and In, l-- IT, O(0.001) for i=>2. In both
cases the running time was about 45 seconds.

We next placed a dielectric block of width 2, height 1, and n2= into the guide
and centered it at z 0. Again this situation is amenable to exact solution, but now
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FIG. 4. The same problem and
0.8,-1-<_z-<_l}.
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parameters as Fig. 3 except now fills the smaller region {(z, y)[0.2 -< y -<

the block allows the wave to propagate. In fact, when k 32r/2 there is total trans-
mission and R1 0. In our numerical experiment, with n 2 2 for I1-<-, n 1 for

Izl--> 1, and zoo 3, we found agreement to within 3%.
As a final experiment and variation on the previous examples, we placed a

dielectric block with n2= in the region ={(y, z)10-_< y -<_ 1, 0_<-z -< 1} and put a
metal barrier at z 0 with a 1. We choose k 37r/2, zoo 3, n 2 for 0-< z-< 1,
and n 2 1 for z > 1. This problem is also amenable to an exact solution which gives
IRI 1.0. The results .of our experiment are shown in Fig. 5 with IRI 0.97, a mere
3% off the true value.
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FIG. 5. The total fieM’s amplitude, [u[, created by the lowest incident mode with k 3r/2, Ay Az
0.1zoo 3. The obstacle is a dielectric block ofnZ= which occupies the region {(z, y)[0 -< y <_- 1, 0-<_z _<- 1}.
There is a metal strip at z 0 which completely shunts the wave guide.

Appendix. Consider the wave equation (3.7) without the forcing term k2(n 2-1).
sin ry and look for solutions which approach zero exponentially as z + oo. These
localized or "trapped" modes automatically satisfy the boundary conditions (3.10)
and (3.11) in this limit. Set w q e a’ where q must satisfy

(A.1) qzz + qy, + k:Z(n :- n)q A Znq.

Multiplying this equation by q, applying the boundary conditions at y 0, 1, and using
Green’s theorem, one finds that

(A.2) I [[Vql2 + kz(n- n2)qZ] dydz h z I1 nq2 dydz

where R ={(y, z)[0_<-y =<1, [z[<zo}. If nz satisfies (3.13), then (A.2)implies <0
and there are no growing modes. On the other setting, w eXtq and applying the
same argument shows that trapped modes, periodic in time, are possible. In this ease
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set q Y= q,,, (z) sin mzry where q., satisfies

d2qm+[k2(n2 2 2(A.3)
dz 2 -n)-m zrE]q,,+A n2q,,=O.

Now when ]zl> za the index of refraction n2= 1. Taking n] 1 in this region
and demanding exponential decay of q,, as Izl c requires that A 2( mE,rr2. On the
other hand, when Izl<lzal the solution may be oscillatory, which would lead to a
trapped mode. This can not occur when n2 satisfies (3.13). (It is interesting to note
that these localized-oscillatory modes are not present in exterior problems.)

REFERENCES

[1] C. S. MORAWETZ, The limiting amplitude principle, Comm. Pure Appl. Math., 15 (1962), pp. 181-197.
[2] G. A. KRIEGSMANN AND C. S. MORAWETZ, Solving the Helmholtz equation for exterior problems

with a variable index of refraction: I, this Journal, (1980), pp. 371-385.
[3] A. BAYLISS AND E. TURKEL, Boundary conditions ]’or exterior acoustic problems, Rep. 79-7, ICASE,

NASA Langley Research Center, Hampton, VA, 1979.
[4] G. J. FIx AND S. P. MARIN, Variational methods ]:or underwater acoustic problems, J. Comput. Phys.,

28 (1978), pp. 253-270.
[5] D. S. JONES, The Theory of Electromagnetism, Pergamon Press, Oxford, 1964, pp. 261-287.



SIAM J. ScI. STAT. COMPUT.
Vol. 3, No. 3, September 1982

1982 Society for Industrial and Applied Mathematics
0196-5204/82/0303-0004 $01.00/0

ASPECTS OF NUMERICAL METHODS FOR
ELLIPTIC SINGULAR PERTURBATION PROBLEMS*

A. SEGALt

Abstract. Upwind difference, defect correction and central difference schemes for the solution of the
convection-diffusion equation with small viscosity coefficient are compared. It is shown that central difference
schemes and hence also standard Galerkin finite element methods are preferable above upwind and defect
correction schemes, when Gaussian elimination is used for the solution of the resulting system of equations.
When iterative solution methods are employed good results can be achieved by a defect-correction method,
whereas upwind difference schemes are generally inaccurate.

Key words, iterative method, convection-diffusion equation, Reynolds number, boundary layer,
upwind differencing, elliptic equation

1. Introduction. The purpose of this paper is to analyze numerical problems
related with boundary layers such as occur for example in flows governed by the
Navier-Stokes equations. The convection-diffusion equation

(1.1) -eA& +u. T& =f
will be used as a model problem.

Quite often in applications, u is a flow velocity vector and e some diffusion or
viscosity coefficient. Hence the appelation "convection-diffusion equation." Hence-
forth u will be referred to as the velocity vector and e as the viscosity coefficient.

The convection-diffusion equation with small e has been the subject of many
papers, see for example Hemker [17], Pearson [23], [24], Il’in [18], Heinrich et al.
[15], [16], Griftiths [13], Christie et al. [3], Axelsson and Gustafsson [1] and Chien
[2]. It is the aim of this paper to compare the so-called upwind schemes advocated
in some of these papers with central difference schemes and hence also with standard
Galerkin finite element schemes, and with a predictor-corrector scheme, both for
direct solution methods and for iterative solution methods. For the one-dimensional
case some theory will be developed. Numerical experiments will be described for both
the one-dimensional and the two-dimensional cases.

2. Boundary layers. When e $ 0 solutions of (1.1) exhibit boundary layer type
behavior. For the purpose of a qualitative discussion we can restrict ourselves without
loss of generality to the two-dimensional case, a square region and a velocity u u e,:

(2.1) -eA+u=q, (x, y)e (0, 1) (0, 1).
Ox

Let the following boundary conditions be given:

(2.2)
(0, y)=f(y), (1, y) =f2(y),

(x, 0)= g(x), (x, 1)= g2(x).

(In what follows also a Neumann boundary condition at x 1 will be considered.)
For e 0, (2.1) becomes

(2.3) 0 q
Ox
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Obviously not all boundary conditions (2.2) can be satisfied. Physical intuition and
mathematical theory [5] lead one to maintain the boundary condition b(0, y)=fl(y).
In this way the so-called outer solution b0 is obtained:

(2.4) bo(X, y) =f(y) + q(, y)d:.

Along the horizontal walls y 0 and y 1, in general, boundary layers occur. The
equation governing_these boundary layers is obtained by stretching the y-coordinate
as follows: )7 y/4e and by taking the limit as e 0 of (2.1)"

0)7 + X-x q.

The horizontal boundary layers have thickness 0(/) and take care of the boundary
conditions along the horizontal walls. The boundary condition at x- 1 generally
induces a vertical boundary layer. The governing equation is obtained by the following
stretching" x/e. The limit e $ 0 results in

(2.6) Ozck Ocb
0 + 0.

Note that this is an ordinary differential equation. The thickness of the boundary layer
is O(e).

For a justification of the above statements the reader is referred to [5], or to a
general introduction to singular perturbation theory, such as [4].

For convenience, the horizontal boundary layers will be called parallel boundary
layers and the vertical boundary layer will be called the normal boundary layer (because
it is normal to the velocity vector n). In singularly perturbed ordinary differential
equations (such as the one-dimensional case of (1.1)) only the normal boundary layer
occurs. Both types will be studied in the sequel.

3. The normal boundary layer. For a study of the normal boundary layer we
restrict ourselves to the one-dimensional analogue of (2.1)"

d2b d4(3.1) -ed--+ Uxx 0, x (0, 1), b(0) 0, b(1) 1.

with e and u constant. The exactsolution of (3.1) has been plotted in Fig. 3.!. Equation
(3.1) can be discretized either by a finite difference method (FDM) or a finite element
method (FEM).

Central difference schemes with constant mesh size h may give rise to oscillations
(see for example Fig. 3.2) depending on the step size chosen. One can show [27] that
in order to have monotone solutions for a difference scheme with constant mesh size
applied to (3.1), it is necessary and sufficient that the corresponding matrix be
diagonally dominant. This yields the well-known condition for the so-called grid
Reynolds number uh/e"

uh
(3.2) --<-_2,

which for practical purposes may be undesirably restrictive. In particular, it would
make the computational cost dependent on e. One of the purposes of numerical
methods for singularly perturbed problems is to have the cost (and the accuracy)
independent of e.
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FIG. 3.1. Exact solution o] (3.1), e =0.025, u= 1. FIG. 3.2. Numerical solution of (3.1) using cen-
tral differences, e =0.025, u 1, h =0.1, exact
solution, [--] numerical solution.

FIG. 3.3. Solution of (3.1) using the backward difference scheme (3.3). e =0.025, u= 1, h =0.1,
exact solution, V] numerical solution.

The simplest method to avoid oscillations is to approximate dck/dx by backward
differences if u > 0 and by forward differences if u < 0. In the literature this method
is known as "upwind differencing." The solution of this method is monotone, yet far
less "steep" than the exact solution (Fig. 3.3). One easily verifies that this upwind
scheme is identical to the solution of the following differential equation"

(3.3) e + ---x+ u xx = 0, 4(0) 0, 4(1) l,

with a central difference scheme. The term -(uh/2)(d4/dx) will be called the
artificial viscosity term and the introduction of this artificial viscosity term has a
smoothing" effect on the solution. In fact we solve a problem with greater viscosity.
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In the literature more accurate upwind schemes have been derived, see for
example [18], [1] and [26]. The most accurate scheme for equation (3.1) is the so-called
II’in scheme [18], [17], [2]. This method supplies equation (3.1) with an artificial
viscosity term -a d2rb/dx 2 such that the central difference scheme applied to

d2b &b(3.4) -(e + a) -x2+ u xx 0, &(0) 0, (1) 1,

yields the exact solution in the nodal points. One easily verifies that this is the case
when:

2{ 2(2 -)} uh
(3.5) =-e+, G= 1 R=

e e

The II’in scheme is of course as accurate as possible for equation (3.1). However,
when variable coecients are used its accuracy decreases, although a good approxima-
tion remains possible as long as the coecients vary not too much. II’in’s method can
be extended to more dimensional rectangular regions but it will improve the accuracy
only in normal boundary layers and not in parallel boundary layers. Furthermore, a
generalization to nonequidistant meshes is not known.

Remark. One can show [27] that in order to get a diagonally dominant matrix
it is necessary to introduce an artificial viscosity - du/dx with

(3.6) a min 0,-e

The oscillations observed for the central difference scheme are not peculiar to the
FDM. In applications of the FEM the same phenomenon occurs (see [15], [13], [16],
[3], [29], [21], [20], [11], [6], [19]). This is to be expected, since the FEM can be
regarded as a tool to construct finite difference equations. For example, the Galerkin
method together with linear elements applied to (3.1) results in the central difference
scheme. So exactly the same results can be expected. Higher order elements give
oscillations also [11], [6], [19].

The literature has described how to construct finite element models that are
equivalent with upwind differencing schemes. This approach is described in [15], [13],
[16], [3]. The method used is the so-called Petrov-Galerkin method (see [13]), in
which the test functions differ from the basis functions. These methods appear to be
of the same character as the II’in method and subject to the same restrictions.

A possible alternative is the introduction of a variable artificial viscosity term
that is constructed elementwise such that the diagonal of the element matrix is
nonnegative. Such an approach can be programmed simply and always gives diagonally
dominant matrices. This aspect will not be pursued further in this paper.

4. Absence o normal boundary layer. The question arises whether the numerical
oscillations described in the previous section are caused by the presence of the normal
boundary layer, rather than by the fact that the matrix is not diagonally dominant.
In order to investigate this question we study an example in which no boundary layer
is present’

d d(4.1) -e+u=u(1-2x)+2e, (0) (1) 0.

The exact solution of (4.1) is given by (x)= x(1-x), and hence the equation is
exactly solved by the central difference scheme, for every mesh size. A less trivial
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example is the following:

d2 db 2(4.2) -e----xZxZ+U---xx=eZr sin(zrx)+urcos(rx), 4(0) 4(1) 0.

The exact solution of (4.2) is given by b(x)= sin (rx).
In Figs. 4.1 and 4.2 the solution of (4.2) has been plotted as computed with

central differences and the II’in scheme, respectively. The step size h is chosen such
that the central difference matrix is not diagonally dominant. These figures show that
the central difference scheme is very accurate; the II’in method introduces some
damping; in fact, it tries to generate a boundary layer. Moreover, although the central
difference matrix is not diagonally dominant, no oscillations occur (see [27]).

FIG. 4.1. Central differences. FIG. 4.2. The II’in scheme.

h 0.1, e 0.025, u 1. exact solution, IS] numerical solution.

An error estimate in the case that a boundary layer is absent is given by the
following theorem:

THEOREM 4.1. Let ck satisfy:

d24 db(4.3) L4 -ex+ u xx f’ x (0, 1),

(0) and (1) given, with e and u constants, u >0. Let be e-independent and
,;b C6(0, 1), i.e., f depends on e. Let Cbh satisfy

(i-l--2i-]-i+l i+1-- i-1(4.4) Lhh --g
h2 + u

2h
fi, 1, 2,..., n,

with 4)0 and n+l given. may be e or the result of upwind differencing, for example
in (3.3) g e + uh/2.

Then the error 49- 4h satisfies:
(i) If g=O(h),e=o(h) and the matrix corresponding to Lh is diagonally

dominant then
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(ii) If g e then

(iii) If g O(h2) and e o(h2), then

For a proof of this theorem see Appendix 1.
From these error estimates we see that whenever h O (e 1/3), the central difference

scheme is more accurate than the upwind scheme for smooth solutions. For e o(h 3)
the central difference scheme becomes inaccurate when Dirichlet boundary conditions
are prescribed on the outflow boundary x 1. In that case more accurate results are
obtained with g O(h2). Such a scheme is not an upwind scheme in the classical
sense, since the discretization matrix is not diagonally dominant; however, since it
introduces artificial viscosity, we shall call it a modified upwind scheme in the sequel.

Remark 4.1. Usually one considers e fixed and h tending to zero, thus e O(1)
in h. But since in practice one takes only a few values of e and h, both of which are
small quantities, one can consider the difference equations and their solutions as both
e and h tend to zero. It is in this sense that we write e O(h). Thus we are not
considering the difference schemes in the usual sense of consistency with e fixed and
h tending to zero.

Remark 4.2. One can prove [27] that in the case of example (4.2) the error is
given by bhll= O(h

Remark 4.3. Numerical computations (see 7) show that when Neumann boun-
dary conditions are prescribed at x 1, the accuracy of the central difference scheme
is O(h2), in the case of smooth solutions. Furthermore, from the proof of Theorem
4.1 we can see that the O(h4/e) error in the case of Dirichlet boundary conditions
arises from a boundary layer due to the truncation error. Hence we may conclude
that the numerical oscillations in 3 are caused by the presence of the normal boundary
layer and the fact that Dirichlet boundary conditions are given at the outflow boundary.

$. Local mesh refinement. In the preceding sections it was found that in the
presence of a normal boundary layer, or a numerical boundary layer due to the
truncation error, the central difference scheme gives rise to numerical oscillations.
These oscillations are absent when there is not such a boundary layer. These results
suggest that the oscillations may be suppressed by local mesh refinement in the
boundary layer. Therefore, equation (3.1) has been solved with a graded mesh.

From the exact solution we can deduce that the boundary layer is smaller than
8e, and therefore we divide the region into 2 subregions,

(5.1) [0, 1-8e], [1-8e, 1].

In each subregion, an equidistant mesh is chosen consisting of (n + 1)/2 nodal points.
In Table 5.1 the/w-error is presented for various values of e and n. The difference
formulas used are the trivial extensions of the classical schemes to nonuniform meshes.

In order to apply the II’in scheme to nonuniform meshes, the following
modification of the formula was necessary:

(5.2)
(Lhth )]

-i2{ 2(eR’1)}2R, =,uhigi 1 Ri 1, 2
e -1 e

h, + h2 g--l]-1 q- (i q-g2(i+l q- /

with hi xi-xi-a, h2 X]+--X.
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Central
differences

Backward
differences

II’in
scheme

TABLE 5.1
Iv-error of some schemes for various values of e, nonequidistant mesh (5.1), u 1.

n =21

n =41

n =21

n =41

n =21

n =41

e=10-2

0.021

O.OO5

0.108

0.064

e 10 -3

0.021

0.005

0.109

0.064

e 10 -4

0.021

0.005

0.109

0.064

e= 10 -5

0.021

0.005

0.109

0.064

10-.

1()-s

e 10 -6

0.021

0.005

0.109

0.021

0.0O5

0.109

0.064

The solution of the central difference scheme oscillates in the region [0, 1- 8e];
however, its absolute value is very small. Table 5.1 shows that the II’in scheme is also
very accurate for the nonequidistant mesh, but that the backward differences are far
less accurate than central differences when mesh refinement is applied. Because of
the mesh chosen, the amount of work done and the accuracy are independent of e.
The table shows that the accuracy of the central difference scheme is O(h2), whereas
that of the backward difference scheme is only O(h).

In the preceding example, the solution in the outer region (see 2) is approxi-
mately 0. In order to investigate the method in the case that the solution in the outer
region is nonconstant, we consider the following example"

d2b db 2(5.3) -e-x2+U-x=eTr sin(Trx)+uTrcos(Trx), 4(0)=0, &(1)=l.

The exact solution of (5.3) is given by

e ux/ 1
(5.4) b(x) sin (Trx) +

e -1

/-errors for the numerical computations for several values of e are presented in
Table 5.2.

TABLE 5.2
lo-error of some schemes for various values of e, equation (5.3), nonequidistant mesh (5.1), u 1.

Central
differences

Backward
differences

II’in
scheme

n =21

n =41

n =21

n =41

n =21

n =41

e=lO -2

0.022

0.005

0.279

0.140

0.212

0.081

e=10-3

0.021

0.005

0.305

0.155

0.299

0.149

e 10 -4

0.021

0.005

0.309

0.156

0.308

0.156

e=10-5

0.021

0.005

0.309

0.156

O.3O9

0.156

e 10 -6

0.021

0.005

0.309

0.156

0.309

0.156

e=10-7

0.021

0.005

0.309

0.156

0.309

0.156
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The results for the central difference scheme are nearly the same as in the first
example. The backward difference scheme gives an error that is about 2 times larger
than in the homogeneous case, however, with the same order of accuracy (O(h)). The
accuracy of the II’in scheme decreases considerably with respect to example 1, and
in lact for e < 10-3. II’in and the backward difference scheme give the same results.

These examples show that when a normal boundary layer is present a central
difference scheme with mesh refinement is preferable to upwind differencing. Only
in the case that the outer solution is constant does the II’in scheme appear to be very
accurate.

From 4 we may conclude that there is one exception in which the central
difference scheme is inaccurate, that is, when there is no normal boundary layer and
Dirichlet boundary conditions are prescribed on the outflow boundary. In general in
that case no mesh refinement will be applied and hence the O(h4/e.) error may become
important. This problem can be solved by the introduction of some artificial viscosity
of O(h2) (compare with Theorem 4.1).

In the next section it is investigated whether it is possible to combine the
advantages of central difference schemes and diagonally dominant matrices by means
of a defect correction method.

6. The defect correction method. The defect correction method has been the
subject of many investigations [7], [8], [30]. The method may be used to improve the
accuracy of a difference scheme by using a higher order difference scheme, or to
estimate the error of such a scheme. Moreover, it may be used to approximate the
solution of a higher order scheme even when the higher order scheme is unstable [14].

In this section we study the effect of the defect correction process applied to the
upwind schemes using a central difference scheme as correction. We must solve
equation (4.3), which will formally be denoted by

(6.1) Lb =f.
This problem can be solved by an upwind scheme denoted by

(6.2) ZhCh fh,

or alternatively by a central difference scheme,

(6.3) L,b , =f,.
We define the following defect correction process:

(i) Solve LhCh fh.
(ii) Correct bn with the aid of (6.3) in order to get a new approximation bh"

(6.4) h h t-1[thCh fh ].

The accuracy of (6.4) may be improved by repeated iterations.
The following theorem gives an indication concerning the performance of the

defect correction process as an iteration method.
THEOREM 6.1. Let L4)=f be the one-dimensional convection diffusion equation

(4.3). Let L’h4)’h f’h be the central difference discretization with constant mesh size, and
let thigh =fh be the upwind difference discretization (4.4). Then the iterated defect
correction method (6.4) converges with a rate of convergence of approximately

Theorem 6.1 is proved in Appendix 2.
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Remark. When e/t7 << 1 the theorem states that the rate of convergence is approxi-
mately 1. Hence the defect correction method is not useful as an iteration method
for e << uh.

Although according to Theorem 6.1 defect correction is useless as an iterative
method due to its slow convergence, the following theorem shows that defect correction
applied once gives at least the same order of accuracy as the upwind schemes. Theorem
6.2 only applies to the case where no boundary layer is present, but this case is
intuitively similar to the situation of a boundary layer and a suitably graded mesh.
This intuitive idea is confirmed by numerical experience.

THEOREM 6.2. Let ck be the solution of (4.3). Let ck be e-independent and ck
C6(0, 1). Let L’hCk’h f’h be the central difference discretization and let Lhqbh- fh be the
upwind discretization (4.4), both with constant mesh size h. Let bh be the result of the
defect correction method (6.4). Assume e << g.

Then the error ck- Ckh satisfies:
(i) ff g O(h and the matrix corresponding to Lh is diagonally dominant then

4-h O(h 2)
except for a few nodal points near x 1 where

=4h=O(h).

If hu/2 then the error O(h) only appears in the grid point next to x 1.
(ii) fft O(h 2) then

O(h 2).
For a proof of Theorem 6.2 see Appendix 3.
In Tables 6.1 and 6.2 results of some computations with the defect correction

process are given in the case of a smooth solution.

TABLE 6.1
Accuracy of defect correction method and upwind scheme ]’or solving the convection-

diffusion equation (4.2), e 10-1, u 1, b(x)=sin (zrx), equidistant mesh; bh solution of
upwind scheme (4.4)" h solution of defect correction process (6.4).

Y=hu

: hu/2

h =0.1

h =0.05

h =0.1

h =0.05

max Jb &hi

.29

.31

.16

max Ib
except for last point

.096

.033

.009

last point

.14

.16

.08

Table 6.1 shows that when g hu/2, the accuracy of the defect correction process
is O(h2) except for the last point, where the accuracy is of order h. Furthermore, the
error in the last point is one half of the error of the upwind scheme. The results of
the scheme with g hu/2 are considerably better than those of g hu.

Remark. Only two values of h are given in the table; for other values of h the
same behavior was observed.
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Table 6.2 shows that indeed the error of the defect correction method based on
the modified upwind scheme is of order h ’, however, the accuracy of the defect
correction method is considerably better than the accuracy of the modified upwind
scheme.

TABLE 6.2
Accuracy of defect correction method and modified

upwind scheme for solving the convection-diffusion
10-oequation (4.2), e= u=l, b(x)=sin(zrx),

equidistant mesh. 4h solution of modified upwind scheme
(4.4); h solution of defect correction process (6.4).

h--.1

h .05

max Ib

.0285

max I hl

.03

.0084

In order to investigate the performance of the defect correction method in the
presence of boundary layers, the two examples of 5 have been computed by a defect
correction method using the backward difference scheme as predictor. Results of these
computations are presented in Tables 6.3 and 6.4. Comparison of these tables with
Tables 5.1 and 5.2 shows that, in the case of a constant solution in the outer region,
the defect correction is as accurate as the central difference scheme, whereas in the
case of the nonconstant solution in the outer region, the central difference scheme is
about 2 times more accurate. Furthermore, due to the mesh refinement in the boundary
layer, the defect correction method has an O(h 2) accuracy.

TABLE 6.3
loo-error of the defect correction method ]:or solving the convection diffusion equation (3.1) ]:or

various values of e, nonequidistant mesh (5.1), u 1. Predictor: backward differences.

n =21

n =41

e=10-2

.016

.OO5

e=10--3

.017

.005

e 10-4

.018

.OO5

e=lO-5

.018

.OO5

e 10-6

.018

.OO5

e= 10-7

.018

.OO5

TABLE 6.4
l-error of the defect correction method ]’or solving the convection diffusion equation (5.3) for
various values o.f e, nonequidistant mesh (5.1), u 1. Predictor: backward differences.

n =21

n =41

e=10-2

.048

.012

e=10-3

.051

.013

e 10-4

.O52

.013

e= 10-5

.O52

.013

e 10.-6

.O52

.013

e= 10-7

.O52

.013

7. Two-dimensional problems. In two dimensions, two types of boundary layers
occur, normal boundary layers and parallel boundary layers, as discussed in 2. In
order to study the performance of the various methods treated in the preceding
sections, we consider the following four examples.
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(i) Equation (2.1) with Dirichlet boundary conditions and q such that the exact
solution is given by

1 .{e_y_/4(,,_Xo) +e_(l_y)24e(X_Xo)} x0=_l.(7.1) c1 4X-Xo
This solution exhibits the parallel boundary layers common in flow problems. (See
Fig. 7.1.) Notice that the "outer solution" as defined in 2 is approximately zero.

u=

u=l

FIG. 7.1. Parallel boundary layers.

o()

o()

.-o()

FIG. 7.2. Parallel and normal boundary layers.

(ii) Equation (2.1) with Dirichlet boundary conditions and q such that the exact
solution is given by

(7.2)
-1/e -(1-x)/ee -e

-1/e1-e

This solution contains both parallel boundary layers and the normal boundary layer
of3.

(iii) Equation (2.1) with Dirichlet boundary conditions at x 0, y 0 and y 1,
Neumann boundary conditions at x 1, and q such that the exact solution is given by

(7.3) b3 bl.
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(iv) Equation (2.1) with Dirichlet boundary conditions at x 0, y 0 and y 1,
Neumann boundary conditions at x 1, and q such that the exact solution is given by

(7.4) t4 sin (rrx)sin (Try).

Equation (7.3) is introduced in order to consider the effect of Neumann boundary
conditions at x 1, a type of boundary condition that frequently occurs in flow
problems.

In (7.4) the effect of a smooth solution is considered. For the effect of a nonconstant
"outer solution," we refer to 5 and 6.

All four problems have been solved by a central difference scheme, backward
differences and a defect correction method consisting of a backward difference predic-
tion and a central difference correction. The resulting systems of linear equations have
been solved by Gaussian elimination. Note that upwinding only takes place in the
x-direction and hence does not affect the parallel boundary layer.

(i) Parallel boundary layer, Dirichlet boundary conditions. In order to represent
the boundary layer adequately the mesh in y-direction was divided into 3 parts:

P" [0, 84;], P" [84;, 1- 84;], P3: [1- 84;, 1].

In each part an equidistant mesh size was chosen with P1 and P2 divided into n meshes
and P2 into 10 meshes. In the x-direction a constant mesh size consisting of 10 meshes
was chosen.

In Table 7.1 results of the computations for n 10 and n 20 and various values
of e are given.

TABLE 7.1
l-error ]’or (2n + 10) 10 grid.

Central
differences

Upwind
differences

Defect
correction

n=10

n=20

n=10

n 20

n 10

n=20

e=10

.0134

.0037

.0090

.0054

.0093

.0040

e=10

.0205

0062

.0090

.0054

.0094

.0041

e=10 --s

.0303

.0218

.0090

.0054

.0094

.0041

e=10

.0955

.0847

.0090

0054

.0094

.0041

e=10

.3009

2891

.0090

.0054

.0094

0041

This table shows that the upwind scheme and the defect correction method give
comparable results, with a slightly better accuracy for the defect correction. The error
is mainly caused by the error in the y-direction. For the central difference scheme the
O(hn/e) error in the x-direction becomes important for e < 10-3. This is due to the
Dirichlet boundary condition at x 1. (Remember, h 0.1 in the x-direction.)

(ii) Parallel boundary layer in the y-direction and normal boundary layer in the
x-direction. Dirichlet boundary conditions. The mesh in the y-direction was chosen as
in Example (i). In order to obtain a good mesh in the x-direction, the interval [0, 1]
was divided into 2 parts:

(1" [0, 1--8E], 02" [1 8E, 1].
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In each part an equidistant mesh size has been chosen with Q1 divided into 10 and
Q2 into n meshes.

In Table 7.2 results of the computations for n 10 and n 20 and various values
of e are given. The table shows that for this example the central difference scheme
and the defect correction method appear to be the most accurate. Furthermore, due
to the mesh refinement in the normal boundary layer, the error of the defect correction
method is about O(h’), -_-< a _-< 2 instead of O(h) as in Theorem 6.2. Hence the defect
correction method is significantly better than the upwind scheme.

TABLE 7.2
l-error for Example (ii), (2n + O) (n + O) grid.

Central
differences

Upwind
differences

Defect
correction

n 10
n 20

n 10
n 20

n 10
n=20

e= 10 -3

.024

.006

.112

.068

.019

.006

e 10-4

.024

.006

.112

.068

.019

.006

e=lO s

.024

.006

.112

.068

.019

.006

e 10 -6

.024

.006

.112

.068

.019

.OO6

e 10 -7

.024

.006

.112

.068

.019

.006

(iii) Parallel boundary layer in the y-direction, Neumann boundary conditions at
x 1. The same mesh as in Example (i) has been used. Results are given in Table 7.3.

TABt.E 7.3
l-error for Example (iii), (2n + O) x 10 grid.

Central
differences

Upwind
differences

Defect
correction

n=10
n=20

n=10
n =20

n=10
n=20

e=l() -3

.0052

.0015

.0110

.0048

.0056

.0026

e=10

.0052

.0015

.0110

.0048

.0056

.0026

e 10 --s

.0052

.0015

.0110

.0048

.0056

.0026

e=10

.0052

.0015

.0110

.0048

.0056

.0026

e 10 -7

.0052

.0015

.0110

.0048

.0056

.0026

This example shows that when a Neumann boundary condition is given at the
end of the flow, which is in many cases a natural thing to do, the accuracy of the
central difference and the defect correction method is better than the accuracy of the
upwind difference method.

(iv) Smooth solution, Neumann boundary conditions at x 1. In both the x- and
y-directions, n / 1 equidistant mesh points were chosen. Results are given in Table 7.4.
Table 7.4 shows that the central difference scheme is far more accurate (O(h2)) than
the upwind scheme and the defect correction method. Since the largest errors of the
upwind scheme appears in the neighborhood of the boundary x 1 (compare with
4), a better accuracy can be expected when mesh refinement in the x-direction near

this boundary is applied. This is certainly the case for the defect correction method
(see 6).
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TABLE 7.4
l-error of the computations of Example (iv), (n n) net.

Central
difference

Upwind
difference

Defect
correction

n=10
n =20

n=10
n =20

n=10
n =20

e= 10-3

.017

.004

.3O6

.154

.O8O

.039

e 10 -4

.017

.004

.309

.156

.081

.040

e=lO -5

.017

.004

.3O9

.156

.081

.040

e 10 -’

.017

.004

.309

.156

.081

.040

e=10-7

.017

.004

.309

.156

.081

.040

Our final conclusion is that for the general case, where boundary layers are
present, the "outer solution" is not constant, a Neumann condition is given at the
outflow boundary and mesh refinement is used in the horizontal boundary, central
differencing is much more accurate than upwind differencing, whereas defect correction
results in a method that is less accurate than the central difference method but more
accurate than the upwind difference method. The accuracy of the defect correction
method can be improved considerably by using a mesh refinement near the outflow
boundary even when the solution is smooth. If the "outer solution" is constant, the
upwind difference scheme also appears to be accurate when mesh refinement in the
parallel boundary layers is applied. In that case, defect correction does not need mesh
refinement near the outflow boundary. Furthermore, for all three methods, work and
accuracy are uniform in e if the grading of the mesh is e-dependent in a suitable way.

The defect correction method shares with the upwind difference method the
advantage that the matrix of the system to be solved is diagonally dominant. In the
next section the computational cost and accuracy of the direct and iterative methods
are studied.

8. Some experiments with Gaussian elimination and iterative methods for the
solution of the discretized equations. One can show (see Appendix ) that the
condition of the matrix corresponding to the central difference scheme is of order
(l/e). Hence for small values of e this may cause problems. In order to investigate
this matter we computed numerical solutions for the two-dimensional convection-
diffusion equation (2.1), with Dirichlet boundary conditions and q chosen such that
the exact solution is given by"

(8.1) b(x, y)= sin (Trx)sin (Try).

Remark. The absence of a boundary layer does not influence the condition of
the difference matrix.

Equation (2.1) was solved by a central difference scheme with constant mesh size
in both directions (h Ax Ay). One can prove [28] that the error of the central
difference scheme in this specially chosen example (see also the remarks in 4), is of
order h 2 independently of the value of e. In Table 8.1 results of Gaussian elimination
are given for various values of e and h. The computations were performed on an IBM
370/158 computer with an accuracy of 16 decimal places.

The table shows that for e >- 10-8 the condition of the matrix does not influence
the results, whereas for e <= 10-9 it does. Moreover, when h decreases the condition
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TABLE 8.1
l-error of the solution of (2.1), (8.1) with a central difference scheme.

h =Ax =Ay

h=.l

h .05

e 10 -.7

841o

.7110

e= 10-
.84 lo

.71 io

e= 10-9

.801o

63to

e 10-t

.241o

.89 lo

e lO--l

.44

.121o

e 10--2

number of the matrix decreases, since then the matrix becomes "more diagonally
dominant." In fact, many practical problems will have e > 10-8.

In Table 8.2 results of a special iterative method (a version of a nonsymmetric
conjugate gradient method (IDR) developed by Sonneveld [32]) and in Table 8.3
results for a preconditioned variant of this method (PIDR) (see [32]) have been given
for various values of e and h.

TABLE 8.2
Number of iterations to solve (2.1) by two iterative methods.

IDR

PIDR

0.1

0.05

0.1

O.O5

e=l

14

32

15

e =0.1

24

47

16

e =0.01

56

78

e 0.001

10 86

central difference scheme (h Ax Ay); required accuracy: IDR 10-3, PIDR 10-4

The number of unknowns is equal to 81 for h =0.1 and to 261 for h 0.05. So,
from a practical point of view, a number of iterations of 56 for h 0.1 means no
convergence. The condition for diagonal dominancy is Ax <= 2e/u, so Table 8.2 indi-
cates that the IDR method converges as long as the matrix is diagonally dominant,
whereas for the PIDR method, this condition may be violated a little.

In Table 8.3 the number of iterations of the PIDR method has been given for
various values of h and e. This table shows that the PIDR method converges rapidly
as long as e => 0.04 Ax; for smaller values of e no convergence can be guaranteed.

TABI.E 8.3
Number of iterations to solve (2.1) by the PIDR method and central differences.

h =0.1

h =0.05

e =O.lh

8

10

e O.08h

11

e O.06h

11

14

e O.04h

15

26

e O.02h

31

133

e O.Olh

required accuracy: 10 -4. h Ax Ay

These examples show that in order to use iterative methods it is necessary to use
either upwind schemes or defect correction methods. Since the defect correction
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methods are generally more accurate (see 7) they should be preferred. Furthermore,
since the PIDR method allows for a little violation of the diagonal dominancy condition,
and since the defect correction method becomes more accurate when g O(h2) one
may expect good results of a combination of these methods.

Remark. In many practical problems 0.04h O(h2).
Note that for (1.1) in more than one dimension, advanced iterative methods, such

as preconditioned conjugate gradient methods (e.g., PIDR) or multigrid methods are
much cheaper than Gaussian elimination [32]. Recently, a new overrelaxation method
has been constructed that is able to solve the central difference scheme iteratively [31 ].

9. Conclusions. In this paper the convection-diffusion equation has been investi-
gated for small values of the viscosity coefficient. This equation may be considered
as a simple model for various more complicated equations such as the Navier-Stokes
equations at high Reynolds number. In problems of this type two kinds of boundary
layers appear: parallel and normal boundary layers.

The accuracy and computational cost of three kinds of numerical schemes have
been studied: central differences, a defect correction method, and upwind differences
such as the II’in scheme.

In more than one dimension the central difference method is more expensive
than the other two. The reason is that for small e the matrix of the system that has
to be solved is not diagonally dominant, whereas for the other two it is. This precludes
for small e the use of fast iterative methods for the central difference method. In
more than one dimension these are appreciably cheaper than Gaussian elimination
for large problems.

In the one-dimensional case with homogeneous right-hand side, the II’in scheme
is the most accurate. In more general one-dimensional problems the central difference
scheme is the most accurate, provided it is combined with a suitable e-dependent
mesh refinement in the boundary layer.

In the general two-dimensional case with suitably e-dependent mesh refinement
in the boundary layers, the central difference scheme is the most accurate, except
when there is no normal boundary layer and Dirichlet boundary conditions are
prescribed at the outflow boundary. The defect correction method based on one-step
upwind differences, corrected with one-step central differences, is always more accurate
than the upwind difference method; however, in order to get an O(h) accuracy in
the case of a smooth "outer solution" with Neumann boundary conditions at the
outflow boundary, it is necessary to use mesh refinement in the neighborhood of that
boundary. A good alternative in that case may be the introduction of an artificial
viscosity of O(h2) instead of O(h), and to use defect correction based on such a
scheme. In the special case where the "outer solution" is constant, the accuracy of
the upwind difference method is better, but still about a factor of 2 worse than for
the other methods.

Appendix 1. Proof of Theorem 4.1. Let e << 1. In order to estimate the error of
scheme (4.4) it is necessary to have an estimate of IILlI[2. IlL,ill2 1/o"1 with o’ the
smallest eigenvalue of Zth, hence

2 xTLLhX IILhxlI=cr min T or tr min.
xx llxll=

The following lemmas and proofs are due to J. van Kan (private communication).
With y _-> 0 we mean y _>-0, 1, 2,.. , n.



ELLIPTIC SINGULAR PERTURBATION PROBLEMS 343

LEMMA 1. Let A be a diagonally dominant matrix with positive diagonal and
negative offdiagonals. Then the minimum value of IIAxll=/ilxll= witt be reached for a
vector Xo satisfying Xo >-_ 0 and Axo >-_ O.

Proof. Since A is diagonally dominant with positive diagonal and negative off-
diagonals it satisfies the following maximum principle’

Aw g with g ->_ 0 implies w ->_ 0.

Let Ax f and Ay Ifl, (If[/= Ifil). From Ill o we deduce y -> 0.

A(y-x)= Ifl-f>-_O, hence y-x

A(y+x)=lfl+f->_0, hence y+x>_-0,

(y -x, y / x)- Ilyll- Ilxll_-> 0.

Therefore

IIAylI=
< IIAxll=

IlYlI= Ilxll.
Q.E.D.

LEMMA 2. Let E be the n x n matrix

10 0 0
1

1

and letA -aE + I Er with I the identity matrix. Let a +/3 1, a,/3 _-> 0 and a >.
Then

IIA-’II--< 1
a _-O(n).

Proof. We have to estimate tr =min IIAxll/llxll. According to Lemma 1, r
Ilaxollz/llxollz for some xo with axo>=O and Xo=>0. Since E’E diag (1, 1,..., 1, 0),

(a 3Er)(I E)xo (aI fEr aE + 3ET"E)xo <- Axo.
Since ][Ey[[2 <_-[[y[[2, for all y,

II(,Z-/E)ylI=--> I,IlylI-/IIEylI=I--> (, -)llyll= Vy.

Hence IIAxoll--> ( -)ll(z-E)xoll. The matrix (I-ET)(I-E) I-E-ET +ETE
has eigenvalues

2k+1
Ak 2- 2 cos

2n+1

Hence I1(I- )xoll=_-> 4llxoll= O(n-)llxoll=.
LEMMA 3. LetA be the n n matrix

A -aE + I fiE
with ct + fl 1 and E and I as in Lemma 2. Then

k=l,2,...,n.

Q.E.D.

IIA-11I: =< O(n 2).



344 A. SEGAL

Proof..rEu]= Ilull= is a convex functional, hence J[u]-J[v]>-J’[v](u-v), so

IIAxll=-Ilxll= --II(x -Ex)+(x Ex)ll_- IIx I[.-Moreover, (x, Ex) (Ex, x) (x, Erx), and

(x, oEx +#Ex) (x, Ex) 1/2(x, (E + E’)x).

(x, aEx +3Ex)

The matrix 1/2(E +Er) has eigenvalues hk =cos (k’rr/(n + 1)), k 1, 2,..., n; hence

1/2(x, (E +E)x) <-_ cos n+X llxll=(1-O(n-2))llxll"

Therefore

llAxll. -:)
llxlI2

>- O(n Q.E.D.

We now proceed to prove Theorem 4.1. Application of Lemmas 2 and 3 to the
matrix Lh gives the following results"

2g
Lh -{-ceE +I-ET}

h2(t u)= -.Ce ---ff +

(i) From Lemma 3, IlL’112 =< O(a /),
(ii) When the matrix Zh is diagonally dominant, and t7 O(h),

with

h 2
U hu

a -/ 2--ff - 2t7
O(1).

From Lemma 2 we obtain IItll= O(a),
Next consider the truncation error eT"

(1) eT LhC fh
with fh the vector with components f. Then

d2 h2{ 12t d4qxx +gud3& } 4).(2) (eT)k (e g:) -x (Xk) + (Xk) -x3(Xk) + O(h

Since Lhth fh and Lhb fh + ev, we have Lh(b --h) er. Hence & --h L-1er and

( Oh)O (I) Oh )n+ O.

We distinguish three possibilities"
(a) Equation (4.4) is a classical upwind scheme; hence

IILII. o(a), O(h).

We suppose that e < ; then

I1 h112 IItll.llell= O(h).
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(b) Equation (4.4) is a central difference scheme; hence t7 e. When e O(h),
then I1-11= O(h=); otherwise, when (e -< O(h2)),
(3) (eT)k h2gk + O(h4), k 1, 2,. , n,

with

e d2cb u d34,
12 dx4 (Xk)q-g x3(Xk),

Define

h 2 d4 h_2O(x)= g xx+12u dx3’

then

(LhO + V )k
eh 2 d4c
-1-2- G x+

uh2 d2c 2) + O(h
6 (x)+O(he 4) k 1, 2, , n,

with v the vector with components Vk satisfying

Vk=O, k=2,3,’" .,n-l,

Vl 0(Xo)
h 2 v. =6(x.+) -+

Hence"

Lh C/) (/)h Lhll + V + O(h4),

II( (h 1121111 + [IL-avII+IIL-a O(h4) O(h2)+ O()+ IlL
To estimate the term IIL;vl[ we consider w L-lv. One easily verifies that the exact
solution is given by wi Ari+ B, with

g’o g’. + O.+ g’or
A=- B=-n/l rn+lr -1 -1

a+l 2e
r-

1’
a= <<1

Hence,

r=-(1 + 2c) + O(e2), r (-1)(1 +2ic)+O(e2).
For n even we have r"/1 =-1 + O(e), and therefore w O(h2). For n odd we have

.+1 4(n + 1) 2) 4e
r 1+ u----e + O(e 1++ O(e2),

and therefore w O(h4/e). Since the worst case may appear, we conclude

(c) Equation (4.4) is a modified upwind scheme (g h2). In the same way as for
a central difference scheme we can prove that

II .I1= o(h 2). Q.E.D.
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Appendix 2. Proof of Theorem 6.1. The iterated defect correction process is
defined by

-1 -1 -1(1) l) h rb L L’hrb fh ], 1, 2,’’’,

with b defined by

(2) Lh)Oh= fh.
From Lb f we obtain:

i-1(3) 6 h (I L;1L)( h ).

Hence we have to analyse the spectral radius p(I-L;L).
Let E be defined as in Appendix 1, Lemma 2. Then

(4) Lh {--(+ E+2dI-(e-)E
and

=1(5) L’h -{-(e +-) E+2eI-(e --) Er}.
If A is an eigenvalue, then

(6) (I L--dL’h)U Au,

or (Lh (I A L)u O, i.e.,

(7) {(-Ae + 18)E + (2Ae 21g)I + (-Ae + 82)ET}u 0

with e g- e, 6 g + uh/2, 6z - uh/2. Substituting u r gives

(8) rl,= -Ae +XS
with (Ae -Ag)- (-Ae + ASx)(-Ae + AS) A a(uh/2).
The general solution of (7) is given by

u axr + ar, u0 0, u+x 0.

In order for us to have a nontrivial solution, it is necessary that

(9) rl r e:i(+x) k 1 2 n.

From (8) and (9) we obtain

(10) (-Ae +Ag)(1-ei/("+x))=A (1 + e2ik/(n+l)).

Hence
uh

(-ae+Ag) -itan n+i =1,
Ae uh

Ak Ogk =i
(e- ak 2 tan \n + i]
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with

uh
k=l,2,...,n.

So

IAel <11e1<1
The minimum value of/3k will be small due to the term tan (,n’k/n + 1), hence

IAmaxl t7
Q.E.D.

Appendix 3. Proof of Theorem 6.2. We shall prove Theorem 6.2 only for the
case that Lh corresponds to a classical upwind scheme, i.e., Lh is diagonally dominant
and : O(h). The other part of the theorem can be proved by similar arguments. Let

(1) LhCh fh
be the upwind scheme, and

(2)

be the central difference scheme. The defect correction scheme is given by

(3) h )h t- tthl)h

From (3) we obtain

(4) h--(D :tl[th--Zh](h--qb)--t-l[t’h--f’h].

We consider the terms on the right-hand side separately.
(i) L-I[L’h-f]. According to Appendix 1 (1), (2), (3), Lb-[- O(h 2) and

IILII=- o(1). Hence IIL-EL’h4,--A]II2-- O(h2).
(ii) L-l[Lh--th](h--). The truncation error er =thC--fh is given by (er)k

gk + O(h4) with

d2b 2{gk (e g:) -xZ (Xk) + h
g d4c u d3b }12 dx4 (Xk)’+-g --x3 (Xk)

Define

{h
2 g(e- daub h2t d3be-ed+ +_} 3.4’- u dx u dx 12u dx

Then (Lh + 1) k gk + 0(h 3) with
Vk 0, k =2, 3," , n- 1,

+ /in --"--l/tn+l

Hence 4, l,)h lit - L-Xv + O(h3). Since

IItll= o(), Ilth -t,l12 O(h-), (t,, --Z’h)e, ,,, /,o2,
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with

(w)k
h 2 (--6k-+26k--@,+)=(g--e)-xXk)+O(h k 1, 2,. n,

(to2)k 0, k 2, 3,. , n 1,

;:-e
(to2)o @o, (to2),,

h 2 0,,+,

we have

L- [L -Lth](h C L- [L -L’h]L-Xv +L-to2 + O h 2).
One easily verifies that (L-v) Ar + B, with

0-- tn+l l/tn+l Oor"+ a+l 2g
A n+l B n+l r a =-> 1

1-r 1-r a-l’

Hence [Lh-Lh]L-Io =q--tOE with qk (rk, k 1, 2,’", n, and

2(g-e) 2A 2Aa u 2a u o-n+l" h E
t

2 1 2 2 n+la -lh a -lh 1-r

Finally:

IDh ( L-1q + O(h:) =- -kh + ffi. rk+
u r -1

rn+l ]
l_-aj + O(h:).

Without difficulty one can show that in the range of interest 1 _-< a _-< 3 we have’

(L-q)k ----< 1/2(Oo- n+1).
Furthermore, (L-Xq)k is small except for the last few points before k n + 1. When

(L-Xq)k --, O, k 1, 2,..., n 1, (L-aq)n --) (o- ,+1).

Since O O(h), the theorem has been proved. The case t O(h) can be proved in
exactly the same way. Q.E.D.
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A VECTORIZABLE VARIANT OF SOME
ICCG METHODS*

HENK A. VAN DER VORST

Abstract. The preconditioned conjugate gradient method can be a useful tool in solving certain very
large sparse linear systems. If this is done on avector machine like the CRAY-1, then it appears that some
of the most effective preconditionings are difficult to vectorize. In this paper it is shown how a class of
preconditionings can be modified in such a way that they become highly vectorizable while still easy to
program. Numerical experiments that show the improvement in performance of the preconditioned conju-
gate gradient algorithm have been included.

Key words, preconditioned conjugate gradients, ICCG methods, incomplete Choleski, vector/parallel
computers

0. Introduction. The ICCG methods arise when the conjugate gradient algorithm
(CG) is applied to the preconditioned system K-lAx K-Ib in order to solve the
linear system Ax b, where K is an incomplete Choleski (IC) decomposition of the
n by n symmetric positive real matrix A [6], [9], [10]. Since most of the CG algorithm
is vectorizable (assuming that fast code is available for inner products) and the matrix
vector product Ax is also vectorizable, the main difficulty arises in the computation
of K-ty for a given vector y on a vector processor.

This is due to the fact that in the IC decomposition we have K LLr, where L
is lower triangular, and computation of L-Xz as well as L-rz requires in many relevant
cases recurrence relations in the components of z and these are not vectorizable
directly. This has been recognized by many authors who propose techniques to
overcome this problem. Significant improvement in efficiency can be made if one uses
cyclic reduction techniques [3], [5], [7], [11]. Using these techniques rather fast code
can be written for vector/parallel processors such as the CRAY-1, but this requires
a permutation of the unknowns and has often to be done in assembler code in order
to achieve optimal performance. Dubois, Greenbaum and Rodrigue [1] propose to
approximate the inverse of A by a truncated Neumann expansion and to use this as
a preconditioning. Although their preconditioning is completely vectorizable, they
report a significant increase in the number of cg iterations as compared to the ICCG
methods. Johnson and Paul [4] claim that the number of iterations can be reduced
to about the same level as for the ICCG methods, by introducing parameters that
depend on extreme eigenvalues of the matrix A.

In this paper we return to the incomplete Choleski decomposition and describe
a useful variant that can be vectorized completely very easily. The variant arises if
one applies similar techniques as proposed in [1] in an intermediate step of the
preconditioning process. We will show that for this variant the number of iterations
will be about the same as for the standard ICCG algorithms. No information is required
about eigenvalues of A and neither are other parameters introduced. The resulting
preconditioned CG method has been tested on a CRAY-1 computer and numerical
examples indicating the efficiency of the new variants have been included.

* Received by the editors September 9, 1981, and in revised form December 17, 1981. The research
reported in this paper was supported in part by the European Research Office, London, through grant
DAJA 37o80-C-0243.

t Academisch Computer Centrum Utrecht, Budapestlaan 6, Utrecht, the Netherlands.
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1. The vectorizable ICCG algorithm. The ICCG algorithm is defined by

(ri, K-ri)
Xi+l Xi’’oliPi, ri+l ri-otiApi,oli (Pi, Api)

.)

[3i
(ri+l’ K-lri+l) K-1

(ri, K-lri) Pi+l ri+l + [3iPi.

The preconditioning matrix K is an incomplete Choleski factorization of the matrix
A and will be written as K (L +D)D-1(D + L)r. L is a strict lower triangular matrix
and D is a diagonal matrix.

We will now assume that A has been scaled in such a way that D I, which
simplifies most of the coming formulas and makes actual computation more efficient.
In most situations the computation of Ap is completely vectorizable and we therefore
focus attention to the computation of K-Iri, which causes the bottleneck on vector
computers since it requires back substitution. In our further analysis we will restrict
ourselves to matrices A that come from 5-point finite difference approximations of
elliptic p.d.e.’s over rectangular regions. From the presentation it will be clear for
which other matrices the ideas presented in this paper can be applied.

In our case the matrix A has the block structure shown in Fig. 1.

FIG.

We now consider for K the ICCG(1, 1) variant [10], which means that the factor L
of K has the same sparsity structure as the corresponding part of A. It follows that
the elements of L are identical to those of A.

We write the decomposition as

A K +R (-F E + I)(I E F) :r + R,

where E is the matrix consisting of only the upper diagonal elements bi and F"
contains the upper diagonal elements ci. The matrix R represents the approximation
error of K with respect to A.

A typical step in the determination of K-ri is the solution of z from

(I E F)z y

or

(1-Ei)z y +Fg_,
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where the index/’ refers to the ]th block of the matrix and where z and y have been
partitioned accordingly.

Since the elements bi of Ej in general are small compared to 1.0, the idea is now
to compute zi from

zi (I Ei)-l( yi + Fizi_l) (I + Ei +E] +E +...)(yi +F.zi_l),

and to truncate the power series after some term, the ruth term say. We observe that
the approximate solution

(1.2) (I +E +." + ET’)(yi +Fizi-)

has now been written in fully vectorizable form. Our main concern is to investigate
whether a value of m exists such that the computation of (1.2) will not be too expensive
and also that this truncation will not lead to a much higher number of iterations in
the resulting ICCG algorithm.

2. The effect o| truncation on the preconditioning matrix. We now try to deter-
mine where to truncate the power series for (I-E)-1 in such a way that the error
due to this truncation is small compared to the approximation error R A-K. We
use the relation

(2.1) ( +E +... +E)- (-E)(-E+’)-,
and recall that

(2.2) A=(I-E-F)(I-E-F)7r +R =K +R.

If we approximate the factor (! E)-1 in the back substitution by ! +E +E2 +. +E",
then we have effectively

(2.3) A =K+S+R,

where/ is the matrix which describes the truncated back substitution and S is the
error matrix due to the truncation.

It follows from (2.1) that

(2.4) / ((I-E)(I-E’*)-- -F)((I-E)(I-E’*)- -F)r.
The matrix S is defined by

(I-E)(I-E’+I)- (I-E)(I +E"+1 +E’++. .)
(2.5)

I-E + (I-E)E"+(I-E’+I)-1 I-E + $1.

If (2.5) is inserted in (2.4), then it follows from (2.3) that

(2.6) S -S(I-E-F)r-(I-E-F)Sr-S1Sr.
The elements of E are just the b and those of F are given by c. Therefore we can
derive bounds on $ in the following way"

(2.7) III E Fllo <- 1 + b + c,

where b max b, c max ci. Thus

(2.8) IIs ll __< (1 +b)b+l(1-b+l)-t=b/(1 +b).

If we neglect also the higher order term SS, then from (2.6), (2.7) and (2.8) we have

(2.9) Ilslloo_-< 2(1 + b)(1 + b + c)b+1.
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The matrix R has the structure in Fig. 2, where ri bici-1. Thus

(2.a0) IIRIL 2 max Ibici-ll.

O0
000
000

Or
000

0

0q0

-,

"r.O

FIG. 2

r0

If we choose as a model problem the set of equations that arises from 5-point
finite difference approximation to the Poisson equation, with Dirichlet boundary
conditions, then it follows that the elements of the matrices E and F are approximately
bi 0.3 and ci 0.3. In this case we have IIRIL 0.18 and for Ilslloo we find the upper
bounds in Table 1, depending on the level of truncation.

TABLE
Upper bounds for IIS[lo,

1 2 3

0.4 0.11 0.034

We see from this table that for m 2 the truncation error S is comparable to the
approximation error R, while for m 3 the approximation error R dominates.

Since (I +E +E2 + E3)y can be computed as (I + E2)(I +E)y which can be
computed almost at the cost of (I +E +EZ)y, we prefer truncation after 3 terms over
truncation after 2 terms.

3. Numerical results. In this section we give the numbers of iterations for both
the "standard" ICCG(1, 1) algorithm and the truncated ICCG(1, 1) algorithm, as well
as the CPU times required for both algorithms on a CRAY-1 computer. The truncation
idea can also be applied similarly to the more complicated ICCG algorithms like
ICCG(1, 2) and ICCG(1, 3) [10]. In the latter variant 2 extra nonzero diagonals are
allowed in the factors of K, situated near the F-diagonals. Since the approximation
error matrix R for the ICCG(1, 3) decomposition is in general much smaller than for
the ICCG(1, 1) case, it may be expected that in this case the number of iterations will
be increased when we apply truncation. The results for this decomposition have also
been included. All the algorithms have been coded in standard Fortran except for the
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inner products which were available in assembler code. In the truncated ICCG
algorithms the vector (I-E)-y has been approximated by (I +E2)(I +E)y, where
E2 was computed once and stored in memory. Note that E2 is a matrix that has only
one nonzero diagonal. All the matrices occurring in the algorithms have been repre-
sented in diagonal form, this seems to be the most effective way on a vector/parallel
processor [8]. It should be stressed here that the CPU times listed for the standard
ICCG algorithm may give the reader a too optimistic impression with respect to their
behavior on vector machines. Their CPU times are relatively low due to the fact that
A has only 5 nonzero diagonals in our examples, the decompositions have been scaled
such that their main diagonal elements are equal to 1.0, Eisenstat’s efficient
implementation has been applied [2], and they have been vectorized also as far as
possible (Eisenstat’s ideas have not been applied to the new variants). Further on the
size of the matrices is comparatively small so that any initial scalar arithmetic influences
the results.

The computer time required for the construction of the incomplete decompositions
as well as for the scaling of the matrix has been included in the listed CPU times.

In order to be better able to judge the results for the vectorizable variants we
have also included the results for the vectorizable truncated Neumann expansion
preconditioning as proposed in [1]. The value of p in this case refers to the number
of terms after which the Neumann expansion has been truncated.

Although more complicated problems, e.g., 9-point finite difference operators or
finite element problems, would give a higher improvement ratio for the vectorizable
algorithms, we have chosen simple examples in order to facilitate for the reader the
reconstruction of these problems for testing purposes.

In both the examples 20 different starting vectors, with entries chosen at random
in (0, 1), have been taken and the average results over these 20 iteration processes
have been listed. The iteration was terminated as soon as the residual vector in 2-norm
was less than 10-x. For the 5-point finite difference discretisation of the p.d.d.’s see
[13].

u,),-(Aur),Example 1. -(A B. This equation was solved over the unit square
(see Fig. 3), where A and B are given by

regionl" A=I, B=0,
region 2" A=100, B=100.
On the boundary defined by y 0 we have u 0, along the other three boundaries

we have the Neumann condition u/n 0. A uniform mesh was chosen with mesh
spacing 1/32, resulting in a linear system with 1056 unknowns. Table 2 shows the
iteration results.

FIG. 3
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TABLE 2
Iteration results for Example 1.

algorithm

standard ICCG(1, 1)
truncated ICCG(1, 1)
standard ICCG(1, 3)
truncated ICCG(1, 3)
truncated Neumann, p 2
truncated Neumann, p 4

number of iterations

62
62
31
33
103
73

CPU time on CRAY-1

0.125
0.O78
0.086
0.051
0.079
0.087

’ x- ’)’ +Bu B. (See Fig. 4.) The coefficients in thisExample 2. -(Au )’ (Auy
equation are defined as follows:

regionl" A=3.0, B=0.05,
region 2" A=2.0, B=0.03,
region 3" A=I.0, B=0.02.

4.0

FIG. 4

Along the boundaries the Neumann condition Ou/On 0 is imposed. The grid
spacing of the uniform mesh was chosen to be 1/42; thus the resulting linear system
is of the order N 1849. See Table 3.

TABLE 3
Iteration results for Example 2.

algorithm

standard ICCG(1, 1)
truncated ICCG(1, 1)
standard ICCG(1, 3)
truncated ICCG(1, 3)
truncated Neumann, p 2
truncated Neumann, p 4

number of iterations

87
89
44
47
149
105

CPU-time on CRAY-1

0.304
0.181
0.206
0.116
0.194
0.215

4. Conclusions. We see that the vectorizable ICCG variants give a considerable
improvement in CPU time on the CRAY-1. The variants are also more efficient than
the truncated Neumann expansion preconditioning as suggested in [1]. It seems that
they are very near to the equivalent incomplete Choleski preconditioning the existence
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of which has been questioned by Dubois, Greenbaum and Rodrigue [1, see Con-
clusions]. Since the programming effort is only slightly increased as compared to the
standard ICCG algorithms, we believe that it is advisable to prefer the truncated
algorithms for computers like the CRAY-1. From numerical experiments it follows
that truncation after 2 terms increases the number of iterations by a small percentage.
Since the computational effort to compute (I +E +E)y is almost the same as the
effort for (I +E +E2+ E3)y, truncation after 3 terms pays off most. This truncation
idea can be easily applied on more complicated ICCG algorithms and their nonsym-
metric equivalents [12]. As soon as there are more nonzero diagonals near the main
diagonal then the computer time required for evaluation of the truncated power series
(applied on a given vector) increases accordingly, making this idea possibly less
attractive in those cases. It is an open question whether and to what extent the
introduction of parameters in the truncated power series similar to those as described
by Johnson and Paul [4], could improve the performance of the truncated ICCG
methods.

Acknowledgments. Discussions with Thomas Jordan (Los Alamos), Gene Golub
and Rob Schreiber (both at Stanford) proved to be quite helpful and stimulating. Both
referees draw my attention to several useful references for which I am very much
indebted. They also contributed to the presentation of this paper.
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AN IMPROVED METHOD FOR NUMERICAL INVERSION
OF LAPLACE TRANSFORMS*

F. R. DE HOOGS", J. H. KNIGHTt AND A. N. STOKES"

Abstract. An improved procedure for numerical inversion of Laplace transforms is proposed based
on accelerating the convergence of the Fourier series obtained from the inversion integral using the
trapezoidal rule. When the full complex series is used, at each time-value the epsilon-algorithm computes
a (trigonometric) Pad6 approximation which gives better results than existing acceleration methods. The
quotient-difference algorithm is,used to compute the coefficients of the corresponding continued fraction,
which is evaluated at each time-value, greatly improving efficiency. The convergence of the continued
fraction can in turn be accelerated, leading to a further improvement in accuracy.

Key words. Laplace transforms, Fourier series, acceleration, e-algorithm, continued fractions, quotient-
difference algorithm.

1. Introduction. The Laplace transform of a function f(t), >= O, is defined as

(1) F(p) Jo exp (-pt)f(t) at,

and the inverse transform is given by

1 f
+i

exp (pt)F(p) dp,(2) f(t)

where y is such that the contour of integration is to the right of any singularities of F(p).
There are many problems for which the Laplace transform of the solution is

readily found, but the transform cannot be easily inverted analytically. For such cases
a numerical method of inversion must be used. Unfortunately, different numerical
methods give the most accurate answers for various classes of functions and there is
no "best" method. Recently, Davies and Martin [4] tested a wide variety of methods
on a representative set of sixteen transforms with known inverses and concluded that
one of the more successful methods was based on accelerating the convergence of a
Fourier series.

It therefore seems worthwhile attempting to improve an already quite good
method, and this is the aim of the present paper. In the next section, we describe the
Fourier series method and the need to accelerate the convergence of the. series. Our
improved algorithm is given in 3, and some numerical comparisons are presented
in 4.

2. Fourier series methods. Since f is a real-valued function for real t, three
mathematically equivalent forms can be obtained by manipulating the real and
imaginary parts of (2). They are

2
(3) /(t) exp (yt) | Re {F(p)} cos (ot)

30

(4) _2

(5) exp (yt) | Re {F(p) exp (kot)} &o,
3o

* Received by the editors April 21, 1980, and in revised form December 7, 1981.
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where p =3’ + iw. If we now discretize, using the trapezoidal rule with step size 7r/T,
we obtain the approximations

2 IF(3") { ( iTr.) } (_)](6) f(t)=-exp(3"t)[ 2-- + 2 Re F 3"+ cos
k=l

2 / ( i)} (--)(7) [2(t)=--exp(3"t) Im F 3"+ sin
k=l

(8) f3 (t) - exp (3"t) ----- Re{ 3"-- )
with various derivations; (6)-(8) are the basis of Fourier series methods examined
and used by Dubner and Abate [5], Cooley, Lewis and Welch [2], Silverberg [11],
Durbin [6], Crump [3] and others.

Although (3) and (4) are mathematically equivalent, the discretized forms (6)-(8)
are not. In fact, it can be shown (see Durbin [6]) that for 0-< =< 2 T

(9) fl(t) =f(t)+ Y exp (-23"kT)[f(2kT+ t)+exp (23"t)f(2kT-t)],
k=l

(10) /z(t) =f(t)+ Y’, exp (-23"kT)[f(2kT+ t)-exp (23"t)f(2kT-t)],
k=l

(11) f3(t)=f(t)+ Y exp(-23"kT)f(2kT+t).
k=l

Thus, if 3"T is large, the discretization error (incurred when the integral is approximated
by the Fourier series) is small for fl and f2 when 0-< <- T and for ]’3 when 0 <= =< 2 T.
Furthermore, (9)-(10) indicate that f3 (which is the average of f and f2) may be the
most useful approximation in practice because it does not contain the exponentially
increasing term exp (23"t) in the discretization error. However, the choice of the most
useful discretization depends heavily on how the sums of the infinite series in (6)-(8)
are calculated.

To illustrate this, let us consider the evaluation of f3(t) on an equally spaced
partition tj 2IT ] 0, 1,. , J- 1. A formal manipulation of f3(ti) yields

(12)

where

T exp (3"ti)f3(t) Re
k=0

at, exp
j

(F(3")+ F 3"+-’,--1(13) a= 2

and

oo( (k + IJ)’n’)ak ., F 3"+ k=l,... J-1.
t=o T

If J is large and ak, k =0,... ,J-1, are known, (12) can be evaluated efficiently
using a fast Fourier transform. Unfortunately, the formal manipulation used to derive
(12) is not valid unless the series defining f3 converges uniformly. For example, if
F(p) 1/p, the sums in (13) will diverge.
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(14)

On the other hand, if fl is evaluated on the grid sj jT/J, j 0, , J, we obtain

2
exp (yS])fl(Sj) bk COS ] 0," J

where

for k 1,.. ,J-l,

bo +/=iRe F T+" T

(15) bk Re F 3/+ +F 3,+
l--o T

(21J + J k

and

bj= Re F 3’+
/=0

(2l + l

Cooley, Lewis and Welch [2] have noted that (14) can also be evaluated using a fast
cosine transform and that the sums defining b0,’’ ", bi will usually converge. They,
therefore, choose (15) and (16) as the basis of their inversion algorithm even though
a comparison of (9) and (11) shows that the discretization error of f3 will usually be
smaller than that of fl. A method for choosing an appropriate value of 3’ (assuming
that the bk, k 0,..., J are known to machine precision) is also given by these
authors. However, accurate calculation of the bk is by no means trivial. For example,
if F(p)= l/p, then

b0=--+yT2
2

/=1 y T2 q-47r212J2’

which converges very slowly. In general, a very large number of evaluations of F(p)
may be required for an accurate inversion, and it is clear that this part of the calculation
can be the major source of rounding error and require the most computer time, even
when F(p) has a simple form.

Of course, slow convergence, with its attendant problems of loss of accuracy and
excessive computation time, can be expected for any algorithm which evaluates (6)-(8)
directly. If a Fourier scheme is to be useful, it would seem to be necessary to accelerate
the convergence of the appropriate infinite series. Durbin [6] reported that he had
tried various convergence acceleration methods, apparently without major improve-
ment. Crump [3] used the epsilon-algorithm of Wynn [12] to accelerate the conver-
gence of the sum in (5) with good results.

To accelerate the convergence of a sequence of partial sums using the epsilon-
algorithm

So =F(Y) Sk Sk_l+Re{F(y+-)exp(ikt)}- k 1 2M,

_>we define e 0, e(o> S, m 0, i, , 2M, and then put

(16) (m) (m+l) (re+l) (m) ]-1Ep+l gp-1 -[" [Ep Ep
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(0)The sequence e(o), e), e(4o,..., e2M gives successive approximations to the sum of
the series. Crump’s accelerated estimate of f(t) we denote by

1
f(t, y, T, M) -exp (ytle

For comparison, we denote the unaccelerated estimate by

)0(t, % T, M)=-exp (yt) +k--1 + exp }].
3. Improved acceleration. A convergence acceleration technique can be applied

to any arbitrary sequence of numbers, with uncertain results, but most such techniques
assume that the sequence has some particular structure, and they work best for
sequences close to the assumed form. As emphasized by Wynn [13], applying the
epsilon-algorithm to the partial sums of a power series in a variable z is equivalent
to constructing successive rational approximations to the power series. These rational
approximations have special properties being particular Pad6 approximations to the
power series. (For their properties see Baker [1] or Henrici [8].) The sequence {e (02ml,
rn 0, 1,..., M, gives diagonal elements of the Pad6 table

e 2() bz cz
0 n=0

co=l

with

2/I,/
(o) =O(Zm+).anz E2m

n=0

The Pad6 approximations are often better than the original power series at
representing a function and valid in a larger domain. Accordingly, the greater improve-
ment in convergence can be expected when the algorithm is applied to a sequence
which happens to be the partial sums of some power series. For example, given a
cosine series an cos (nO) to accelerate, Wynn [13] appends the conjugate sine series
Y. ani sin (nO), applies the epsilon-algorithm to the complex power series in the variable
z exp (iO) and takes the real part of the result. Because the algorithm is nonlinear,
this is not the same as accelerating the cosine series directly.

For our problem of Laplace transform inversion, the natural way to obtain a
power series is to retain the original complex form

F(y) , (i7r) (i7r,) k(17) g(t) ---+ F y+ exp E akZ
k=l k=O

with ao 1/2F(y), a F(y + ikTr/T), k 1, 2,. and z exp (iTrt/T).
We propose to apply the epsilon-algorithm to the partial sums of the series (17)

to give an improved estimate

1
(18) )2(t, V, T, M) - exp (yt) Re {e (o) a

2M’J"
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If the epsilon table is written out in the form

ego)
(1) 0)E-1 E

() (o)
80 82

(2) (1)
E-1 E1

(2)
E0

(3)
E-1

for each J, a new diagonal (J-t)
et f -1, 0, , J, can be calculated using the ’rhombus

rule" in the form
(J-t) (J+l-/) (J+l-t) (J-t)(19) st St_2 d-tet_l --et_l ]- ]= 1,’" ,J

with the initial values

J

e (--’) O, e(oJ) ., akZ k.
k=0

(0)Every second such diagonal yields an improved estimate e :,, rn 1, 2,.. , M.
When applied to the partial sums of a power series in this way, it can be seen

that the procedure calculates e J-1) [azJ]-l, for example, by subtracting successive
partial sums to retrieve the Jth term of the power series. Table entries can be
numerically large and the rhombus rule often involves the subtraction of two large
quantities to find a relatively small difference. It is not surprising that calculation of
table elements is numerically unstable and can be seriously affected by roundott error
for large J. For each new value of z, all the entries in the table must be recalculated,
and M(2M 1) entries are needed to give the estimate (o)

e2M although no more than
two diagonals need to be stored at any stage.

Given that our proposed acceleration procedure is in fact computing a diagonal
Pad6 approximation corresponding to the power series (17), it is profitable to investi-
gate other methods which may be more efficient. Wynn [13] suggests that, while it is
more economical to use the epsilon-algorithm for an exploratory survey with a limited
number of sample values of z, if results are required for many values it is better to
use a method such as the quotient-difference algorithm of Rutishauser [10]. This
makes the rational approximation available in the form of a continued fraction for
substitution of different values of z. Therefore, for the inversion of Laplace transforms,
we propose to use the quotient-difference algorithm to calculate a (trigonometric)
rational approximation to the series (17) in the form of a continued fraction, and to
evaluate it by recursion at any value of the time.

In our outline of the quotient-difference algorithm, we follow Henrici [7], [8],
[9]. Given the power series (17), we wish to calculate the corresponding continued
fraction

v(z) do/(1 + dlZ/(1 + d2z/(1 +’" ")))

with the same formal power series development. Given

2M

u(z, M) akZ k, v(z, M) do/(1 + dlZ/(1 +" + d2MZ)),
k=O

u(z,M)-v(z,M)= O(z2M+)
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(o) The coefficients dk,so v(z, M) is the same diagonal Pad6 approximation as e2M.
k 0, 1, , 2M can be calculated using the quotient-difference algorithm as follows.
We set e(oi) =0 for i-0,..., 2M and q(l) a+l/a for i=0,..., 2M-1. Then suc-
cessive columns of the array are formed according to the rules for

(i+1) 0, 2M-2r,(20) r 1,’ M, e(ri) q(ri+l) --q(r’) + er-
for

r=2,... ,M, q(i) (i+1)..(i+1) (i).qr-1 tr-1 /er-, i=0,. ’, 2M-2r-1.

The array is written out in the form

q]O)
e(o) e(1)

eo2) ea) e2),

q(13)

and it can be seen that successive diagonals can be built up in the same way the
epsilon table is constructed using the relations (20).

The continued fraction coefficients dk, k -0,.. , 2M are given by

do=ao, d2,,_a=-q), d2,,=-e), m=l,...,M.

Calculating these using the q d algorithm involves about the same effort as calculating
the epsilon table but does not have to be redone for a new value of z. For any z the
successive convergents of the continued fraction can be evaluated using the recurrence
relations

A An-1 + dnzAn-2,
(21) n=l,...,2M

B, B,_ + d,zB-2,

with the initial values A_I 0, B_a 1, Ao do, Bo 1, then v(z, M) A2t/B2t.
To apply the procedure to the series (17), as before we put z =exp(izrt/T),

ao F(y), ak F(y + ikr/T), k 1,..., 2M and the estimate of [(t) is

1 { a2t(22) )3(t, y, T, M) exp (yt) Re
B2t J"

If the numerical calculations were exact, )2 and /3 would be identical since the
underlying rational approximations are the same. Calculating the elements of the q d
array is also numerically unstable, but it is to be expected that roundott error can
affect/2 and [3 in different ways.

The continued fraction has been obtained as the result of applying an acceleration
procedure to the power series (17), and now we can consider applying an acceleration
procedure to the continued fraction itself. Writing v(z) as a terminating fraction with
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remainder,

v(z) do(1 + dlz/(1 +... + d.z/(1 + rn+l)""’ )),

where r,+(z) is the remainder. In the usual method of evaluation, the nth convergent
A,/B, is obtained with r,/t(z) taken as zero, but better estimates of the remainder
give more accurate approximations for v(z). The simplest improvement is achieved
by assuming that d,/,, dn/ for all positive m, which leads to an estimate of the
remainder satisfying

r.+=d.+z/(l+r.+).

However, in many continued fractions, the coefficients form a pattern which repeats
in pairs so a better and more general assumption is that for all nonnegative rn

or

dn+2m =d. and d.+2.,+ =dn+l.
This leads to an estimate Rn+I(Z) of the remainder satisfying

Rn+I dn+lZ/(1 + dnz/(1 + R.+))

R 2
.+ +[1 +(d.-d.+l)z]R.+l-d.+z =0.

For convergence, we want the root of smaller magnitude which is

R.+(z) -h.+[1-(1 + d.+lzlh2.+)/2],
where h.+l denotes [l+(d.-d.+)z], and the complex square root has argument
_-<r/2.

This further form of acceleration can be done in conjunction with the iterative
method ol forward evaluation used above, if on the last evaluation of the recurrence
relations dtz is replaced by RzM(Z),

(23) R2M(Z) h2M[1--(1 +d2Mz/h 2 1/21
2M, , h2M 1/211+ (d2M-1 d2M)Z]

giving

(24) A2M A2M- + R2MA2M-2, B2M B2M-1 + R2MB2M-2.

A doubly accelerated estimate for f(t) is given by

(25) f4(t,

4. Numerical results. The three main sources of error in approximating f(t) by
the sum of a Fourier series instead of by the integral (5) are (i) discretization error,
(ii) truncation error, caused by taking only a finite sum of N terms, and (iii) roundoff
error. The discretization error is governed by the values of the parameters 3’ and T
and the roundoff error by the properties of the machine used. It is effectively the
truncation error that we are trying to improve, so for a given transform we will use
identical values of 3’ and T for all methods and compute in double precision where
necessary to prevent significant roundoff error. Of course, for fixed word length,
stability to roundoff error is an important attribute on which we will comment later.

Numerical results were obtained on a CDC Cyber 76 computer with about 14
decimal digits in single precision and about 28 in double precision. Two transforms
with known inverses were used to evaluate the improvements to the accelerated
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TABLE
Errors in estimates of gl(t), T=7.5, 3,=-0.5+0.4 In (10.0).

estimate:
precision:

0.0
0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
13.5
14.0
14.5
15.0

/l(t, y, T, 9)
double

7.2x 10 -3

-1.8 10-3

3.8x 10 -4

4.5x 10-5

8.9x 10-6

-1.6 x 10-6

-6.2 10-8

-3.6 10-8

7.0x 10-9

1.9 x 0-8

1.2 x 0-8
8.8 x 0 -9

-6.5 x 10 .-9

-1.9x 10-5

2.1 x 10 -3

2.9x 10 -2

-1.8x 10--3.0 10 -1

4.0

8.2 10-3

2.9 10-5

1.5 0-6

3.5 10-7

3.1 10-8

-1.110
-9.5 0-8

-3.5 10-8

7.0 10-9

1.9 10-8

1.2 0 -8

2.6 10 -9

-2.4 0-9

-3.8 10-9

-4.5 0 -8

4.5x 10 -7

-8.1 10-7

-1.1 x 10-3

4.5

/3(t, y, T, 9)
single

8.2 x 10 -3

2.9 x 0 -5

1.5x 10 -6

3.5 x 0 .-7

3.1 x 10 .-8

-1.1 x 10 -7

-9.5 x 10 -8

-3.5 x 10 -8

7.0x 10 -9

1.9X 10 --1.2X 10
2.6 X 0 .-9

--2.4 X 0-9
--3.8 X 0 --9

--4.5 X 0 -8

4.5 10 -7

-8.1 10 -7

--1.110 .-3

4.5

41’t, v, T, 9)
single

5.9x 10 .3

4.2 x 10-6

7.8 x 10 -7

3.5x 10 -7

3.1 x 10 -8

-1.1 x 10 -7

-9.5 x 10 --3.5 10 -7.0 10 -9

1.9 10-8

1.2 0 .-8

2.6 10 --9

--2.4 0 -9

--2.9 0 -9

--5.9 0-9
4.7 0 -8

--2.9 10 -7

--1.4 10 -4

3.3

/4(t, 3,, T, 14)
single

1.5 10-3

6.8 x 0 -7

6.7 x 0 -7

3.5x 10 -7

3.1 x 10.-8

-1.1 x 10 --7

-9.5 x 0-
-3.5 x 0 -.8

7.0x 10 -9

1.9 0 -8

1.2 X 0 -8

2.6 X 0 -9

--2.4 X 0 --9

2.8 X 0-9

-1.3 x 10 -9

-5.9 10--3.5 10---2.7 x 10 --8.5 x 10 --
Fourier series method of Crump [3]. The first is Gl(p) (p2+p+ 1__)-1 which is the
transform of the damped sinusoid gl(t)=(2/x/-)exp (-t/2)sin (tx/3/2) used as an
example by Dubner and Abate [5] and by Crump. Most numerical methods can be
expected to perform well on this transform of a continuous function. The other is
G2(p) lip the transform of the heaviside unit function g2(t)=H(t) which is zero
for negative t, unity for positive and takes the value 1/2 for zero. The jump discontinuity
at zero makes this a difficult example for all Fourier series inversion methods. In
practice, if the location and magnitude of a discontinuity are known, it can often be
treated by analytical methods.

To invert the transform GI(p), the parameter values of Crump were used, namely
T 7.5, N 2M+ 1 19 and 3’ 0.5 +0.4 In (10.0)--- 0.421. Double precision-arith-
metic was used if the single precision calculations were found to be affected by roundoff.
The Crump estimate/1 was compared with our improved estimates j2 obtained with
the complex epsilon-algorithm, 13 obtained with the quotient-difference algorithm and
f4 obtained with accelerated evaluation of the continued fraction. The numerical
differences between these and the true values of gl(t) for the four methods are shown
in Table 1 for values of the time up to 15.0. Single precision results are given for ]3
and 14; as to the accuracy shown, the errors were unchanged for these estimates by
computing in double precision.

It can be seen that between about 5.0 and 10.0, the truncation error is negligible
for all four estimates, the remaining error being due to discretization and not decreased
by further increasing M. The convergence of the Fourier series may be affected by a
Gibbs phenomenon near 0 and 2T 15.0, and near these points our methods
are much more accurate than that of Crump. The single precision estimate 13 gives
identical errors to the double precision estimate ]2 showing that the continued fraction
procedure is less susceptible to roundoff error as well as computationally much more
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TABLE 2
Errors in estimates of g2(t), 1.0, T 12.0.

estimate:
precision:

0.00
0.05
0.10
0.15
O.2O
0.30
0.40
O.5O
0.75
1.00
1.50
2.00
4.00
6.00

/(t, 3/, T, 500)
single

-1.22 x 10-3

-2.27 x 10-2

-6.94 x 10-3

-1.82 x 10-3.78 x 10 -3

5.47 10 -3

2.08 x 10 .-3

-2.22 x 10 -3

3.32 x 10-4

1.27 x 10-3.58 x 10 -3

3.22 x 10 .-3

-5.13x 10 -5

-6.40 10 -2

[(t, 3/, T, 17)
double

-3.57 x 10 -3

-3.86 x 10-2.20 10 ..-3

4.58 x 10-2

1.16x10--2.73 x 10-3

5.08 x 10-3

9.98 x 10-3

-1.66 x 10-3

1.10x 10-4

1.97 x 10--4.00 x 10 -6

-2.37 x 10 -8

1.63 x 10 --ll

[2(t, 3/, T, 17)
double

-6.84 x 10-2
1.09 x 10 -4

-7.43 x 10 .-4

3.04 x 10-4

5.99 x 10--1.60 x 10-6

1.02 x 10-6

-2.44 x 10 -7

3.20 x 10 -9

2.36 x 10-l

4.16 10-3.78x 10-3.78x 10-it

3.78x 10-tt

3(t, 3/, T, 17)
single

-6.84 x 10-2
1.09 x 10-4

-7.43 x 10-4

3.04 x 10-4

-5.99 x 10 .-6

-1.60 x 10-6

1.02 x 10-6

-2.44 x 10 --7

3.20 x 10 -.9

2.36 x 10-4.16x 10-l

3.78x 10-3.78x 10-!

3.78 10 -t

4(t, 3/, T, 17)
single

8.25 10 -2

5.78 10 -.6

-4.17 10-5

1.07 x 10-3.97 10 -.7

-1.01 x 10 -7

2.49 x 10 -8

-2.98 10 -9

1.41 x 10
3.56x 10
3.77 10-li

3.78x 10-3.78x 10 --3.78x 10 --l

efficient. The accelerated continued fraction estimate f4(t, y, T, 9) yields a further
increase in accuracy near zero and 15.0. Also, N 2M + 1 29 terms were used to
calculate the estimate fn(t, y, T, 14) and a further improvement was obtained.

A similar comparison was made for the transform G2(p) of the unit step function
using the parameter values 3’ 1.0 and T 12.0 and various values of M. The first
column of Table 2 shows the errors in the simple sum fo(t, % T, 500) using N
2M + 1 1001 terms in the sum. The second column shows the errors in the Crump
estimate ]l(t, y, T, 17) using only N 2M + 1 35 terms clearly showing the great
improvement resulting from accelerating the convergence. For the same value of M,
the errors given by our improved acceleration methods are shown in the remaining
columns of Table 2, and it can be seen that for this discontinuous function g2(t), the
improvement over the Crump method is more dramatic. Right at the discontinuity,
our methods are no better, but the improvement increases rapidly for increasing t.
As in the first example, the doubly accelerated continued fraction estimate/4 gives
the best results. Calculations (results not shown) were also done with N 2M+ 1 41
terms. However, owing to the inherent instability of the quotient-difference algorithm,
inaccuracies in the single precision calculation of the coefficients dn became apparent
withM 20. These did not greatly affect the final estimate 13 but affected the estimates
R2M(z) of the remainder, causing [4 to be less of an improvement over 13 for this
value of M.

5. Conclusions. The numerical results in the previous section show that for the
accelerated Fourier series methods using the full complex series to calculate a
trigonometric rational approximation with either the epsilon or the quotient-difference
algorithm results in a significant improvement in accuracy over the method of Crump
[3]. Using the q- d algorithm to explicitly calculate the coefficients of the correspond-
ing continued fraction is highly efficient when the inverse is required at many time-
values. Evaluating the continued fraction is more stable than applying the epsilon-
algorithm to the partial sums and can itself be accelerated to give a further improvement
in accuracy.
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DIFFERENTIAL/ALGEBRAIC EQUATIONS ARE NOT ODE’S*

LINDA PETZOLD’t

Abstract. This paper outlines a number of difficulties which can arise when numerical methods are
used to solve systems of differential/algebraic equations of the form F(t, y, y’) 0. Problems which can be
written in this general form include standard ODE systems as well as problems which are substantially
different from standard ODE’s. Some of the differential/algebraic systems can be solved using numerical
methods which are commonly used for solving stiff systems of ordinary differential equations. Other
problems can be solved using codes based on the stiff methods, but only after extensive modifications to
the error estimates and other strategies in the code. A further class of problems cannot be solved at all
with such codes, because changing the stepsize causes large errors in the solution. We describe in detail
the causes of these difficulties and indicate solutions in some cases.

Key words, ordinary differential equations, singular differential systems, stiff, numerical methods,
error estimates, backward differentiation formulas

1. Introduction. A number of difficulties can arise when numerical methods are
used to solve systems of differential/algebraic equations (DAE) of the form F(t, y, y’)
0. These problems look much like standard ordinary differential equation (ODE)
systems of the form y’= f(t, y) (and of course include these systems as a special case),
and many of the DAE systems can be solved using numerical methods which are
commonly used for solving stiff systems of ODE’s. However, the class of DAE systems
also includes problems with properties that are very different from those of standard
ODE’s. Some of these problems cannot be solved using variable-stepsize stiff methods
such as backward differentiation formulas (BDF). Others can be solved using such
methods but only after substantial modifications to the strategies usually used in codes
implementing those methods. In this paper we explore the causes of the difficulties
and describe modifications which enable codes based on BDF to solve a wider
class of problems than were previously possible. Additionally, we suggest strategies
for detecting the problems which cannot be solved with this technique.

Several authors [1], [2], [3], [4], [5], [6], [7] have written codes designed to deal
with either DAE systems of the form

(1.1) F(t, y, y’) 0

or special cases of this general problem. These codes are based on a technique which
was introduced by Gear [1]. The idea of this technique is that the derivative y’(t) can
be approximated by a linear combination of the solution y(t) at the current mesh
point and at several previous mesh points. For example, y’(t) may be approximated
by BDF. The simplest method for solving differential/algebraic systems is the first
order BDF, or backward Euler method. In this method the derivative y’(tn/l) at time
tn/l is approximated by a backward difference of y(t), and the resulting system of
nonlinear equations is solved for y,/x,

(1.2) F(t.+, Yn+l, (Y.+- y.)/(t.+x- t.)) O.

In this way, the solution is advanced from time t. to time t.+l. In this report we will
assume that y(to) is known.
We investigate the behavior of the backward Euler method for solving systems of

the form (1.1) in detail because it is the simplest member of several classes of methods

* Received by the editors April 6, 1981, and in revised form October 23, 1981.
t Applied Mathematics Division, Sandia National Laboratories, Livermore, California 94550.
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which could conceivably be used for solving systems of the form (1.1). Even this
simple method exhibits several serious difficulties when used in attempting to solve
certain types of differential/algebraic problems.

All of the difficulties that we describe occur in solving simple linear problems.
These problems are much more easily understood than nonlinear problems, and we
hope that an understanding of the linear models will provide a plan for action in the
nonlinear case. It is likely that difficulties in solving nonlinear problems are at least
as great as for related linear problems. Thus, in the first few sections of this report
we will be concerned only with linear problems. Later sections examine how the
difficulties which occur in solving certain linear systems might also affect strategies
for solving the general nonlinear problem (1.1).

We summarize in 2 results of Sincovec et al. [2] on the decomposition of linear
differential/algebraic systems of the form

(1.3) Ey’=Ay+g(t)

into canonical subsystems and on the properties of solutions of these subsystems. The
structure of linear DAE systems can be characterized by a parameter m called the
nilpotency of the system. This is important because the type of numerical difficulties
which can be expected depends.on the nilpotency of the system to be solved. Standard
ODE systems have nilpotency m 0.

In 3 we describe the difficulties which arise in solving some of these canonical
subsystems using the backward Euler method with varying stepsizes. We find that
problems of nilpotency m _-< 2 can be solved by codes based on variable-stepsize BDF;
however, the usual error estimates which are proportional to the difference between
the predictor and the corrector are grossly inaccurate. Although the error in the
solution tends to zero as the current stepsize is reduced, these error estimates tend
to a positive nonzero limit. This causes codes using these estimates to fail unnecessarily
on many (m 2) systems. Unfortunately, the situation is much less hopeful for systems
of nilpotency m => 3, where varying the stepsize can lead to totally incorrect answers.
Worse yet, error estimates which have been proposed [2] or used [3] in some codes
would allow wrong answers to be computed for these problems, with absolutely no
warning. We know of no techniques for handling these (m => 3) problems which do
not destroy the structure and sparseness of systems written in the form (1.3).

The remainder of the paper is devoted to techniques for solving problems of
nilpotency m -< 2. New error estimates are derived in 4 which enable codes to solve
this extended (m-<2) class of problems reliably. In 5 we take up some practical
issues which are of importance in codes for solving nonlinear DAE systems. In
particular, strategies for deciding when the Newton iteration has converged and for
detecting problems of nilpotency m -> 3 (i.e., those which cannot be solved by variable-
step BDF) are discussed. We make some recommendations in those areas, but there
is still much work to be done.

2. Linear differential/algebraic systems. This section reviews the structure of
linear differential/algebraic systems and the properties of solutions of these systems.
The results discussed in this section are derived and explained in greater detail by
Sincovec et al. [2]. We summarize the main points here because they are necessary
background for the understanding of the remainder of this report.

The system we consider in this and the next section is

(2.1) Ey’= Ay + g(t), y(t0) y0.
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Gantmacher [8] has given a complete analysis of the general matrix pencil, A- hE,
where A and E are N xN matrices and A or E or both can be singular. The key
result in [8] and [2] is that there exist nonsingular matrices P and Q which reduce
the matrix pencil A-hE to a canonical form. When P and Q are applied to (2.1),
we obtain

(2.2) PEQQ-ly PAQO-ly + Pg(t).

System (2.2) is composed of five types of uncoupled canonical subsystems. Three of
the types correspond to cases where no solutions exist or infinitely many solutions
exist. It is not even reasonable to try to solve these problems numerically. Fortunately,
codes based on BDF reject these problems almost automatically, because the iteration
matrix E-hA, (where h is the stepsize and/3 is a scalar which depends on the
method and recent stepsize history) is singular for all values of h/3. The remaining
two types of canonical subsystems correspond to the case where A-hE is a regular
matrix pencil, that is, det (A-hE) is not identically zero. In [2], these systems are
called "solvable" because solutions to the differential/algebraic equation exist and
two solutions which share the same initial value must be identical. In what follows,
we will deal only with systems where the matrix pencil is regular.

For solvable systems (2.2) is equivalent to

(2.3a) y’(t)=Elya(t)+g(t), ya(t0) yl,0,

(2.3b) E2y(t) y2(t) + g2(t), y2(to) y2,o,

where

yl(t)1O-y(t)
[_y2(t)J’ Pg(t)=[g(t)j

and E. has the property that there exists an integer m such that E 0, E-1 # 0.
The value of m is defined to be the nilpotency of the system. The matrix Ee is always
composed of Jordan blocks of the form

0 1

0,1,.,,,.,,,,,,(2.4/

and m is the size of the largest of these blocks.
The behavior of numerical methods for solving standard ODE systems of the

form (2.3a) is well understood, and will not be elaborated upon here. Since the
subsystems are completely uncoupled and the methods we are interested in are linear,
it suffices for understanding (2.1) to study the action of numerical methods on
subsystems of the form (2.3b), where E2 is a single block of form (2.4). When E2 is
a matrix of form (2.4) and size n, the system (2.3b) will be referred to as a canonical
nonstate (m n) subsystem.

Let us now take a closer look at one of these canonical nonstate subsystems. For
example, the simplest (m 2) system is

(2.5) y& (t) y(t) + gl(t), 0 y2(t) + g2(t).
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This system has the solution

(2.6) yE(t) -g(t), y(t) -g(t)-g (t).

We will deal with this example repeatedly in this report. This system differs from
conventional ODE systems in several significant ways. First, note that the solution
depends on g (and its derivatives) at the current time only. That is, it does not depend
on the initial value or on the past history of g. Also, observe that the solution to (2.5)
depends on the derivative of gE(t). Thus, if gE(t) is differentiable but not continuously
differentiable, then yl(t) is discontinuous. Numerical methods have a great deal of
difficulty in dealing with this situation. In view of the obvious differences between
nonstate systems and state systems (standard ODE systems), it is not surprising that
methods designed to deal with standard ODE systems should experience so many
problems with the nonstate systems. In fact, what is surprising is that these methods
actually can solve some of the nonstate systems, as we will show later. For the general
nonstate canonical subsystem (2.3b) of nilpotency m, the solution is given by

m--1

(2.7) yE(t)=- Eg2i)(t),
i=O

and it is easy to see that this system shares the properties described above.
One other point to be made before we move on to numerical methods is that

differential/algebraic systems are very similar to stiff systems. For example, if e > 0
small, then

(2.8) (E eA)z’(t) Az(t) + g(t)

is a stiff system near to (2.1). Thus, we expect that if the underlying differential/alge-
braic system (e 0) has nilpotency rn _-> 2 many of the difficulties which are described
in this report should occur in problems like (2.8). Of course, the stiff system can be
solved using a small enough stepsize, but this may be very inefficient. We do not know
whether stiff problems with this structure occur very often in practice but when they
do most codes will have trouble solving them.

3. Discontinuities, errors and error estimates. This section describes several
problems which are likely to arise in solving certain linear differential/algebraic
systems. First we look at what happens when codes based on BDF with the usual
error control strategy are faced with problems of nilpotency m 2. Codes behave
rather strangely in these circumstances and may even fail because the error estimates
do not reflect the true behavior of the error. Later in this section we examine the
difficulties inherent in solving systems of nilpotency m _-> 3 and indicate why these
problems are not solvable by codes based on variable-stepsize BDF. For simplicity,
all of our examples use the backward Euler method and low order error estimates.
However, it is easy to see that the same types of difficulties occur for higher order
methods and higher order error estimates.

Our first example is a problem involving a discontinuity in the dependent variable.
This problem is not "solvable" since the solution is not defined at the point of the
discontinuity (though it exists and is unique everywhere else). However, it is easy to
generate such a problem without realizing it even with a differentiable input function.
Hence, we feel that a code should at least fail leaving some indication of the cause
of the difficulty on this type of problem. Furthermore, we find later that the difficulties
in solving this example problem occur in exactly the same way for continuous,
"solvable" systems.
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Consider solving the system

(3.1) Ey’=Ay+g(t).

Several unpleasant problems may occur if some derivative of g(t) is discontinuous.
First of all, recall from (2.7) that a discontinuity in a derivative of g(t) may lead to a
discontinuity in some component of y. If we were solving such a problem numerically,
we would hope that the code could find the discontinuity and pass over it or at least
would fail at the discontinuity. Instead, a code based on BDF with the usual error
control mechanism (error estimates proportional to the difference between the predic-
tor and the corrector) is likely to fail not on the step which spans the discontinuity
but on the subsequent step. This leaves us with little indication that the discontinuity
was the source of the difficulties. These problems occur even when using a one-step
method, which normally (for standard form ODE systems) we think of as having no
memory.

How can this happen? As an example, consider the problem

(3.2)
y(t) yl(t), 0= y2(t)-g(t),

where g(t) is given by g(t)=
0, 0

ct, >0"

Suppose yl -= y2 0 for t < 0 and that the error estimate (which we will use for accepting
or rejecting the step and for choosing the next stepsize) is proportional to
Now, take one step with the backward Euler method, assuming that tn-1 is the time
corresponding to the last accepted step to the left of zero (that is, assume tn-1 < 0,
t. > 0). Then, at time t. we obtain

g(t.)-g(t._l) ctn
y2.. =g(t)=ct., yl..

hn -h.’
where h. t t.-1. Now, as tn approaches zero, h. is bounded away from zero as long
as t-I < 0 is fixed. So the error estimate,

approaches zero as t. - 0 and for some t. > 0 the step is accepted.
There is already a problem at this point as y 1.. is in error by y1..- yl(t.)=

ct./h. -c c (1 t./h.) so that unless either tn-1 or t. is exactly zero, we can construct
problems (by choosing c large enough) for which the error in YI.. is arbitrarily large
but the step is accepted. However, this is not as bad as it may at first seem because
for t. 0/ we get y. 0, which is the correct solution for a nearby time (a time less
than zero).

Since the step to tn is accepted for some t. > 0, t.-1 < 0, the code will continue,
taking another step to t/l,

Y2,n+l--g(tn+l)--Ctn+l, Yl,n+l
g(t.+l)-g(tn)

hn+l
These solutions are exactly correct (we can expect this to happen only for linear
systems with nilpotency m equal to 2), but the error estimate is

c(1-t./h.)

chn+
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The first component of this error estimate is independent of hn+l so that we cannot
make the estimate as small as we want by reducing h,/l. Thus, for large enough c,
the code will fail on this step--even though the solution is exactly correct.

We can get a better understanding of the cause of this problem with the error
estimates by observing what happens graphically. Figure 3.1 shows g(t).

91t)

[’n fLn+l

tn_ n+

FIG. 3.1

Let L, be the line joining g(t-l) and g(t). The numerical solution yl. is the
slope of the secant line L,. At the time when we are trying to compute y,/l, this line
is fixed because the step from t,-1 to t has been accepted. The solution for yl./ is
the slope of the line L.+I between g(t.) and g(t.+l). But as tn+l--> t. (when the code
is reducing the stepsize h.+l to try to obtain a smaller error estimate), this line (L.+a)
approaches the tangent of g at t.. Unless g is linear, the slope of the tangent at t. is
not the same as the slope of the secant from t.-1 to t.. If the difference between these
two slopes is bigger than the error estimate, then the code will fail on this step. In
any case, error estimates based on the difference between the predictor and the
corrector fail to. reflect the true magnitude of the error for this problem. Recall that
the predictor is just a polynomial extrapolating through past values of the solution,
so that the predictor gets arbitrarily close to the most recent solution value as h.+x -> 0,
and these estimates behave qualitatively in the same way as the simpler estimates we
have been considering.

It is easily seen that these difficulties with the error estimate are not limited to
problems whose solutions are discontinuous. For example, consider solving the same
problem as before except with g(t) given in Fig. 3.2.

glt)
Ln_ Ln

Ln+

tn-2 tn_l n tn+l

FIG. 3.2

This problem has a steep gradient. Since the slope of Ln-1 is not much different from
the slope of L,, the step to t, is accepted. But in the next step, the slope is much
different, and we cannot close the gap because the new slope (of L,/) just gets nearer
and nearer to the slope of the tangent at t,. Since the slope of the tangent is far from
the slope of L,, the code fails on this step.
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We conclude that 1) in general, for systems of the form (3.1), the difference
between the predictor and the corrector does not approach zero as the current stepsize
approaches zero and 2) codes using error .estimates based on this difference may fail
on problems with steep gradients, and these error estimates seem to bear little
resemblance to the errors which are actually incurred for some DAE systems.

Are the problems described above due to poor error estimates or is there some
fundamental problem with using backward Euler with varying stepsizes for solving
linear DAE systems with nilpotency m _->2? (To save writing these will be called
(m _->2) systems.) To gain a better understanding of the source of this problem, we
take a closer look at the errors at each step compared with the error estimates.

Suppose we are starting with initial values at tn equal to the exact solution. Then
what is the error after one step in solving (3.1) with backward Euler? Taking one
step, we obtain

(3.3) EIY’+I-Y"//\ Ay,,+ + g(t+l).
\ h+

If y(t,+l) is the true solution to (3.1) at time tn+l, then we have

h2+,1(3.4) y(t.+:)=y(t.)+h.+y(t+)+ y"(),

where tn _<- -< tn/l. Substituting (3.4) for y’(tn/l) in (3.1), we obtain

(3.5)
n+ly(t,+l) y(t,)

hE

E
2 Y"(:)=Ay(t,+)+g(t,+).

h+
Now, subtracting (3.5) from (3.3), if e,+ yn/l-y(t+l),

(3.6)

or, rewriting,

(3.7)

+h2+l y"(j)
Aen+l,

e,,+ (E hn+A)-Ee, (E h+IA)-E .h 2
e y"(:).

Now, (3.7) says that the error after one step, starting from exact initial values (so that
e0 0) is

(3.8) el -(U-h,+lA)-U(h+)2
Y"()"

There are several consequences of this simple expression. For example, for the (m 2)
problem (3.2), we have

and

(E-h,+IA)-XE=[00 -I/h,,+1]0
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so that the error after one step is

"(c)/2](3.9) e
0

We observe from (3.9) that the error is O(h,+l) not O(h2,/1), and that it depends
on y (t) and not y (t). Thus, if we had a good estimate for y", then the usual error
estimate based on (hZ/l/2)y would be asymptotically a gross underestimate. The
term (E-h,/lA)-IE(h2/a/2)y"() is in a sense the local contribution to the global
error. Notice that we cannot really define a local error in the usual way as
where u(x,)= y,, because there may not be a solution passing through y,.

The situation for (m 2) nonstate subsystems is obviously enough to wreak havoc
with any stepsize selection algorithm which assumes that errors are O(hk+a), where
k is the order of the method. Furthermore, the usual error estimates can cause a code
to do very strange things when g(t) has a steep gradient. Despite all of this, the
situation is not at all without hope. The error in y,+l at any step can be reduced by
reducing h,/l, (recall, however, that the difference between the predictor and corrector
is not reduced) so that in principle, if we knew how to adjust the stepsize, the error
in y,+l could be controlled by locally adjusting h,/l. In the next section, we will find
error estimates which can accomplish this task.

Unfortunately, there are several even more severe problems in solving systems
with nilpotency rn => 3. For the (m 3) system

(3.10)

we have

and

yz(t)’ yl(t), y(t) y:(t), 0= y3(t)-g(t),

(E-h.+IA)-IE=Ii -1/h.+1 l/h]+11
0
0 j

n+l

2
Y"(:)=

2
Lg"()_l

so that the error in y after one step starting from the exact solution is

g"(:) h,+l ,,,. \
+2 g

/

Restating this, we cannot choose h,/l small enough so that the error in the solution
after one step starting from exact initial values is small. This poses a very difficult
problem in finding initial values for m -> 3 systems, if even the exact solution will not
do.

This observation seems to conflict with a theorem proved in [2]. Of course, it is
not really a conflict but only appears that way because these results are not nearly as
strong as what we are accustomed to for standard ODE’s. The theorem states that
the backward Euler method and k-step BDF converge to the analytic solution of the
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system (3.1). Furthermore, it is stated that the error in solving nonstate subsystems
with the k-step method is O(h k), where h is the stepsize. How can the method converge
when the error after the first step is independent of h .9 We must be very careful about
interpreting the qualifications on this theorem. The convergence, at least for systems
where m_>-3, starting from the exact solution, only applies to the solution at the
endpoint of some fixed interval of integration. This is because the first m- 2 solution
values contain errors which do not become arbitrarily small when h is decreased. The
results at later steps depend only on the function g(t) at past steps and not on the
initial values so that the solution converges in any interval bounded away from the
initial time. The theorem is only true for linear systems, and for these systems, this
behavior may be tolerable if we have anticipated it. However, this is a very serious
problem if what we are really trying to solve is a nonlinear system. In that case, large
errors in the first few steps may persist throughout the entire interval.

The other qualification on the theorem is that it is only true for constant stepsizes.
We can see this by applying backward Euler to the m 3 system (3.9),

(3.12)

Y3,n+l=g(tn+l),

Y2,n+l (g(tn+)-g(tn))/hn+l,

((g(tn+l)-g(t,)) (g(t,)-g(t,_l).))/hYl,n+l
hn+a h, +1"

Now if hn+l hn h, then yl,,+a is given by (V2g/h 2) which converges to g" as h 0
as the theorem predicts. When hn+x 7 hn we might hope that Yl,n+X would be given
by the divided difference 2[g,+1, g,,, g-a], where

gn+a-g, g,-g-I

h+(3.13) 2[g,+l,g,,g,_]
h+ + h,

2

but the method fails to pick up these differences correctly. The error in the approxima-
tion to ya.,+l which is caused by changing the stepsize has the form 1/2(1 h/hn+)g"() +
O(h,+x). This term becomes arbitrarily large as h+l O (h, fixed). If we were very
careful to select stepsizes so that h+l= h,(l+O(hn)), then this problem could be
avoided. However, this seems to be very difficult to accomplish in a practical code
and sequences of stepsizes would have to satisfy even more stringent restrictions for
systems with m > 3.

We have tried to illustrate in this section that while the BDF can, in principle,
solve (3.1) (via the theorem [2]), there are a great many qualifications to this statement
which can cause serious difficulties in any kind of a practical code. At present, we
know of no way to adequately handle (3.1) when m => 3 subsystems are present. The
most serious problems seem to be in starting the code and in changing stepsize. The
remainder of this paper will be concerned with handling (m _-< 2) systems and related
nonlinear problems and detecting the other problems that codes based on methods
such as BDF cannot solve.

4. Error estimation. In this section we examine several potential candidates for
error estimates for differential/algebraic systems. Our aim is to find an estimate which
accurately reflects the behavior of the error for linear (m _<-2) systems. Additionally,
we hope to detect (m => 3) systems which cannot be solved accurately using BDF with
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varying stepsizes and to give an accurate indication of why the code fails to solve
these problems.

Several different approaches to error estimation for DAE systems have been
reported in the literature. Gear and Brown [3] solve systems of the form

(4.1) f(t, y, y’) + Pv O,

where y and y’ are of length p, v is of length q-p, P is a qx(q-p) matrix and f is a
vector function of length q. A close look at their code [3] reveals that there is no
attempt to estimate errors in v. In some respects this makes sense as v is completely
determined by y on every step so that errors in v do not cause errors in y. If for some
reason we are actually interested in the values of v, we must understand that they
may contain very large errors. For example, the (m 3) system (3.9) may be rewritten
in the form (4.1), with v yx, z -y2, Z2 "-Y3, as

z’x-v=O, Z’z-z=O, z2-g(t)=O,

and error control is not attempted on v (on y x). But this is exactly the component
that exhibits arbitrarily large errors after a change of stepsize. Also, if we should fail
to realize that yl occurs linearly, then the behavior of the code is very different.

Recently, a different approach to error control was proposed by Sincovec et al.
[2] for linear DAE systems. They observed that errors in nonstate components
(subsystem (2.3b)) have a different asymptotic behavior than errors in state components
(subsystems (2.3a)) so that stepsize selection schemes which assume a certain
asymptotic behavior of the error would have difficulty in controlling the errors in
these components. In addition, errors in nonstate components affect the solution only
locally, and are not propagated globally to state components. As a consequence, they
proposed to "filter out" the part of the error estimate that corresponds to the nonstate
solution components. This is accomplished by monitoring a projection of the usual
error estimate, where the new estimate is given by

(4.2) e.* IIMc., (y c,, y")ll.

Here y, is the final corrected value of y at the end of a step, y" is the predicted value
of y and cn,k is a constant depending on the method and recent stepsize history of the
integration. (Note that is the error estimate which is generally used in
ODE codes.) M is called the canonical state variable projection matrix and is given by

(4.3) M=limM(h,]),
h-0

where M(h, ])= ((E-hA)-IE)i, where ] is greater than or equal to the nilpotency of
the system.

It is shown in [2] that this error estimate has the effect of filtering out that part
of (yC y,) which is associated with nonstate variables (if the system were transformed
to canonical form), without the expensive operations of transforming the system into
canonical form. It is convenient because LU decompositions of the matrices (E- hA)
are always available (for h the current stepsize) because that is the iteration matrix
for the Newton iteration. It is somewhat inconvenient in that it is hard to find out
what the nilpotency of the system is, and we wonder what to do about systems which
are "almost" nilpotent.

Unfortunately, there is one very bad defect in this filtered error estimation scheme
and, indeed, in nearly any scheme which fails to control the errors in certain com-
ponents of the solution. With this particular scheme we can, for example, "solve" any
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(rn-> 3) system, the stepsize being chosen to control errors in the state components
of the system. However, as we have already seen, this can be very misleading because
large errors are introduced into some components of the solution whenever the stepsize
is changed.

The examples that we have given show that it is a very dangerous practice not
to control errors in some components of the solution. The only possible circumstances
under which we feel this could be done safely are if 1) we are not interested in the
value of that component, and we are sure that errors in that component cannot be
propagated into any other component later in the integration, or 2) if we are sure
that no errors are being made in that component. For example, if in solving (4.1) we
are not interested in the value of v, then it is safe to omit those variables from the
error control.

We have already noted the similarities between stiff systems and differential/alge-
braic systems. It is natural to look at error estimation schemes proposed for stiff
equations. Curtis [7] noted that for a single linear ODE, y’=-A(y-f(t))+f’(t)
end-step errors are smaller than the usual error estimate by a factor 1/Ah, where -A
is the eigenvalue of the Jacobian matrix and h the step size. When A is large, this
problem is very nearly the same as the (m 1) algebraic system y =f(t), which we
solve exactly on every step. On the other hand, we saw in 3 that for some problems,
the usual error estimate can severely underestimate the error.

Sacks-Davis [9] noted that for stiff problems, the usual error estimate based on
the difference between the predictor and the corrector overestimates the true error.
He suggests error estimates for second derivative methods which are asymptotically
correct as h--> 0, and are reliable and efficient for very stiff problems. The estimates
have the form

(4.4)

where Wn is the iteration matrix for the second derivative method.
If we examine an estimate similar to (4.4) for BDF, where Wn is the iteration

matrix for the kth order BDF, then it is easy to see that e,** from (4.4) is the same
as the estimate (4.2), if m 1 and M(h,/l, 1) is used in place of M and if the matrix
E in (3.1) is nonsingular. We also note from (3.7) that the local contribution to the
global error for the backward Euler method is

s (E hA)-iE h 2- y"(’).

Because of these observations, we are led to try the estimate

(4.5) e, [I(E ,.kh,A)-IEC,.k (y, y)ll,

where n,k and C,,k are constants depending on the method used and possibly on the
recent stepsize history. For a standard-form ODE, (4.5) is asymptotically equivalent
to the usual estimate, so that the question we must answer is how well
the estimate performs on the nonstate and/or stiff components of a system.

On first glance the estimate (4.5) might seem to contradict statements that were
made earlier, as this estimate does not "control the error" in algebraic (m 1)
subsystems. These subsystems have the form y(t)=f(t), and they are solved by the
method exactly (apart from errors due to terminating the Newton iteration, which are
discussed in the next section), so this strategy is not unreasonable. A problem with
(4.5) is that if a code interpolates to find the solution at user-specified output points
then this estimate does not control the error in the interpolation. These errors seem
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to go to zero as the stepsizes get smaller and smaller, but we know of no way to
explicitly control them without incurring at the same time all of the problems mentioned
in3.

How accurately does the estimate (4.5) reflect the error for (rn 2) nonstate
subsystems? From (3.7), we can see that for backward Euler (4.5) accurately estimates
the local contribution to the global error as long as y"(:) can be found accurately.
Actually, for the canonical (m 2) nonstate subsystems (3.2), we have

so that only y () is involved in the estimate. This is the second derivative of the
input function g(t), and it can be estimated reasonably well by a divided difference
of g(t), so that the estimate (4.5) works. It is fortunate that the estimate does not
make use of y f (), because difficulties in obtaining this term were in part responsible
for the problems discussed in 3. One other point we make is that for a (m 2)
subsystem the local contribution to the global error is the global error (neglecting
roundott and errors due to terminating the Newton iteration early). This happens
because, from (2.3b), the nonstate subsystems can.be written in the form

EEy’=y+g(t),

where E2 0 and then, from (3.7),

en+l (E2- hn+lI)-lE2en + (E2- hn+iI)-lEa’tn+,
where ’r+l (hE+l/2)y"(sc). Rewriting this, we obtain

e+ (E2 h+lI)-EE(E2 h,I)-EE[en_l + ,r + (E2 h+II)-EE’t+ 1,

but the matrix (E2-hn+lI)-lE2(E2 hnI)-lE2 is identically zero for this case so that

en+l (E2- hn+lI)-IE2’rn+.

(4.6)

or, rewriting,

(4.7)

It is easy to verify that the estimate (4.5) also accurately reflects the behavior of the
error for all of the BDF for (m <_-2) systems. In general, the kth order BDF approxi-
mates h.+ ly’,, k

+a byo a,.+y.+a,, where a,.+a depend on the order and recent stepsize
history, so that y.+ satisfies

E ai.+y,+l-i h,+Ay,+l + h,,+g(t,+),

k

(Ceo,n+lE- hn+lA)yn+l -E ai,n+lYn+l-i + hn+lEgn+l.

Now, if ’+ is defined by

k

(4.8) ’l’n+l hn+ly’(tn+l)-2 Cei,n+y(tn+--i)
0

(,r,+ is usually called the local truncation error of the method), then

k

(4.9) (Ceo,+IE-hn+A)y(tn+) -E 2 Cl,,+y(tn+-i) + h+lEgn+l-E+.

Subtracting (4.9) from (4.7), we have, if e. y.-y(t.),
k

(4.10) en+l (ao,,+E-h,+A)-E , ai,n+len+l-i +(ao,n+lE-hn+lA)-lE’rn+l
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so that (ao.,+lE-h,,+lA)-lE’rn+l is the local contribution to the global error for
variable-stepsize BDF, and this has the same form as the estimate (4.5).

Since *n+i is the local truncation error of a variable-stepsize BDF, it depends on
the recent stepsize history of the computation. For example, for a variable-step 2nd
order BDF,
(4.11) [[’r,+[I--< h2,,+ (hn+x + hn)lly(k+x)()[[.

3Thus, the error as h,+O (h, fixed) has the form O(h]+), not O(hn+l). It is
important when using this error estimate to get this dependence correctly. If we instead
assume (as is done in some methods which change the stepsize via interpolation [3],
[5], [6]) that the error depends on the current stepsize as 0(h3+1), this can cause the
code to severely underestimate the error when the solution is just beginning to change
rapidly. This is a particular problem for (m _-> 3) nonstate subsystems, where the error
does not go to zero as hn+x 0 (hn fixed), and the error estimate is given by (for m 3)

0 1/hn+l 1/hn+l
(4.12)

0 0 0

If we had taken "r,/l O(h/), then the error estimate would become smaller
as h/l decreases and we would be led to believe that errors were under control,
when in reality there is a large error in the first component. It is especially important
for DAE systems and the error estimate (4.5) to use the actual (variable stepsize)
principal term of the local truncation error in the error estimate rather than an
approximation which assumes that the last k steps were taken with a constant stepsize.

In summary, the error estimate (4.5) seems to be a useful alternative to the usual
estimates based on a difference between the predictor and the corrector. It reflects
the behavior of the error more accurately than the usual error estimate and overcomes
many of the difficulties mentioned in 3 for systems containing (m 2) nonstate
subsystems. Use of this estimate enables codes based on BDF to solve a wider class
of problems. The estimate is easily generalized to nonlinear problems. While we have
no theory to support this generalization, it seems to have worked well in our experience.

5. Practical issues. It is evident from the problems mentioned in 3 that DAE
systems are in many respects very different from ODE systems. With this in mind, it
is not unreasonable to expect that codes for solving the two types of problems must
be different in some respects. In this section we question several strategies used in
ODE codes which one might be tempted to carry over to DAE codes to discover
whether or not they are applicable to these more general problems.

Codes for solving stiff and differential/algebraic systems generally use a modified
Newton iteration to solve an implicit equation for yn/ at each step. For example, in
solving

(5.1) Ey’=Ay+g(t)

with backward Euler, there is an implicit equation

E(Y+I-Y)(5.2)
\ nnl Ayn+l+g(tn+l)

which is solved for y/l at each step.
We will use the linear problem (5.1) as a model, though it is really the more

general nonlinear problem (1.1) that we wish to gain some intuition about. Linear
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problems are, of course, much easier to solve because Newton’s method converges
in one iteration if the exact iteration matrix is used. We consider situations where the
iteration matrix is not exact to learn more about how to handle nonlinear problems
because these problems are much harder to understand.

Now suppose (5.2) is solved by a modified Newton iteration,
(k)

)./) .)(5 3) oVn+l =:y,+-J- E -f_ -Ay+l-g(t+l)

where J is an approximation to the matrix (E/h,+l- A) (J may have been computed
in some previous step). Several decisions must be made in implementing (5.3). For
example, how should we decide when the iteration has converged? If the iteration is
not converging, what action should be taken? If it appears that we cannot make the
iteration converge, can we discover the problem? We take up these questions here.

In deciding when to terminate the corrector iteration, our main consideration is
that the error introduced by terminating this iteration early is small relative to errors
due to the difference approximation to y’ and that these errors do not affect the error
estimates appreciably. Suppose then that + is the error in y,+l due to terminating
the corrector iteration early. That is, if ,+x is the exact solution to the difference
equation and Yn+l n+X is the solution accepted after M iterations, then +1
y,+1+8,+. Then from (5.2),

(5.4) E(yn+l- y" "+.) A (y,+t +
hn+l

The exact solution y(t) satisfies

(5.5) ((n+l)--(tn)+n+.) A(t+x) + g(tn+i)

Subtracting (5.5) from (5.4), the global error e -(t) satisfies
(5.6) e+ (E-h+A)-Ee +

and, rewriting,

e+ (E- h+A)-E(E-hA)-E(e_+)
(E- h+lA)-Eg + (E-h+A)-E+ g+.

We know from ODE theory that for the state variables in the system (2.3a) errors
are not amplified greatly from step to step by the BDF and it is sucient to control
g+. Our main concern is what happens to this error for nonstate (m 1 and m 2)
subsystems.

For (m 1) subsystems it is logical to.control the error in+ (that is, to control
g+), as E 0 in this case, so that en+l gn+l and g+ is the only error. For a (m 2)
nonstate subsystem, the situation is not quite so clear. Let us look at the (m 2)
canonical subsystem (2.5). In this case, the matrix (E-h+A)-E(E-hA)-E is
identically zero so that the contribution to the global error due to terminating the
iteration early is given by

_(E_h+A)_Eg_g+, where(E_h+A)_E=[ -1/h+]0

Since y is approximated by a backward difference, ,+ (Y,n+l--y,)/h+,
then an error in y, is amplified by 1/(h.) in
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If we are only interested in iteration error as it relates to the error estimates of
4, then this .does not matter as Yl.n+l does not enter into the error estimate so we

should control 8n+1. That is, terminate the iteration when

(5.9) l[+lll ,
where e is a constant depending on the error tolerances requested. On the other
hand, for the purposes of controlling the error in yl, we should control 8n+1 so that

(5.10) I1,/11 h,/,

because the error may be amplified by 1/hn+l on the next step. (Though we do not
know in advance what the stepsize for the next step will be, we assume it will be the
same order of magnitude as the current stepsize.) Starner [6] uses this test in his code
though apparently for different reasons. The test (5.10) has the apparent disadvantage
that it is not independent of scaling of the independent variable in the system; however,
note also that any scaling of this type also scales y. For these reasons, it is somewhat
unclear whether to use (5.9) or (5.10), but there seem to be several good reasons for
choosing (5.10). Shampine 10] discusses ways to bound [18+ 1[I based on the differences
between iterates, so that finding a bound for this number is not a big problem.

What if the corrector iteration fails to converge (assuming that the iteration matrix
is current)? There are several reasons why our answer to this question might be
different for a DAE code than for a code aimed at ODE’s in standard form. Generally,
the strategy taken in ODE codes is to reduce the stepsize when the iteration fails to
converge. There are two reasons why this works. First, as we reduce the stepsize, the
prediction gets to be a better and better initial guess for the Newton iteration. Second,
the iteration matrix for a standard-form ODE y’=f(t, y) is (I-hOF/Oy), and this
matrix tends towards the identity as the stepsize h is reduced. This is fortunate,
because the identity matrix is very well conditioned so that errors in OF/Oy and in
solving the linear systems affect the solution less and less as h is reduced.

The situation with differential/algebraic systems is not quite as desirable. As we
have seen, the difference between the predictor and the corrector does not tend to
zero as hn+x-- O. Thus, the initial guess may not get better with decreasing hn+x. For
these systems the iteration matrix (OF/Oy’-hflOF/Oy) looks like OF/Oy’ as h 0. In
general, OF/Oy’ may be singular, so that as hn+l 0 the iteration matrix becomes more
and more poorly conditioned. This is very troublesome for some systems, where for
small enough h roundoff from solving a poorly conditioned linear system causes the
corrector iteration to diverge. We are not yet certain about the proper way to handle
these problems, but the following alternatives to the usual strategy seem to be worth
considering. Instead of decreasing hn/l when the iteration fails to converge, we could
instead use a more robust iteration procedure (for example, damped Newton) or,
because for at least some component a better initial guess could be obtained by
reducing hn+l, we could try reducing h,+, and if this doesn’t help (if after reducing
h,/ several times, the initial guess is not much better), then switch to a more robust
iteration scheme.

It is possible that the corrector iteration fails to converge despite all of our actions
to try to help it. There are a great many more possibilities for the cause of this problem
with a DAE system than there are for an ODE system. For an ODE system, we
generally assume that this problem is caused by a very poor approximation to the
Jacobian matrix. For a DAE system, it could be that we could not get a good initial
guess or, maybe, the system contains a (m _->3) nonstate subsystem, and the initial
guesses are actually diverging from the true solution to the corrector equation. The
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iteration may be diverging because the iteration matrix is very poorly conditioned, or
the iteration matrix may be a very poor approximation to the Jacobian matrix because
of errors in numerical differencing.

Given that all of the above situations are possible, our hope is to be able to
diagnose at least some of these possibilities. Let us consider, for example, what happens
when a code encounters a system with a (m -> 3) nonstate subsystem. For a linear or
nearly linear problem where corrector convergence presents minimal difficulties, the
usual response is for the stepsize to be reduced several times to try to satisfy the error
test. Eventually, since the error test will never be satisfied, the stepsize is reduced to
the point where the corrector iteration begins to diverge because the iteration matrix
is very poorly conditioned. If we see this situation (the error test fails several timesuand
the error estimate is not reduced very much when h,/l is reduced and then the
corrector iteration fails to converge), then it is likely that the cause of the difficulty
is this type of problem.

It is possible to use linear algebra routines [11] for solving the linear system
which automatically generate an estimate of the condition number of the iteration
matrix. This is expensive, especially for banded systems, but it may be worthwhile for
differential/algebraic systems because this situation can happen so easily and if it is
the cause of the difficulty, then the last thing we would want to do would be to reduce
the stepsize.

One problem that we have not discussed very much here is that of finding a set
of consistent initial conditions and an initial stepsize which reflects the scaling of the
problem. We will not attempt to solve these problems here, but we will indicat why
these problems are even more difficult than they may at first seem. From 3, we know
that for (m->3) nonstate subsystems, even the simplest numerical methods with
constant stepsizes fail to give correct answers if they are started with the exact solution.
Even restricting ourselves to problems which do not contain these subsystems, for
nonlinear systems this is still a very difficult problem. From a practical point of view,
even with a set of initial conditions and derivatives, we must be very careful about
selecting the initial stepsize. If this stepsize is too small, we may fail to solve the
problem because the iteration matrix is very poorly conditioned, even though the
problem might have been solved successfully given a better (larger) choice of initial
stepsize.

A final point which is of practical interest is the cost of computing the error
estimate (4.5) and the information that we need to do this. If we restrict ourselves to
systems of the form

(5.11) B(t, y)y’-f(t, y)=F(t, y, y’)=0

(where y’ appears only linearly), we can avoid computing, storing, and multiplying by
the matrixE OF/Oy’. (Note that if the iteration matrix (F/y hF/Oy’) is computed
by numerical differencing each column can be computed using only one increment,
as we are really finding (O/y,+)F(t,+, yn+(y,+-y,)/h+) instead of finding two
separate matrices OF/Oy and OF/Oy’, and adding them together. If this is done, then
finding F/Oy’ separately is approximately twice as much work.) This can be done by
requiring the user of the code to supply two separate routines. One routine computes
B(t, y)y’ given (t, y, y’)uthat is, only those terms in (5.11) that involve y’. The other
routine computes the full residual B(t, y)y’-f(t, y), given (t, y, y’). (Alternatively, one
routine which computes either of these possibilities, depending on the value of a flag,
could be used.) The first routine can be used to compute E(y-y) in the error
estimate (4.5) given (y- y) in place of y’. In many ways this seems to be a simpler
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interface and requires less storage than others that have been used for these problems.
For example, Hindmarsh and Painter [5] solve problems of the form (5.11), requiring
the user to supply routines to compute F, and to add B to a given matrix. With our
suggestion, instead of having to find the matrix B(t, y) and add it to a given matrix,
the user of the code need only distinguish those terms of (5.11) that involve y’.

Obviously, we do not have answers to all the questions which have been discussed
in this section. These seem to be difficulties which have been neglected in the literature.
We feel that anyone who is seriously writing a code for solving DAE systems or using
such a code should at least be aware of these difficulties.

6. Summary. In this paper we have considered some of the many difficulties
which can occur in solving differential/algebraic systems. The behavior of numerical
methods applied to these systems differs from what we would expect based on
experience from solving ODE’s in several important ways. For linear systems of
nilpotency m _-<2, we have noted that the basic algorithms (BDF) which are in use
will work, in the sense that as long as stepsizes and orders are chosen so that the
method is stable (Gear-Tu [12], Gear-Watanabe [13]) then the computed solution
converges to the true solution as the maximum stepsize approaches zero. Error
estimates based on the difference between the predictor and the corrector may be
grossly inaccurate for these systems and can even cause codes to fail unnecessarily.
To overcome these difficulties, we have suggested an error estimate which would more
accurately estimate errors for these problems and would eliminate the other difficulties
associated with the usual estimates. With the new error estimates, and possibly some
changes to other strategies used in ODE codes, we believe that the algorithms (such
as variable-stepsize BDF) which have been used in codes for solving differential/alge-
braic systems in the past could be used to solve DAE systems where solutions behave
similarly to solutions of linear problems with nilpotency m <- 2, and possibly to diagnose
other problems which cannot be solved with these algorithms. This is a significant
improvement over past codes which could not deal adequately with problems of
nilpotency rn 2.

On the other hand, we have also foand that none of the algorithms such as BDF
are adequate for solving (with varying stepsizes chosen automatically by a code)
problems with nilpotency m _-> 3. One alarming fact that has come into focus is that
some error estimation schemes which have been proposed [2] or used [3] in other
codes, would allow wrong answers to be computed for some variables, with absolutely
no warning. For these types of systems, the solution does not converge (except under
very severe restrictions on how fast the stepsize can change) as the maximum stepsize
approaches zero. Instead, large errors may be introduced into the solution whenever
the stepsize is changed. Because of this situation, it is wise to use extreme caution in
any attempt to avoid controlling error in certain components of the solution of any
differential/algebraic system. Finding initial conditions for these problems seems to
be extremely difficult because even if we start with initial conditions equal to the exact
solution, the solution in the first few steps may be grossly in error. While this may
not be fatal for a linear problem, because later the approximation will converge to
the true solution, for a nonlinear problem it could be disastrous.

It is well known that some ditterential/algebriac systems can be thought of as
limiting cases of stiff systems (as the stiffness becomes infinite). We have constructed
several of these problems and our tests confirm that codes based on BDF exhibit
many of the difficulties that we have described here. In particular, for these problems
the usual error estimates are very unsatisfactory, especially when the stepsize changes.
This tends to cause the stepsize to be reduced until hL (where L is the Lipschitz
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constant for the problem) is small. We do not know if this occurs very often in stiff
problems which are of interest, but it may be a point worth considering in the design
of stiff codes and algorithms.
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ERRATUM: SPLINE INTERPOLATION AND SMOOTHING
ON THE SPHERE*

GRACE WAHBA,

Table 1 contains several misprints in lines q [6], q [7] and q [8]. The correct
table appears below.

TABLE

q,,(z) fo (1-h)"(1-2hz +h2)-1/2 dh, m =0, 1,..., 10.

Key. q[m]=q,,,(z), A=ln(l+lx//), C=2x/, W=(1-z)/2

q[O];

qtt);
2AU-CI

q[2];
2

A (12 U 4 U) 6 C U 6 U

2

q[3];
3 2 2 2

(60 tl 36 U 30 U C (8 U 30 M 3 U *

:3

q[4];

4 3 2 3 2 3 2
(840 U 720 II 72 U 420 U C (220 U 420 It 150 U 4 U 3

5 4 3 4
(7560 5/ 8400 U 1800 51 3780 O

4 3 2 3 2
C (- 3760 II 2940 U 256 U 2310 U 60 U 5 O 6)/30

q[6];
6 5 4 3 5

(A (27720 U 37600 O 12600 U 600 U 13860 O

$ 4 3 4 3 2
C (- 13860 O 14260 V 2772 O 11970 U 1470 U 15 U 3 g + $9

/30

* This Journal, 2 (1981), pp. 5-16.
5" Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706.
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? 6 5 4 6
(360360 U 582120 U / 264600 U -29400 U 180190 U

6 5 4 3 5 4

* C (- 180180 U / 231000 U 71316 U + 3072 U )- 200970 II + 46830 U

3 2
525 iJ 21 U 7 U 15)/105

q[e:l;
8 7 6 5 4

(10810800 U 20180160 U / 11642400 U 2116600 U 56800 U

7 ? 6 4
5405400 U C (- 5405400 U 8266280 U 3538920 I,/ / 363816 I/ )

6 5 4 3 2
7387360 g 2577960 il 159810 U 840 U 84 U 40 U 105)/940

q[9];
9 9 7 6 5

(A (61261200 U 129729600 U 90810720 U 23284800 U / 1587600 51

9 9 7 6
30630600 U C (- 30630600 g + 54654600 U 29909880 I,J / 5104440

4 7 6 5 4 3
131072 U 49549500 H 23193160 U 2903670 U / 17640 t,i 420 U

2
* 72 U 45 U / 140)/1260

10 9 9 7
(A (232792560 U 551350600 U + 454053600 U 151351200 U

6 5 9
17463600 U 317520 U 116396280 U

9 9 7 6 5

’ C (- 116396280 II / 236976640 g 159414256 g / 39507040 U 2462680 g

8 7 6 5 4 3
217477260 IJ 127997660 U 24954930 U 930006 U + 2940 U 180 U

2
45 g 35 U 126)11260
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THEORETICAL AND PRACTICAL ASPECTS
OF A MULTIGRID METHOD*

P. WESSELINGt

Abstract. A multigrid method is described. A novel item is the use of incomplete LU decomposition
for smoothing. Numerical experiments show that its speed and robustness compare favorably with other
multigrid methods. A fairly simple rate of convergence proof is presented.

Key words, multigrid methods, numerical methods for elliptic equations

1. Introduction. A multigrid method will be presented. Numerical experiments
show that this method is faster than other multigrid methods for which numerical
experiments had been reported in sufficient detail when this paper was written (Brandt
(1977), Hackbusch (1978), Nicolaides (1979)). The method to be described is also
robust in the sense that it does not need to be adapted to the problem at hand, does
not require "tuning", and converges fast for a large variety of problems.

A difficulty with the development of multigrid methods is that there are many
ways in which the basic ideas underlying these methods can be implemented. The
way in which this is done has great influence on the speed and robustness of the
method obtained. In order to justify as far as possible some of the choices made here
(notably, incomplete LU smoothing and Galerkin approximation on coarser grids)
some theoretical background material will be presented, including a rate of conver-
gence proof, and some comparative experiments are described.

It is assumed that the reader has some familiarity with multigrid methods (cf.
Brandt (1977)).

2. Description of the method. The method to be presented is used to solve the
algebraic system that results from finite difference approximation of the following
elliptic partial differential equation, denoted in Cartesian tensor notation as follows:

(2.1) (aiju,i),j (biu ),i + cu f,

with aii, b, c, f and u functions of two variables xl, x2 with (xl, x2)s fl (0, 1) (0, 1).
A computational grid fl and a corresponding set of grid functions U are defined

by

(2.2) D,t =- {(x, x2)[xi mi 2-t, mi O(1)2t}, U {u [ "-> [}.

Equation (2.1) is approximated by a finite difference scheme, for example,

(2.3) (ViajA+ 1/2(VaaV)u + a)(bu +cu =f,
with u t, fl UI. The operators V and A are backward and forward difference operators
in the x-direction. In singular perturbation problems one may wish to approximate
bui by one-sided differences; this does not affect the performance of the multigrid
method to be described. The linear algebraic system to which the difference scheme
together with the (as yet unspecified) boundary conditions give rise will be denoted by

(2.4) A

with A

* Received by the editors October 30, 1980.
f Department of Mathematics, Delft University of Technology, Julianalaan 132, Delft,

the Netherlands.
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The multigrid method makes use of a hierarchy of computational grids l-Ik and
corresponding sets of grid functions Uk, k 1 1) 1, defined by (2.2) with replaced
by k. The step size on fk is 2-k, and as k decreases Ok gets coarser. On the coarser
grids (2.4) is approximated by

(2.5) Aku k =fk, k l- 1(- 1)1.

Ak and fk can be chosen in many ways. Several alternatives will be discussed in the
sequel. The choice that is made has a significant influence on the performance of the
multigrid method.

Furthermore, let there be given restriction operators r k and prolongation
operators p k,
(2.6) rk Uk_ uk-1, pk: uk-1._> Uk.
Examples will follow.

With the foregoing definitions, multigrid methods for linear partial differential
equations can be described in general by the following quasi-Algol program:

ALGORITHM 1.
Procedure multigrid method (k), value k, integer k;
begin integer n

if k 1 then
begin for n := 1(1) sa[k] + sb[k] do S (k, uk, A k, fk); end else
begin for n := 1(1) sa[k] do S(k, uk, A k, fk);

fk-1 := rk(fk _Akuk); Uk- := 0;
for n := 1(1) sc[k] do multigrid method (k 1);

k k k k-1u :=u +p u
forn := l(1) sb[k]doS (k, uk, Ak, fk)

end
end multigrid method;

Here S, to be called the smoothing operator, is some iterative method with a
smoothing effect on the error. The choice of $ has an important influence on the
efficiency of the multigrid method. Various possibilities will be discussed. Note that
fk- is a coarse grid approximation, not to fk, but to fk--Akuk. The following
statements,

initialize u
for n := 1(1)N do multigrid method (/);

result in the execution of N multigrid iterations. By special choices of the integer
arrays sa, sb, sc [k ], every multigrid strategy that has been proposed for linear problems
in the literature can be recovered.

For the prolongation operator p k the following two possibilities will be considered,
both exact only for linear functions:

7-point prolongation" - u - -(pku-)s,2, Us,, (p -)+,, (u + u s+,,)

(2.7) (PU-)z,z,+x (uk-lst + U s,t+k-11 ),

u-),+,,+ (u- -s+l,t + U s,t+l

where the value of the grid function u in the grid point with coordinates
(s 2-, 2-) is denoted by u
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9-point prolongation" Like 7-point prolongation, except

(2.8) (pu-)z+a,.,+ st + U s+l,t + U s,t+l + U s+l,t+l ).

The following three options will be studied for the restriction operator:
infection"

k(2.9) (rkuk), U 2,,,

7-point restriction"

(2.10) (ru), 1/4u
+ U 2s+1,2--1 - U 2s-l,2t+l ),

9-point restriction"

(2.11)
+ + + u + u

On Uk the ollowing inner product is defined"

(2.12) (u , v) =--4- Y. UskVs,.

Between pk and r we have the following special relation, for (2.7) and (2.10) or
for (2.8) and 2.11)"

(2.13) r (p),

(2 14) (ru , /) k-l) (U k, kVk- k k k-1 uk-1
_

p ) Yu eU, Vv

For r one could think of many possible weighted averages of neighboring function
values; it is useful that (2.13) selects a few distinguished cases, which will turn out to
be advantageous both theoretically and practically. The operators (2.7) and (2.10)
have not yet been discussed in the literature; we will find them to be preferable to
the other possibilities.

For the operators A (k < l) two possibilities will be studied:

(2.15) finite difference approximation,

for example, (2.3) with replaced by k; and
Galerkin approximation

(2.16) A’-l=-(pk)WAp, k =l(-1)2.

The reason for the appellation "Galerkin approximation" will become clear in
the sequel. Equation (2.15) has been used by Fedorenko (1962), (1964), Bakhvalov
(1966) and Brandt (1977), (1979); equation (2.16) has been used by Frederickson
(1975), Hackbusch (1978), Wesseling and Sonneveld (1980) and Wesseling (1980).
An important property of (2.16) is that if A is a 7-point operator (i.e., corresponding
to a 7-point difference molecule), as for (2.3) for example, and pk is defined by (2.7)
or (2.8), then Ak (k </) are 7- or 9-point operators respectively (cf. Fig. 2.1).

A discussion of the smoothing operator S is deferred to 4.
In order to provide some insight into the question of which of the various options

outlined above is preferable, some theoretical framework is developed in the next
two sections.
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A Ak, (2.7) Ak, (2.8)

FI. 2.1. Diffence molecules [or A and Ak, k 1(1)/- 1.

3. Computational complexity of multigrid methods. First, a bound will be derived
for the computational complexity of one multigrid iteration as defined by the procedure
in the preceding section. Let maxk (sa[k], sb[k]) be independent of l. The total
computational complexity of the operations S and the computation of fk- and
u k +pkuk-X for one execution of the statement: multigrid method (k) can be bounded
by a .4k, where a is some constant. Let maxk (sc [k ]) <- tr. Let the total computational
complexity of one execution of the statement: multigrid method (k) be denoted by
Wk then

(3.1) Wk <--trWk_l + a "4k.

Wk is bounded from above by the solution of the following difference equation"
Zk O’Zk-1 + a 4k. Hence

(3.2)

Wt <4 W
O’4o

4+a(/- 1)’

Therefore W1= 0(4), o" < 4; W 0(14), o- 4; Wl O(o’), o" > 4.
The overall computational complexity depends on the accuracy required and on

the rate of convergence of the multigrid method. The following authors have shown
theoretically that for various special cases various specific multigrid algorithms have
a rate of convergence that is independent of (eq. numbers are for this paper):

Fedorenko (1964): Poisson equation; Ak: (2.15); pk: (2.8); rk: (2.9).
Bakhvalov (1966): (2.3); Ak: (2.15); pk: must be exact for second degree

polynomials; r k" (2.9).
Frederickson (1975): Poisson equation; Ak: (2.16); pk: (2.8); rk: (2.11).
Wesseling (1980): (2.3); Ak:(2.16); pk:(2.8); rk: (2.11).

A very general rate of convergence proof in an abstract setting admitting arbitrary
regions and elliptic equations of higher order has been given Hackbusch (1980).

The rate of convergence proofs referred to above are rather involved and technical.
Therefore it seems useful to present here an elementary proof for the selfadjoint and
positive definite case (i.e., (2.3) with bi c 0), using only arguments that can be
extended to the general case. It is assumed that Ak is given by (2.16); for (2.15) the
proof would seem to be more difficult, as evidenced by the use of higher order
interpolation in the theory of Bakhvalov (1966). A homogeneous Dirichlet boundary
condition is assumed.

The most difficult part of the proof is to estimate how well Ak- approximates
A k, i.e., to estimate u k -pu k-1 with Au =fk and A-luk- rk[k. We proceed to
do this.

Define

(3.3)
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Whenever in some formula a function value on Ol)k or outside flk is needed, this value
is taken as zero. When there is no danger of confusion the indices k and will be
deleted for brevity. On V the following norms are defined:

(3.4)

Ilull- sup I(u, )1,
IIv Ila <--

where the summation convention applies. These quantities are indeed norms because
of the boundary condition, and are analogous to Sobolev norms. Without mentioning
this explicitly, we will often use the following partial summation formula"

(3.5) (u, Vii) --(Aiu 13 ).

The following well-known inequalities hold"

(3.6) Ilu I1- --< Ilu II0 -<-Ilu I1 --< Ilu II=.
Furthermore, it is easy to derive that

(3.7) Ilu Ili. =< 24 Ilu I[i-., 1, 2.

The prolongation and restriction operators p and r are to have the following
properties. Define p" __pp,-l... p/.

(3.8a) cllu 11, <_- IIpu 11, _-< Ilu 11,, m > k,

(3.8b) Ilu --pkrkukllx,g <= c=2-llu 11=,,
(3.8c) cllu -11o,_1 _<- Iou -110, Ilu -11o,_1,
(3.8d) ilu-r/pg+ull_, _<- C44-11u 11,,
(3.8e) IIrull=,_ _-<llull=,.

C denote positive constants independent of k and l.
Define B(u, v)---(Au, v). Assume uniform ellipticity and boundedness for (2.3)"

(3.9) C5ii
We have

(3 10) Bl(ul, 131) 1/2(aijA l, l,iU Aft) )l + 1/2(aiiViu V.iV )l"

Hence

(3.11) Bl(u l, I)I)"-BI(IA l, ul),
(3.12)

Furthermore, with the inequality of Schwarz,

(3.13) (a,iA,u, Aiv) <_ sup [aiil ., Ila,u II0llav IIo -< 2c6llu IIllv II,
i,i,f i,i

since from (3.9)" sup,,n lal <= C. It follows that

(3.14) [gl (u ‘, v’)l _-< 2c61lu’llx,,llv’ll,,.
It will be shown that if A is constructed according to (2.16) and if p satisfies
(3.8a), then B(u , v) also satisfies (3.11), (3.12) and (3.14) (with other constants).
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We have Bk-X(uk-x, vk-1) ((P k)rAkp kuk-1, Vk-1)k-l (Apkuk-1 Pkvk-1)k

B k (p kuk-, pkvk-). Hence:

(3.15) B k (u k, v k B (p tkuk, pkvk).
With (3.8a) it follows that for k 1(1)1

(3.16) Bk(u k, v k Bk(v k, uk),
(3 17) Bk(u k, uk) > CCsllukll2

1,k

(3.18) Bk (u , )l 2C6llu llx,llv llx,.
We are now in a position to show that A k is a Galerkin approximation to

A, m > k, and to derive error estimates. Define, for arbitrary (deleted) k,

(3.19) a(u, v)B(u, v)-2(b, v) u, v V, b V fixed.

In the standard way it can be shown that Au b and a(u, u)=infova(v, v) are
equivalent. Furthermore, a k(uk, V k) a(pku k, pvk), m > k. Let Au b and
Au k =(pk)rb. We have

(3.20) ak(uk, uk)= inf ak(vk, vk)= inf a’(pkvk, pkvk).
V V

Hence, the designation of (2.16) as a Galerkin approximation is ustified. Using
(3.16)-(3.18), we derive the following result similarly to its equivalent in finite element
theory:

(3.21) Ilu --pmku klll,k Ol inf llu --pmkvklll,k,
ok V

with D(2C6/CC)/2. This estimate is not quite what we need, because in the
rate of convergence proof an estimate of the following kind will be required: [[u-pkuk-[[O.k O(4-k). This can be obtained as follows, using what is known in the finite
element literature as Nitsche’s trick; and specializing (3.21) to the case m := k,
k := m-1. Define w k Vk by

(3.22) Akw k u k --p kuk-"
then ilu k -p kuk-X,k B k (w k, u k --puk-). Since B k (pkuk-X, pkvk-) (b k, pkvk-X)k
for all v- V- and Bk(u g,v)=(bk,vk)k for all vk Vk, we have Bk(u k-
pkuk-, pkvk-) 0. Hence

(3.3 Iiu -pu-ll,=(w -pv- u-p- vv-x v-Using (3.18) and (3.21), we obtain

(3.24) Ilu --pku-ll,k2f6Olllwk --pkvk-lll,k inf Ilu k --pkzk-Xll,k
zk--l V -I

for all/)k-1 vk-1 Choosing v k-1 rkw k k-1 k k,z r u we find with (3.8b)

(3.25)

In Appendix A it will be shown that

(3.26) Ilvkll2,k --<D2IIA
Using (3.26) and (3.22) we finally obtain

(3.27) uk -pu -llo, -<03" 4-kllb kll0,k,

ilu k pkuk-lllo, <2C6O f 4-k kIIW II.,Ilu

v k Vk.

D3 2C6D1CD22.
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This estimate of the quality of the coarse grid approximations is one ingredient
needed in the rate of convergence proof to be presented. We also need some informa-
tion concerning the smoothing operator S.

Using (3.7) and (3.18), we have

ku )k(3.28) (Aku k

<--D, 4k D4=-- 16C6.(u u

Hence

(3.29)

For purposes of illustration only, the smoothing operator S is chosen as follows
(Jacobi iteration)"

(3.30) u k’v+a u k’v -a(AkUk’--fk),
with a a parameter to be specified shortly.

The rate of convergence of the multigrid method of 2 will be estimated for the
special case sa[k]=O, sb[k]=m, sc[k]=o-. Numerical experiments to be described
show that this is a profitable multigrid strategy. More generality would merely add
to the technicalities of the arguments to be presented.

Let u k’, u k’x/2 and u k’x denote the iterand just before the execution of the
statement, multigrid method (k), just before the sb [k ] m executions of the smoothing
operation S, and just after the execution of multigrid method (k), respectively. Define

k,p, k,ix k k k fk(3.31) e ---u -u u ---(A )- tz =0,1/2, 1.

Then

(3.32) e k’l (I k --otAk)me k’l/2,
with [k the identity operator. Define

Vk’ {span of eigenvectors of Ak

(3.33)

(3.34)

belonging to eigenvalues e (0, "yD4" 4k), 0 < T < 1},

V’v the orthogonal complement of V’v in Vk.

Let e e + e with e Vk’, 1, 2. Choose

4-k
(3.35) a D-;
then

(3.36)

Because of (3.27) we have

(3.37) ek’ +pkuk-XllO,k <--03" 4-kllAkek’%o,k.
Let the result of the coarse grid correction (computed by sc[k] =r executions of the
statement multigrid method (k)) be denoted by v k-, and assume

(3.38) IIv u <_-

with 6k-x a constant to be determined later. Then

(3.39) 4- 11A% /
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With (3.37) pkuk-1 can be bounded, and with (3.8c) one obtains

(3.40) k <:D3" 4-k kek kO

C3 yllA II0,/II IIo,.

From (3.36) it follows that

(3.41)

with : D3(T + (1- T)m), r/-(1 +s)/C3. Hence

(3.42) Ilu ’- u 11o, _<-( +,_)llu IIo,,
and therefore,

(3.43) 6k ( - 6k-1)tr.

In order to simplify this proof we assume 61 =0, i.e., on the coarsest grid 1) the
solution is to be calculated exactly, rather than approximately as in the procedure
multigrid method of 2. Since r/> 1 we will not be able to show that 6k < 1 if tr 1,
although the method works well for tr 1, as we shall see. Choose tr > 1. Assume
(induction) that 6k-1 ----< s, and choose rn and y such that

(3.44) :r-’(1 +r/) < 1,

(hence < 1); then

(3.45) 6<-.
Thus we have proved the following theorem.

THEOREM. Let the rnultigrid method o]’ 2 satisfy sa[k]=O, sb[k]=rn, sc[k]=
tr > 1 and equations (2.16), (3.8) and (3.44), and let the smoothing operator $ be defined
by (3.30) and (3.35). Then one execution o[ the statement multigrid method (l) reduces
the error by a ]’actor < 1, ]’or equation (2.3) with bi c 0 and aij satisfying (3.9).

Because is independent of l, the number of multigrid iterations required for a
given precision is fixed. Choosing tr < 4 and taking (3.2) into account, we conclude
that the computational complexity of the multigrid method is O(4).

As an example, we show that the conditions of the theorem, i.e., (3.8) and (3.44),
are satisfied with pk and r k defined by (2.7), (2.8), (2.10), (2.11). The right-hand side
of (3.8a)follows from the easily verifiable fact that {Ivpu-’llo, _-<llv-’u-’llo._,.
The left-hand side can be checked by employing the following identity, valid for
9-point interpolation’

2

IlV.pu{ig,. 2-..llVu ll= --z
O,k + 2 Y, w ij -- w i,j+

i,j=o p=l n

with w k Vku k, n 2m-k-a" and by using the inequality (ai + bi)2 >-, (a +b)-E(,a)l/E(,b)alE’. The case of 7-point interpolation can be treated
similarly. It is easy to write V(u k --pkrkuk) as a linear combination of quantities of
the type VmAnu k, such that (3.8b) follows. The derivation of (3.8c) is straight-
forward. There are constants Ca and C2 such that u k r k

/ap k / u k

CI’4-kV k k /
iAiu +C2.16-kVlAlkVk k k2AEU using this (3.8d) is easy to derive. Equation

(3.8e) is trivial. Finally, choose 3’ z/(2Da) and m > log(z/2Da)/log(1-/) with z to
be determined; then : _-<z. Choose z (1 + 2/C3)-; then (3.44) is satisfied.

4. Smoothing. This section is devoted to a discussion of possible smoothing
operators (procedure $ in Algorithm 1). A useful yardstick by which the merits of
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various smoothing operators may be measured is the smoothing factor introduced by
Brandt (1977). The error e k Uk before application of a multigrid iteration can be
represented by a Fourier series as follows (deleting the superscript k)"

M
(4.1) e.,. ]Y’. ct exp (imOs + in,t),

s,t=--M

with Os (2s 1)Tr/2M + 1), bt (2t- 1)/(2M + 1), M 2-. For periodic
boundary conditions and constant coefficients in the differential equation, many
smoothing operators have the property that the error after application of
the smoothing operator . satisfies

M

(4.2) t exp (imO + in),

with

(4.3)

The philosophy underlying multigrid methods requires that those Fourier components
which cannot be resolved on coarser grids be eliminated as fast as possible. One
therefore defines the smoothing factor ff as follows: (cf. Brandt (1977))’

(4.4) ff (o,)Gsup IP (0, )[, G m (0, ) 0, $ , 101 >= or I$l e

For convenience, G is not restricted to the discrete set of values occurring in (4.1)
and (4.2). Of two smoothing operators, the one with the smaller ff (for a given amount
of computational work) is judged to be the better of the two.

Two smoothing operators that are often used in multigrid methods are pointwise
and line Gauss-Seidel iteration (Brandt (1977), (1979), Nicolaides (1979)). Hackbusch
(1978) uses pointwise and line Gauss-Seidel iteration with a special ordering of the
grid points. Wesseling and Sonneveld (1980) have introduced incomplete LU (ILU)
decomposition as a smoothing operator for multigrid methods.

In order to describe ILU decomposition, some notation will be introduced. The
operator A is denoted as follows, under the summation convention and deleting the
superscript k"

(4.5) (Au )i ui+.+,

with a, B E {-1, 0, 1}. If the coefficients in the differential equation are variable, one
must keep in mind that e depends on and ]. The difference molecules that (4.5)
may represent are depicted in Fig. 2.1.

Incomplete LU decomposition is defined as follows"

(Lu) X,,u +.+, (Uu) u+,+,

(4.6)
LU A +

with the elements of the error matrix C zero in those places where the elements of
A are nonzero. The ILU decompositions that will be used are fully defined in Table
4.1, which lists the values of (a, B for which A # 0, T,a # 0, for what will be called
5-point, 7-point and 9-point ILU decomposition. Furthermore, # 0 if and only
if A _,_, # 0.
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TABLE 4.1

5-point LU (0, O)(0,-1) (-1, O) (-1, 1) (1,-1)
7-point LU (0, O)(0,-1) (-1, O)(1,-1) (-2, 1)(2,-1)
9-point LU (0, O)(0,-1) (-1, O)(1,-1) (-1,-1) (-2, 1) (2,-1)

L and U may be constructed by a standard LU-decomposition algorithm, with
zero outside the nonzero patterns described above. A version in which I, u, may be
computed as follows (cf. Wesseling and Sonneveld (1980)). P denotes the nonzero
pattern of the ILU decomposition. A is an N xN matrix.

ALGORITHM 2.
A:=A;
for r := 1(1)N do

gi t( r-1 ).be n a :-- sqr a
r--1for/’>r ^ (r,f)c:Pdoari:=ari /a
r-1fori>r ^ (i,r)_Pdoair:=air /a r"

-1for (i,])sP ^ i>r ^ ]>r ^ (i,r)sP ^ (r,j)Pdoai := a -airar
end ILU decomposition;

Ar will contain L and U.
For a discussion of smoothing factors, we will construct 5-point and 7-point ILU

decompositions for the constant coefficient case. The 9-point ILU decomposition
equals the 7-point decomposition, unless A is a 9-point difference operator, which is
never the case on the finest grid. Since the bulk of the computational work takes place
on the finest grid, we will not study 9-point ILU decompositions.

In order to make the ILU decomposition unique, we (arbitrarily) require

(4.7) ;too 00

(as in Algorithm 2). The following equations result from (4.6):

O’0,-1 A 0,-100, O’1,-1 h 0,-lift, 10 / ’ 1,-100,
(r-l,0 h 0,-1/--1,1 / h-,ooo, O’oo h-,,-/,,,

(4.8)
O"10 , 1,-1/J, 01 / ,001tt 10, O"-1,1 h-l,O/.t Ol + Aoo/-1,1,

Crol hoo/ol.

For the case of the Poisson equation, the system (4.8) is solved as follows. Let L U,
i.e., Ae =/_,_e. Eliminating/o with the first equation,/_, with the second and
/o with the third, one finds, with/ =-/oo, that/ol =-l/t,/-, /(1-4), 1o
/Z 3/(1--4), and

12 10 6 2(4.9) x -4tz /8tx -4tx +1=0.

In order to get y,o as small as possible the largest root is preferred, which is found
to be

2(4.10) 3.294168413.

This defines the 7-point ILU decomposition for the Poisson equation. In the 5-point
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case we have/-1,1 0, and the equations in (4.8) in which O’-1,1 and O"1,1 occur are
dropped. We find/ol =/1o -1//, and

4 2A6(4.11) /-4/ +2=0,

of which the largest root is

(4.12) =2+

The smoothing factors of these ILU decompositions are determined as follows.
A smoothing operation is defined by

(4.13) x := x +(LU)-X(f-Ax)

or (A + C)x := Cx +f. One finds

,,_ cos (0 )(4.14) p(O, )=
2-cos 0-cos + yl,-1 cos (-0)

(5-point ILU),

with 1,-1 =/01/ 10 1 1/24,

(4.15) p(O, 4,)
2y2,_xcos(20 -$)

(7-point ILU),
4 2 cos 0 cos $ + 23’2,- cos (2O &

with y2,-1 "--/--1,1/10 0.11181. By analytical means it follows that

-2
/ 0.204 (5-point ILU)(4.16) fi x/3 -/-2

(cf. Hemker (1980)). For the 7-point case it has been found numerically that

(4.17) t5 0.126 (7-point ILU).

For the Gauss-Seidel smoothing operators, Brandt (1977) has found the following
smoothing factors:

1(4.18) = (pointwise Gauss-Seidel),

1(4.19) fi /-- .447 (line Gauss-Seidel).

The smoothing operators proposed by Hackbusch (1978) are not amenable to
the Fourier analysis described above, so that smoothing factors cannot be defined.

We will roughly determine the computational complexity of the smoothing
operators defined above by counting operations from the set { +,-, ,/, sqrt}. We
will distinguish between the variable coefficient case and the case of the Poisson
equation, to be denoted general and Poisson case respectively. Equation (4.13) is
rewritten as follows"

(4.20) (LU)x := Cx +f.
For the 5-point ILU decomposition we have (Cx +f)ij y-l,lXi-l,j/l + yl,-lx/,-1 +f
(general), (Cx +f)i =yl,-l(Xi-l,+l+Xi+l,j-1)+fi (Poisson), hence computation of
Cx +f takes 4 or 3 operations per grid point respectively. For the 7-point ILU
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decomposition the computational complexity of Cx +f is the same. The solution of a
system Lu y is computed as follows, for the 5-point ILU decomposition:

(4.21) ui,j := (yij-Ao,-lu,j-l-A-l,ou-l,j)/Aoo (general),

(4.22) ui,j := (yi (ui,-i + ui-l,)/lx)/lx, (Poisson),

and we count 5 or 4 operations per grid point in the general or Poisson case,
respectively. Similarly for the 7-point ILU-decomposition, it is found that Lu =y
takes 7 or 6 operations per grid point in the general or Poisson case, respectively.

The computational complexity of the Gauss-Seidel smoothing operators is as
follows. The pointwise Gauss-Seidel smoothing operation is performed according to"

Ui] :-- (fi]--O’O,_lUi,j_l--O’_l,oUi_l,j_l--O’o,lUi,]+
(4.23)

o’1,0ui+1, -trl,-lUi+l,-I-tr-l,lUi-,+l)/tro,o (general),

(4.24) u := (fi + ui,j-1 + ui-l, + ui,+ + ui+l,)/4 (Poisson).

If A is a 5-point operator, trl,-1 -tr-l,l 0. The number of operations per grid point
is 13, 9 or 5 in the general 7-point, general 5-point or Poisson case, respectively. The
line Gauss-Seidel smoothing operation for lines in the x 1-direction is performed
according to:

O’-l,oUi-l,i + O’o,oUiy d- o’1,o14i+1,i
(4.25)

fi] --rO,--lUi,j--l--O’o, lUi,]+l--O’l,-lUi+l,j-l--tY--l,lUi--l,j+l (general),

(4.26) -ui_l,i+4uii-Ui+x,]-fij+ui.i_l+Uij_l (Poisson).

The right-hand side takes 8, 4 or 2 operations per grid point in the general 7-point,
general 5-point or Poisson case, respectively. One can solve one or m identical
tridiagonal n x n systems in about 10n or 6nm operations respectively (Isaacson and
Keller (1966, p. 57)); (by our definition of an operation, our count is twice that of
Isaacson and Keller). Hence, solving the tridiagonal systems (4.25), (4.26) takes the
following number of operations per grid point: 10, 10 or 6 in the general 7-point,
general 5-point or Poisson case, respectively.

The number of operations per grid point for the various smoothing operators is
summarized in Table 4.2.

TABLE 4.2.

Operations per grid point for various smoothing operators

General General
7-point 5-point Poisson

5-point ILU 14 14 11
7-point ILU 18 18 15
G-S by points 13 9 5
G-S by lines 18 14 8

Clearly, on the basis of this table and the smoothing factors, 7-point ILU comes
out best. The Poisson equation can be considered to be representative for the class
of selfadjoint elliptic equations with smoothly varying coefficients of the same order
of magnitude. In the next section numerical experiments with other typical cases will
also be described.
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The above analysis is not exact for ILU smoothing, because the coefficients in
L and U vary near the boundaries. The decisive test of the merits of the various
options lies in numerical experiments.

If the ILU decomposition is constructed by means of Algorithm 2, then the
computation of L and U takes 9 or 21 operations per grid point in the 5- or 7-point
case respectively. If one also takes into account the computation of booleans of the
type (i,/’)e P, then the total work becomes proportional to 8 t, thus destroying the
theoretical O(4) computational complexity of the present multigrid method. This can
be avoided by computing the ILU decomposition by means of the following recursive
formulae. Consider the 7-point case. Let, in left to right order, g, f, e, a, b, c, d denote
the nonzero diagonals of the given matrix A, and let the subscript k denote the kth
element, e.g., ag is the element in the main diagonal in row k. Similarly, let r/, ’, e
and a denote the nonzero diagonals of L, and a,/, y, tr those of U. Then we have
on an m x n grid:

rig k >m + 1, ’g = k >m"
Olk-m Olk-m+

(4.27)

eg k >-2;
Ok-1

ak (ak ekBg-1 k’gk-,.+ lkSk-,. 1/2,

fig
b 8_+, k <mn 1,"

k

k>=l;

Ck ekBk-
Yk k <ran-re+l, 8k k <mn-m

Olk Ogk

Quantities that are not defined are to be replaced by 0. The recursion formulae (4.27)
require 21 operations per grid point, just as the quasi-Algol program (Algorithm 1)
(neglecting computation of booleans). However, one might prefer the quasi-Algol
program because of its flexibility in changing the sparsity pattern P and its ease of
generalization to systems of partial differential equations.

An efficient way to compute Ak as defined by (2.16) is given in Appendix B.

$. Numerical experiments. It has already been remarked that multigrid methods
in general for linear partial differential equations can be represented by the procedure
multigrid method (k) of 2. It remains to choose Ag(k </), pk, r k, sa[k], sb[k], sc[k]
and the smoothing operator S. To judge the merits of all possibilities on purely
theoretical grounds seems out of the question, although the fact that (2.16) allows a
nicer theory to be developed than does (2.15) induces a preference for (2.16). However,
numerical experiments are decisive. Some numerical experiments are described below,
and comparison is made with experiments reported by Hackbusch (1978) and
Nicolaides (1979). The following cases will be treated, all of them special cases of (2.1):

(5.1) Case 1" u.ii 4,

(5.2) Case 2" Ull + 0.01U,22 2.02,

(5.3) Case 3" u,x + 1.7u,2 + U,22 4.

For these three cases, which are among the cases treated by Hackbusch, the boundary
condition is u ioa xixi, exact solution u xix, starting iterand u 0.
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In the experiments to be described, the boundary conditions were not eliminated
from the equations.

Table 5.1 shows variants of the multigrid method of 2 that have been applied
to case 1. The columns p, r and A give the numbers of the equations where the
prolongation, restriction and coarse grid operators are defined. The column ILU gives
the number of points in the nonzero structure of the ILU decomposition as described
in4.

TABLE 5.1

Variants o]’ multigrid method that have been applied to case 1

Variant sa[k sb[k sc[k p A ILU

1 0 (2.7) (2.10) (2.16) 7
0 (X.7) (9..0) (.5) 7

3 0 (2.8) (2.9) (2.15) 7
4 0 1 (2.8) (2.11) (2.16) 9
5 1 1 1 (2.7) (2.10) (2.16) 7
6 (2.7) (2.10) (2.15) 7
7 0 1 2 (2.7) (2.10) (2.16) 7
8 0 (2.7) (2.10) (2.16) 5
9 1 0 (2.7) (2.10) (2.16) 7
10 0 (2.7) (2.10) (2.15) 7

Table 5.2 gives the number of iterations M carried out and the average reduction
factor p (defined by pvt =quotient of Euclidean norms of residue Ax-f after and
before M multigrid iterations) for case 1.

TABLE 5.2

Results of application of ten variants of a multigrid method to case 1" =4

Variant 2 3 4 5 6 7 8 9 10

4 6 7 4 3 4 4 7 6 6
0.023 0.077 0.11 0.022 0.0079 0.015 0.022 0.12 0.086 0.078

From Table 5.2 the following conclusions are drawn. Comparing variants 1, 2
and 3, we can see that (2.16) is better than (2.15). (In the interior, (2.15) and (2.16)
are identical in this case, but at the boundary they differ.) Comparison of variants 1
and 4 shows that the prolongation and restriction operators (2.7), (2.10) perform just
as well as the more expensive operators (2.8), (2.11). Comparison of variants 1, 5
and 6 shows that the additional smoothing of variants 5 and 6, which almost doubles
the computational work, does not reduce p enough to make variants 5 and 6 competi-
tive. Comparing variants 1 and 7, we conclude that improvement of the accuracy of
the coarse grid corrections by an increase of sc[k] beyond 1 is not worthwhile.
Comparing 1 and 8, one finds that it does not pay to make the ILU decomposition
more sparse. Comparison of 1, 9 and 10 shows that smoothing after, rather than
before, coarse grid correction is preferable. Variant 1 is clearly superior to the other
variants considered, although there is no certainty that this is also true for other
problems; the other variants (except variant 2) have not been tested on other problems.
(The reason for including further tests with variant 2 is to make the case for (2.16),
rather than (2.15), more convincing, which seems desirable because (2.15) seems to
be rather more popular at present.)
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The performance of variant 1 as a function of (mesh size 2-/) is given in Table
5.3. Clearly, the rate of convergence is bounded away from 1 as the mesh size tends
to zero, as predicted by the theory.

TABLE 5.3

Variant applied to case 1

2 3 4 5 6

6 8 9 8 8
0.013 0.037 0.047 0.040 0.033

Next, variants 1 and 2 and the method tested by Hackbusch (1978) are compared
for cases 1, 2 and 3 (Table 5.4). The latter method is denoted by H in the sequel.
Results for H are directly quoted from Hackbusch (1978). Unfortunately, similar
detailed results are not available for other methods in the literature at this moment.

As in Table 5.2, variant 1 is faster than variant 2, which strengthens our preference
for (2.16) over (2.15).

TABLE 5.4

Results for cases 1, 2, 3; =6

Case: 1 1 2 2 2 3 3
Variant: 1 2 H 2 H 1 2 H

8 10 8 10 10 8 7 8 8
0.033 0.088 0.038 0.15 0.37 0.063 0.025 0.051 0.199

Before any further conclusions can be drawn from Table 5.4, the computational
complexities per iteration must be estimated for variant 1 and H. Estimation of the
computational complexity is a tedious business which can be carried out only roughly.
But because efficiency is what multigrid methods are all about, and because efficiency
and robustness of multigrid methods vary widely (although not very much between
variant 1 and H, as it turns out), the computational complexity needs to be determined
and reported as well as possible.

kThere are two main differences between variant 1 and H. The first is that for p
and rk variant 1 uses the 7-point operators defined by (2.7) and (2.10), whereas H

k
uses the 9-point operators given by (2.8) and (2.11). This makes application of p
and r k somewhat cheaper for variant 1, and furthermore, the coarse matrices A k,
k < l, are 7-point rather than 9-point operators, as for H. This makes a difference for
the work done on coarser grids. More important for the efficiency is the second main
difference between both methods, namely the smoothing operators that are used,
because this also affects the work done on the finest grid. For the problems of
Table 5.4, H uses line relaxation along lines in the x 1-direction, with a special ordering
of the lines. Half the lines are visited before coarse grid correction, the other half,
and all lines once more, after coarse correction. The total smoothing work is therefore
equivalent to two line relaxations, or, on the finest grid, to 28 (cases 1, 2) or 36 (case
3) operations per grid point, as follows from Table 4.2. (We take the variable coefficient
case in order to make the estimates more representative of the general case.) As seen
from Table 4.1, for variant 1, smoothing takes 18 operations on the finest grid for
cases 1, 2, 3. We expect therefore that the computational work for variant 1 for one
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multigrid iteration is roughly 0.65 (cases 1, 2) or 0.5 (case 3) times that of H. Taking
the average reduction factors p of Table 5.4 into account, one comes to the conclusion
that the total work of variant 1 will be roughly 0.42 (case 1), 0.96 (case 2) or 0.24
(case 3) times the total work of H.

For cases 1 and 3, variant 1 is better than H. But for case 2, variant 1 does much
worse than for cases 1 and 3, and is not significantly faster than H. The following
tables give results of further experiments with anisotropic model problems of the type
of case 2.

TABLE 5.5

Variant 1 applied to anisotropic model problems"/=4; exact solution" (I=x2-t-y2

xx+e dPyy 2+2e e dxx+yy 2+2e

e 0.5 0.1 0.01 0.0001 0.5 0.1 0.01 0.0001
M 9 10 7 5 8 7 4 2
p 0.047 0.10 0.052 0.00031 0.036 0.023 0.0016 4x10-s

TABLE 5.6

Variant 1 applied to dx+0.01yy =2.2 ]’or various stepsizes

2 3 4 5 6

6 10 10 10 10
0.0077 0.065 0.100 0.11 0.095

Because the pivots are chosen in a certain sequence in the ILU decomposition,
the ILU smoothing properties are sensitive to rotational transformations, quite like
line relaxation. This effect is visible in Table 5.5. For the present ILU decomposition,
xx + e yy is the worst anisotropic case (the best for x l-line relaxation), and exx +y
is the best (here x l-line relaxation would not work at all). Table 5.6 shows that for
this problem also the rate of convergence is independent of the mesh size.

Our conclusion for anisotropic problems of the type of case 2 is that, although
its performance is somewhat variable, variant 1 is always fast, and never outperformed
by H. H can be made just as robust as variant 1 for this case by including x2-1ine
relaxation, which would double the work.

Case 1 has also been treated by method H using point relaxation as smoothing
operator. The computational work is equivalent to two pointwise sweeps, i.e., 18
operations per point. Reasoning as before, we expect that variant 1 and H require
about the same amount of work per iteration. For H, a value of p 0.048 is reported,
and we conclude that the computational complexity of variant 1 will be about 0.61
times that of H. Note that this version of H would not work for cases 2 and 3.

In order to be able to compare with results reported by Brandt (1977) and
Nicolaides (1979), the computational complexity of variant 1 has been measured in
terms of workunits (WU). One WU, as introduced by Brandt (1977) and denoted
here by WUGS, is the work of one pointwise Gauss-Seidel sweep on the finest grid.
One may similarly define one WULU as the work of one ILU smoothing operation
on the finest grid. For the computations reported in Tables 5.2, 5.3, 5.4., 5.5 and 5.6,
it has been measured that the average cost of one multigrid iteration with variant 1
is 1.99 WULU with variance 0.07 WULU. The smallness of this variance is another
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indication of the robustness of variant 1, and makes it reasonable to assume henceforth
a fixed cost of 2 WULU for one multigrid iteration with variant 1. In order to be able
to compare with authors who have measured work in terms of WUGS, we will assume,
on the basis of Table 4.1, that 1 WULU=2WUGS (general 5-point case) or
1 WULU 3 WUGS (Poisson) exploiting the fact that the coefficients are constant.
Of course, in this case one would be better off with a Fourier-analysis-cyclic-reduction
method.) This figure may also be obtained by a theoretical operations count as follows.
Table 5.7 gives the operations count per grid point for the operations that occur in
the procedure multigrid method of 2.

In Table 5.7, savings near the boundaries are neglected. We consider variant 1.
Table 5.8, which expresses the operations count of one multigrid iteration in WULU
units, is easily compiled. The work on the coarsest grid is neglected; A is assumed
to be a 5-point operator and Ak, k < l, are 7-point operators. S is applied once for
k 1(1)/, r(f-Au) is executed for k 1(1)/- 1 and u +pu is computed for k 2(1)/.
One WULU is 18 operations per gridpoint.

TABLE 5.7

Operations per grid point ]’or portions ofprocedure multi-
grid method

A" 5-point A" 7-point

$ 18 18
r(]’-Au) 18 22
u+pu 3 3

TABLE 5.8

Operations count ]’or multigrid method, variant 1, expressed in WULU

2 3 4 5 6 7

WULU 1.89 2.08 2.05 1.99 1.95 1.93

Nicolaides (1979) reports results for combinations of a multigrid method and two
finite element methods. One of these, namely linear elements, turns out to be
equivalent to variant 1 with pointwise Gauss-Seidel smoothing instead of ILU smooth-
ing, if the coefficients are constant. After varying sa[k] and sc[k] (see procedure
multigrid method (k) 2) a best result of 3.9 WUGS per decimal digit is measured
for the first 3 multigrid iterations for the Poisson equation with smooth initial error
and a 64 64 grid. We find (case 1, Table 5.3) p 0.033, hence 0.67 iterations per
decimal digit, at a cost of 1.34 WULU 2.68 WUGS (3.02 if the constant coefficients
are exploited). During the first three iterations the rate of convergence is p 0.0064,
and a cost per decimal digit is found of 0.91 WULU 1.8 WUGS. Apart from the
Poisson equation, several interesting variable coefficient cases are treated successfully
by Nicolaides (1979). One of these is (2.1) with all= a22 abs (sin kxl sin kx2), a12
aEx=bi=c =f=O,u/Ol’=O. The initial values for u are uniformly randomly dis-
tributed in [-1, 1]. Three multigrid iterations are performed. The results for variant
1 are given in Table 5.9. For this test case, Nicolaides (1979) used bilinear elements.
Hence Ak, k l(-1)1, are 9-point operators in his case, so that one Gauss-Seidel
sweep takes 17 operations per grid point, and 1 WULU 18/17 WUGS. Table 5.10
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TABLE 5.9

for test case of Nicolaides

l/k 2 4 8 16 32

5 0.060 0.063 0.067 0.067 0.061
6 0.065 0.060 0.062 0.070 0.067

gives the work per decimal digit expressed in WUGS. Before the comma: variant 1;
after the comma" method of Nicolaides.

TABLE 5.10

Cost per decimal digit for test case ofNicolaides

I/k 2 4 8 16 32

5 1.7, 4.7 1.7, 5.2 1.8, 5.4 1.8, 5.9 1.7, 5.0
6 1.8, 4.5 1.7, 4.8 1.7, 5.8 1.9, 6.3 1.8, 6.1

Distinguishing features of the multigrid methodology advocated by Brandt (1977),
(1979) are: (2.15) is used for the coarse grid operators, (2.8) and (2.9) or (2.11) are
used for prolongation and restriction and Gauss-Seidel relaxation by points or by
lines is used for smoothing. At certain instances, higher order interpolation is used
for pk. Furthermore, in contrast with the fixed smoothing strategy of the methods
discussed in the foregoing, the smoothing strategy is variable: The number of smoothing
operations preceding and succeeding a coarse grid correction depends on the rate of
convergence which is monitored by the algorithm. Brandt (1977, p. 349) introduces
the quantity/z0 as the factor by which the errors are reduced per WU of computational
work, counting only smoothing work; Brandt derives a relation between/zo and t5
(defined in (4.4)), which in the present context reads

(5.4) /./, 0 "--/ 3/4

This relation is not rigorous, but is found to be very realistic according to Brandt
(1977). With Gauss-Seidel smoothing, t5 1/2 for the Poisson equation (see (4.18)), and
one finds /x0=0.595, whereas with ILU smoothing t =0.126 (see (4.17)), hence
/z0 0.211. Taking into account that 1 WULU 2 WUGS (Table 4.1, general 5-point
case), ILU smoothing comes out best. Counting only relaxation work, 1 multigrid
iteration with variant 1 takes somewhat less than ) WULU, and the observed value
of /z0 comes out to be 0.077 per 1WULU for case 1, I=6 (on the basis of
Table 5.3), which is considerably better than the estimate/z0= 0.211 based on (5.4).
In (5.4) the effects of the prolongation and restriction operators and the quality of
the coarse grid operators are not taken into account" apparently these have a very
benificial effect in variant 1, and our preference for (2.7), (2.10) and (2.16) is
strengthened once more. In an experiment on the Poisson equation using the variable
smoothing strategy, Brandt (1977, p. 354) measures 0 0.537 per 1 WUGS; cf. our
just-quoted value o=0.077 per 1 WULU ---0.278 per 1 WUGS. One might ask
whether the inclusion of a variable smoothing strategy would further improve the
performance of variant 1. Because of the (possibly problem-dependent) tuning this
would require, and in view of the speed and robustness already obtained, we do not
think it worthwhile to pursue this matter further.
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This concludes our comparison with other methods. Another important model
problem, which has not been treated by other authors, is the convection-diffusion
equation. In Wesseling and Sonneveld (1980) this equation is treated with variant 1;
furthermore, results are reported for the Navier-Stokes equations.

6. Final remarks. It has been shown that the Galerkin coarse grid approximation,
7-point prolongation and restriction, incomplete LU smoothing and a fixed multigrid
strategy (i.e., in procedure multigrid method (k) of 2 sa[k]= O, sb[k]= sc[k]= 1 for
all problems) result in a fast and robust multigrid method. Coarse grid Galerkin
approximation was found to be better than finite difference approximation, and
ILU-smoothing is better than other smoothing methods that have been proposed.
Furthermore, 7-point prolongation and restriction is competitive with 9-point prolon-
gation and restriction, which is important for three-dimensional problems.

It seems likely that multigrid methods will soon come to be widely used as fast
solvers for elliptic problems. An important aspect that has not been touched upon
here is adaptive mesh generation (cf. Brandt (1977), (1979), Hemker (1980a)).
Furthermore, the application of multigrid methods is not restricted to partial differen-
tial equations (cf. Hemker and Schippers (1981)).

Appendix A
Proof of (3.26). The operator A is defined by (2.3) with bi--c --0. Define

(deleting the superscript for brevity) ---aij(ViAj + AVj). It is not difficult to verify
that

2

(A1) II(A-)ullollulll, --2 sup (Via)2.
i=

Nitsche and Nitsche (1960) show that

(A2) Ilull= 4 C-2C6 lieu IIo.
(Their definition of and I1"11 is slightly different, but their proof holds also in our
case.) Furthermore, using (3.6) and (3.12),

(Au’u)>csIlull"(A3) Ilaullo e [Iaull- e Ilull 
Combining (A1)-(A3) one obtains

-2 (1 +c).(A4) llu ll=, <-_D llA u llo, , C6

Next, (A4) is generalized to coarser grids. First some useful consequences of (3.8) are
derived. Define rkm -- r k+Irk+2 r m, m > k. We have

IIt.kmumll_l,k Ks,up I(U m, pmkl)k)m
Ilv

(A5)
_-< sup I(u m, pmkvk)m

Furthermore,

(A6)

which may
pm(1 --pm-rm-)rm +. +p

< 2-kC211u I1=,, m > k,Ilu --P’krkmu
be derived by noting that 1 p krkm 1 p mrm +

m’k+X(1--pk+lrk+X)rk+X’m, and from (3.8a, b, e). Similarly
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one may derive

(A7) Ilu" -r"p"u"ll_,.. <-c4.4-"llu"ll,.,, m > k.

Next we note that, for arbitrary (deleted) k

(m8) Ilull <- C-i=C-; Ilaull-,
2since Ilaull- supo.ln(u, o)1--> CCllull, because of (3.17).

Now (3.26) will be derived. Let Akuk=[k, k<l. Define t k and t by
A"a r"p"f, Aa =p"f". Using (3.8a), (3.21) and (A6), we get

(A.9) c1la a 11., + c;lla p krkla

C ( +O)lla’-p’ra’ll., CC=(

From (A4) and (3.8c) it follows that

Since A(u-a)=[ --rkplkfk, we conclude from (A7), (A8) and (3.7) that

From (A9), (A10), (A11) and (3.7) we have

(A12) Ilu -ra’ll=.c= +4- CC2D5(1 +D1) Ibllo..

With (3.8e) and (A10) one obtains

(m13) IIr’a’ll=. olll0..
Combination of (A12) and (A13) results in

(A14) Ilu I1:. O=IW IIo.,
with D2 following in an obvious way from (A12), (A13). This is the desired result.

Appendix B. One way to compute Ak as defined by (2.16) is as follows, ollowing
Frederickson (1975). Let (2.7) and (2.10) hold, and let A k be a 7-point operator; the
following treatment is easily extended to other cases. Define ZZxZ, M=
{(m,m2)lm,2=O, 1}{1, 1), (-1, -1)}, Rk={(ml, m2)lm,2=O(1)2k}. M will be
used to enumerate the atoms of the difference molecule corresponding to A, and R k

to enumerate the points of. Elements of the matrixA will be denoted byA., R ,
]M. With this notation, matrix-vector multiplication is defined by (Au)
Au+. Prolongation and restriction may be defined as follows. Define t" Z
by t(0, 0)= 1; t(j)=,jM(O, 0); t(j)= 0,]M. Then

k-1 k(B1) (pkuk-1)i-" , t(i-2f)u iR
]Z

k k-1(BE) (rku k)i t(f)u 2i+, g
ieZ

k- 1/4 ., t(u)t(v)A2k,+u.2j+u-o, R k-, ] M.(B3)
u,oEZ
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The (obvious) key to efficient computation of Ak-1 is to pick a combination
(, u, v) and to check whether 2 + u-vM before sweeping through R k-. The

k-1obtained contribution to A ij is stored and is augmented by further sweeps through
g k- for different combinations (], u, v), until all relevant combinations (/’, u, v) have
been exhausted. By checking off all possible combinations (/’, u, v), one arrives at an
operations count of about 110 per point of fk-X. Thus, computation of A k, k
l- 1(- 1)1, takes less than 37 operations per point of 1), or 2 WULU.
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STABLE BOUNDARY APPROXIMATIONS FOR IMPLICIT
TIME DISCRETIZATIONS FOR GAS DYNAMICS*

BERTIL GUSTAFSSONf AND JOSEPH OLIGERt

Abstract. We consider the problem of constructing stable difference methods for the initial boundary
value problem for the linearized equations of gas dynamics in one space dimension using the implicit time
differencing methods considered by Beam and Warming [2]. Centered spatial differences are used in the
interior. We investigate the stability of this class with two forms of extrapolation for the scalar outflow
problem. (We consider the problem of specifying data in the primitive variables and computing in terms
of the conservative variables in the interior.) We show that the whole class of methods is stable for the
subsonic inflow and outflow problems with various data specifications and extrapolation methods. We also
show that the methods considered are stable for the solid wall boundary problem when we set u 0 and
use one-sided differences in the other equations.

Key words, gas dynamics, initial boundary value problems, difference methods

1. Introduction. The main problem which we consider here is that of constructing
stable difference methods for the initial boundary value problem for the equations of
gas dynamics. We investigate the class of implicit time differencing methods which
has been considered by Beam and Warming [2] for computations in aerodynamics.
We use second-order centered differences to approximate spacial derivatives at
interior points. This class of time differencing methods includes one- and two-step
methods of first- and second-order accuracy.

We begin in 2 by investigating the stability of eight different methods of the
class of Beam and Warming for the scalar outflow problem. We consider two different
extrapolations. The stability of some of these methods has been proved earlier [3].
These results are included in our unified treatment.

We discuss boundary conditions which yield well-posed problems for the linear-
ized Eulerian equations of gas dynamics in 3. Since we regard this as a pilot study
for problems in two and three space dimensions we restrict this discussion to boundary
conditions for the differential equations which can be extended to yield well-posed
problems in more space dimensions.

The conservative and primitive variable forms of the equations are both discussed
and we relate boundary conditions for these two formulations. We conclude 3 with
a discussion of boundary approximations whose stability follows immediately from
the analysis of the scalar problem in the preceding section.

In the last two sections we consider approximations which utilize boundary data
specified directly in terms of the primitive variables p, u and p as opposed to
combinations of them such as Riemann invariants. In 4, we treat the open boundary
problem using the normal mode analysis technique described in [3]. In particular, we
are able to show that all methods considered are stable for the subsonic inflow problem
if p and u are specified at the boundary and p is extrapolated linearly in space to the
boundary from the interior (Theorem 4.1). We also show that all methods are stable
for the subsonic outflow problem if u or p is specified at the boundary and p, and p

* Received by the editors November 12, 1980, and in revised form October 26, 1981. This work was
supported by the National Aeronautics and Space Administration-Ames University Consortium Interchange
NCA2-0R745-004, by the Swedish Natural Science Research Council F4370-101, and by the Office of
Naval Research under contracts N00014-75-C-1132 and N00014-80-C-0076.

f Department of Computer Sciences, Uppsala University, Uppsala, Sweden.
t Department of Computer Science, Stanford University, Stanford, California 94305.
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or u, respectively, are linearly extrapolated from the interior (Theorem 4.2). This
extrapolation can also be done in conservative variables. The supersonic cases follow
immediately from the scalar results.

We treat the solid wall boundary problem in 5, using the so-called energy
method [6]. This is the only method known to be valid in this situation. We show that
all of the implicit methods considered are stable if we set u 0 at the boundary and
use one-sided differences in space in the t and p equations (Theorem 5.1).

2. Description of the methods and analysis o| the scalar outflow problem. In this
section we consider approximations of the scalar problem

ut aux, O <- x < oo, O <-_ t,

where a >0 is a constant and initial data are given at 0. The solution of this
problem is uniquely determined by the initial data and one cannot specify the solution
at x 0 for >0. A mesh is defined to be the set of points (xj, tn) with xj =/’h,

0, 1, 2. , and tn nk, n 0, 1, 2, , where h > 0 and k > 0. We use the notation
u’] u(xi, t,) for a function defined on this mesh. The differential operator O/Ox is
approximated by the difference operator Do defined by

(ui+l -ui_l)/2h.Dou
Beam and Warming [2] defined a general class of approximations for

Ou__i aDouj
Ot

by

(2.1) z(E)u ’] katr(E)Dou "/.
Here E is the shift operator defined by Eu’] u’] +1. z(E) (the notation p(E) is used
in [2]) and r(E) are second-degree polynomials defined by

(2.2) -(E) (1 +)E2- (1 + 2)E +

(2.3) tr(E) OE: + (1-O +k)E -ck.
The general scheme can be written

(2.4) (l+sC)u’+: (1 + 2)ui
In [2] the most well-known methods of type (2.4) are listed. We list those methods
which we discuss here. We add the two-step backward Euler scheme, which we also
consider.

TABLE 2.1

Method

1. Backward Euler
2. Two-step backward Euler
3. Trapezoidal (Crank-Nicolson)
4. Backward differentiation
5. Adams
6. Lees
7. Two-step trapezoidal
8. A-contractive
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These methods are all implicit and unconditionally stable for the Cauchy problem.
Equation (2.4) cannot be used at x 0. The difference equations require an extra

boundary condition and we consider two types of extrapolation: space extrapolation,

(2.5) A+Uo 0, q >= 1,

where

and space-time extrapolation,

(2.6)

where

A+U U 1--Ui,

(- )qUA+ o =0, q>l

-a/u7 uT:: u T.
If q 2 these formulas are equivalent to linear extrapolation, (2.5) extrapolates in
the x-direction and (2.6) along diagonals in the (x-t)-plane. The extrapolation (2.5)
with q 2 is equivalent to using (2.4) for/" 1 if D/ h-lA/ is substituted for Do. If
either of these extrapolations yield stable methods and q ->_ 2, we will obtain an O(h 2)
convergence rate in space [4].

THEOREM 2.1. I[ the space extrapolation (2.5) is used with the methods (2.4) in
Table 2.1, then the resulting methods are all stable]or the initial boundary value problem.

THEOREM 2.2. ff the space-time extrapolation (2.6) is used with the methods (2.4)
in Table 2.1, then the resulting method is unconditionally stable with backward Euler,
trapezoidal, backward differentiation, Adams and A-contractive time differencing; is
conditionally stable ]’or trapezoidal (Crank-Nicolson time differencing ]’or A ak/2h <
1; and is unconditionally unstable for the remaining time differencing methods.

The stability definition for the initial boundary value problem used in the formula-
tion of these two theorems is that of Gustafsson, Kreiss and Sundstr6m [3, Def. 3.3].
We will use the normal mode technique developed and justified in that paper to prove
both of these theorems. We will develop the structure of the arguments and the use
of the theory in a general way before we turn to the details of the two proofs.

Results obtained by means of normal mode analysis are based upon the behavior
of solutions of the so-called resolvent equations. These are formally derived from
(2.4), (2.5) and (2.6) by substituting u7 z"vj where z is a complex number. We
obtain, respectively,

(2.7) [(1 + :)z 2 (1 + 2:)z + :]vj kaDo[Oz 2 + (1 0 + b )z b Ivy, ] 1, 2,...,

(2.8) A+vli=o=0,
(2.9) A+(zq-vj)l=o 0.

The general solution of (2.7) which is bounded as/" o for Izl > 1, can be written in
the orm
(2.10) v VoK,
where K is the root of the characteristic equation

(2.11) [(1 +sO)z2-(1 +2sC)z +s]r =h(r,2-1)[Oz2+(1-O+)z-qb],
such that Ir l< 1 if Izl> 1.

Equation (2.11) is formally obtained from (2.7) by substituting v rJ. It follows
from the discussion following Lemma 5.1 of [3] that only one root of the quadratic
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(2.11) has modulus less than one. This is an immediate consequence of the stability
of (2.4) for the Cauchy problem and justifies (2.10). It is proved in [3] (see Lemma
10.3 and the following sentence) that our approximations are stable for the initial
boundary value problem if, and only if, (2.7) with boundary condition (2.8) or (2.9)
has no nontrivial bounded solution of the form (2.10) for Izl->-1 (note that one must
include Izl 1). This is established by substituting (2.10) into (2.8) or (2.9) and showing
that Vo=0. When Izl-- 1, one or both of the roots of (2.11) may have modulus one.
If this is the case, the x in (2.10) is defined by continuity to be that root which is the
limit of the root K (z’), [K (z’)[ < 1 for Iz’l > 1, as Iz’l + 1.

Proof of Theorem 2.1. If we substitute (2.10) into (2.8) we find that v0 0 unless
1, which can only happen when Izl 1. If 1, the right-hand side of (2.11)

vanishes so that 1 only at the roots of r(z)= 0. r(z)= 0 has the roots z 1 and
z /(1 + :). is real, so IU(1 + :)1 1 can only occur when -1/2 which yields z -1.

We examine the point z 1 first. We consider a perturbation z 1 +6, 6 >0,
write 1 + e, substitute into (2.11) and obtain

(1 + )2,-(1 + 2)8 2xeEo + (1 +4,- 0)- 4,] +0(,2).

Consequently e 6/2A >0 for 6 sufficiently small. Thus, the root K 1 of (2.11) at
z 1 is not the limit of roots of modulus less than one and need not be considered
for any set of parameters :, 0, .

Now we consider the point z 1 with , and make the perturbation analysis
for z -1- 6, 6 > 0, in the same way as before. We obtain

e =6{2X [2(0-)- 1]}-a

and find that 1 + e > 1 if and only if 0- > 1/2.
Proof of Theorem 2.2. We now substitute (2.10) into (2.9) and find that Vo =0

unless z . We substitute z x into (2.11) and get

(2.12) [(1 + sC)z- (1 + 2:)z +tj]z=,(z-l)[Oza+(l+-O)z-].

From our proof of Theorem 2.1 we know that z 1 is a root of this equation and
that (z 1) 1. Therefore we may divide (2.12) by (z- 1) to get

(2.13) [(1 +)z -$]z =X(z + 1)[OzZ + (1+ O)z -].

We now consider several different cases.
Methods 2, 6, 7 ( 1/2). In this case z + 1 is a factor of (2.13). If we consider

the perturbation z =-1-6, 6 > 0 with K =-1-e and substitute into (2.11), we find

e -6{2X[2(0-)- 1]}-a.
Therefore, e < 0 and I1< 1 if and only if 0- > 1/2, which implies that such methods
are unstable. Referring to Table 2.1 we find that the Lees method, the two-step
backward Euler method, and two-step trapezoidal method satisfy 0- > 1/2 and are
therefore unstable.

Methods 1, 4 (0 1, 0). Equation (2.11) is now

[(1 + :)z -:]z a (z + 1)z 2.
If we divide out the root z 0 which does not concern us, we get

(2.14) z2-(1 h+ ’- 1)z +=O.h
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The roots z and z2 o this equation are either real or complex conjugates. The
condition Izl I implies that either z 1, z 1, or z lz2 1. We have already treated
the case z 1, which causes no trouble. If z =-1 then : =-1/2, which is not true for
methods 1 and 4. If zz2 1, then h . This means that the only nontrivial situation
is h =1/2 for method 4. But then (2.14) implies K =z 1, which we have already
discussed. So methods 1 and 4 are stable.

Method 3 (trapezoidal). This method was said to be stable with (2.6) in [3]. The
correct stability condition is < 1, JR. Beam, R. Warming, and H. Yee, private
communication]. (The same condition is also valid with the boundary condition

n+l
Uo =Uo+2X(uT-uo),

as shown by Sk611ermo [7].)
Method 5 (Adams). We substitute the parameter values s 0, 0 43- and b 1/4

into (2.13) and get

(2.15) 3hZ 3 +(3h --4)Z2+AZ +h =0.

We will use a continuity argument. If h 0, (2.15) has two roots Zl,2--0. If h is small
Zl-X//2, z2//2, and z3 is real and large in magnitude. Let h increase. In
order for us to have [z I- 1 for some h, z must be +/- 1 or z must first be a double root
of (2.15) on the real axis. We can rule out z -1 immediately since it does not satisfy
(2.15). Obviously, -1 <Zl <0 for h >0 since (2.15) has no root z =0 for h >0. To
have z2 or Z3 with complex and Z2 and z3 conjugates implies ]x[ ]z2[ "-[Z3] 1.
Since zxz2z3 -1/2 we must have z =-1/2. But -] is a root of (2.15) only for h =1/2
which has -1 z2 z3 1. So the method is stable.

Method 8 (A-contractive). We substitute the parameter values =-61-, 0 =,
b into (2.13) and obtain

(2.16) lOhz3+(14h-15)z2+(8h-3)z +4A =0.

We use a continuity argument as in the previous case. When h is small we have
4A/3 and z3 is large in magnitude As before, if we are to have a z-valueZ1 -- Z2

on the unit circle then one of the roots must take on the values z 1 or z 1 as h
increases. Again, h 1/2 yields a double root Z z3 1 and -1 < z2 < 0. As before
z +i must be the solutions of (2.16) but this is impossible for any h > 0 and stability
is proved.

This concludes the proof of Theorem 2.2.

3. The Euler equations and characteristic extrapolation. We now consider the
initial boundary value problem for the linearized Eulerian equations of gas dynamics.
p is the density, u is the velocity, and p is the pressure of the fluid. We linearize about
a constant state fi, t,/ and obtain the equations

+ =0,

which we also write as

(3.1) Ut +AUx =0.

The variable 3’ is the ratio of specific heats at constant pressure and constant
volume. The state variables p, u and p are often called the primative variables.
Alternatively, these equations can be written in terms of the so-called conservative
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variables p, m pu, and e, where m is the momentum and e is the total energy per
unit volume. We assume that we are dealing with a perfect gas. In this case we can
relate e to the primitive variables via

2p pu
(3.2) e

y-1 2"
The linearized equations in conservative variables are

p 0 1 0 p
m + 2

(3 )
rn
-7 y-1 rn =0,P

rn 3" 3(1 -y)n2
e +(y-1)-- --+ 3"7 e

P P 2 p_

which we also write as
(3.3) V, +BVx 0.

The linearized relation between the two sets of variables is

(3.4) V=EU

where
1 0 0

E= a 0
^2u 1

We can now formulate our initial boundary value problem. We look for solutions of
(3.1) or (3.3) on the domain 0=<x < oo, t->_0 satisfying an initial condition. We must
also specify boundary conditions at x 0 for > 0. We will consider several different
cases. We will only consider those boundary conditions which can be extended to
yield well-posed problems in two and three spacial dimensions. The eigenvalues of
the matrices A and B are t, and t +c where c //33"/t3 is the local sound speed.
The number of boundary conditions given at x 0 must equal the number of positive
eigenvalues of A or B.

Supersonic inflow. If d > c we have supersonic inflow. In this case all variables
must be specified at the boundary and stability follows trivially for all of the difference
approximations we are considering for both systems, (3.1) and (3.3).

Supersonic outflow. I a <-c we have supersonic outflow. In this case none of
the variables may be specified. If all of the variables for either system (3.1) or (3.3)
are extrapolated using any of the stable extrapolations discussed in 2, the resulting
method is stable. In order to see this, we need the transformation of systems (3.1)
and (3.3) to diagonal orm. We define the matrices

T= :c 1

-c 1

and

r 2c2-(3’- 1)t2 2(3"- 1)t -2(3"- 1)1
$ -2ct +(3"- 1)d 2 2c -2(3"- 1)d 2(3"- 1)|.

2ct +(3’- 1)t 2 -2c -2(3"- 1)t 2(3"- 1) J
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Then we can transform A and B to diagonal form using T and $, i.e.,

TAT-1 A, SBS-1 A

where A diag (u, u +c, u-c). If we now use the approximation (2.4) for equation
(3.1), we have

(3.5) (1 +:)U’+ -(1 +2)U’+ +$U’ =-kADo(OU’+z +(1-8 +4,)U’+ -q,U’).

If we now multiply through by T- on the left and substitute W’ T- U’], we obtain
a diagonal system. The boundary extrapolations (1.5) and (1.6) are now written in
terms of W and do not couple the components of W. Thus, the equation (3.4) and
accompanying extrapolation (1.5) or (1.6) are just a collection of scalar equations and
the results of 2 apply directly. This same argument applies to the approximations
(2.4) of equation (3.3).

Subsonic inflow. If 0 < t < c we have subsonic inflow. In this case, A and B have
exactly two positive eigenvalues so two boundary conditions are required. It has been
shown [5] that we can give

1) pandu, or
2) C2O --p and cu +p,

for the system (3.1). The variables specified in 2) are the first two components of
W T-IU. These conditions can be extended to boundary conditions which yield
well-posed problems in two and three space dimensions (see [5]). If we gave p and p
we would get a well-posed problem in one space dimension, but this condition cannot
be extended to more space dimensions and we will not consider it here.

If we use the approximation (3.5) in all interior points and use the extrapolation
(2.5) or (2.6) in the variable cu -p, then we can use the scalar results of 2. We can
solve for all three variables on the boundary in terms of data and values at interior
points. We use the diagonalization argument of the previous subsection with the fact
that the extrapolated values are bounded to obtain

RESULT 3.1. If we use an approximation (3.5) with an extrapolation of the form
(2.5) or (2.6) of cu-p, which has been shown to be stable [or the scalar problem in
2, then the method is stable with either one of the inflow boundary conditions, 1) or 2).

Suppose we use an approximation (2.4) of equation (3.3) with conservative
variables. Then Result 3.1 can be applied simply by using the relation (3.4).

In 4 we will consider the problem of extrapolating p with boundary condition 1).
Subsonic outflow. If -c <t <0 we have subsonic outflow. In this case, one

boundary condition is required. It has been shown [5] that specifying
3) uor
4) por
5) cu+p

yield well-posed problems. Using the same arguments as above we obtain"
RESULT 3.2. If we use an approximation (3.5) with extrapolation of the form (2.5)

or (2.6) of c2p -p and cu -p, which has been shown to be stable ]’or the scalar problem
in 2, then the method is stable with any of the outflow boundary conditions 3), 4) or
5).

We can apply this result to computation with the conservative variables as
remarked earlier.

We consider extrapolations of O and u or p in 4.
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4. The Euler equations with other extrapolations.
4.1. Subsonic inflow. We reconsider the subsonic inflow problem and investigate

an extrapolation of p with the specification of p and u. The homogeneous form of
the boundary conditions for the stability analysis is

(4.1) po 0, u0 0, po 2pl -p2.

THEOREM 4.1. All of the approximations (3.5) and the analogous approximations
in terms of conservative variables with parameter values in Table 1 are stable with the
boundary conditions (4.1).

Proof. We rewrite our approximation (3.5) in the form

(4.2) "r(E)U. + ho’(E)A(Ui Ui )=O,

where -, r and h were defined in 2. The corresponding resolvent equations are

(4.3) "r(z) + htr(z)a (g.r+ 0/-1) 0

for the interior points and

(4.4) o O, to O, /3o 2/31-/32
for the boundary points.

The general solution of (4.3) can be written

U(1):/1 U()/ +a3U(3)(4.5) Oj=al +a2

where the K,’s are roots of the characteristic equation

(4.6) det Q 0

with

;xr(z)(2-1) 0

Xtr(z)(x 1Q(:) 0 a

0 y/3htr (z)(r 2-1) a

where
c (z) + aXr(z)( 2-1).

The vectors U(’) are solutions of

O(r’)U() O, rn 1, 2, 3.

The scalars a. in (4.5) are determined by the boundary conditions (4.4). We must
show that a a2 a3 0 for Izl >-- 1 and Ix, -<- 1, m 1, 2, 3.

It is easily seen that the ’s satisfy

(z) + axr(z)(]- 1)= 0,

(4.7) "r(z)r2 + 03 + c)htr(z)(K 1) 0,

"r(z)3+(a-c)ho’(z)(r,- 1)=0,
where, as before, 1,, 1< 1 for [zl> 1, m 1, 2, 3.

The corresponding eigenvectors are

(4.8) U(= U()= /
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We note that the three terms in (4.5) are linearly independent when there are multiple
eigenvalues K,, so that the general solution can always be written in the form (4.5)
with the Ut"*) given by (4.8).

If we substitute (4.5) into (4.4) we obtain the conditions

(4.9) al+a2+a3=O, a2-a=O, (t2-1)2a2+(ta-1)a3=O.
The condition for a nontrivial solution of (4.9) becomes

(r2-1)2+ (r3-1)2 0,
i.e.,

(4.10) /2 1 "" i(a:3-- 1).

From the last two of the equations (4.7) we obtain

(4.11) r2-1 (a -c)(r3 + 1)K2
-1 (a +c)(2+ 1)"

Let

u+c

where -1 < b < 0 since the flow is subsonic inflow. Equations (4.10) and (4.11) imply

(4.12) -(1 + bi)r, + (1 b + 2i)t3 b(1 : i) 0.

If b =-1 then (4.12) becomes

x:2ir,3-1 =0,

which has the double roots 3 +/-i.
We now use a continuity argument letting b increase rom b =-1. We will see

that (4.10) forces K2 outside the unit circle and that once r2 goes outside the unit
circle it can never again be inside it as long as b < 0. Let

b=-l+8, 0<8<<1, r3=(i+e), lel<<l.
Consider (4.12) with the upper signs. Then

2 (1-i)8
e --e+=0,

1-i +8i 1-i

which has the solution

1 + (83/2)e -ix/-d+---+O
(The other possible value of e would yield Ix3l> 1.) The eigenvalues K2 and r3 can
now be expressed as

8 3/2),3 i(1 -/+0(8))++ 0(8

x2 x/- i(1 -) +0(83/z)

where

8 (83/2)+ + o >
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Now consider (4.12) with the lower signs. Proceeding in the same way we again find

IK21 > 1. Thus, i there is to be a nontrivial solution or Izl--> 1, then K2 must pass
through the unit circle for some value o b in the interval -1 < b < 0. Let K3 x 4-iy,
where x and y are real. Then

K2 1 :F y -t-i(x 1)

subject to

IK 2i2 (x 1)2 + (y :F 1)2= 1.

Figure 4.1 shows the location of KE, K3 in the (x-y)-plane. We note that K2 and K3 are
always in opposite half-planes. The second and third of the characteristic equations
(4.7) yield

upper sign

lower sign------

Y

k x\--. / 2 lower sign

\ (2 upper sign

\ /
\ /

x

FIG. 4.1

-1

Since IK I-- x we can write K2 e for real 0. If we substitute this above we get

(4.13) 3 -3=i2b sinO.

Since b is real we have either
2 y2x + =1 and y=-b-sinO

or

x 0 and Y + y-1 _2b-1 sin 0.

It follows from these relations that 0 0 is the only possibility, i.e.,

(4.14) K2 K3 1.

Note that we have been investigating the behavior of K2 when 3 is inside the unit
circle. To conclude this part of the argument we must investigate the other case, i.e.,
we must exchange the roles of 2 and 3. The argument goes just as above" we obtain
(4.13) with K3 replaced by K2 and b -1 replaced by b. We again arrive at (4.14). From
the analysis of the scalar problem in 2 we know that 3 1 is impossible for Izl>_- 1.
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The results or the conservative variable approximations follow immediately by
the transformation E of 3. This concludes the proof of Theorem 4.1.

4.2. Subsonic outflow. We now consider extrapolations in primitive and con-
servative variables for the subsonic outflow problem. The method (3.5) or its analogous
formulation in conservative variables is used at all interior points. The boundary points
may be computed through any one of the following methods (stated here in
homogeneous form):

(4.15) O0 201 --02, U0 =0, P0 201 -P2,

(4.16) 0o=20-0, uo=2u-u, p;=O,

(4.17) 0g =20"1-02, mo=2ml-m2, po=0.

THEOREM 4.2. All of the methods in Table 2.1 are stable with any one of the
boundary approximations (4.15), (4.16) or (4.17).

Proof. The general form of the solutions to the resolvent equations is again (4.5).
The boundary conditions (4.15), (4.16) and (4.17) yield the following conditions on
the coefficients a,,, respectively"

(/(1 1)2a1 +(/(2 21) a2 + (/(3 1)2a3 0,

(4.15a) a2 -a3 =0,
2(2-1) a: + (K3 1)2a3 0;

(4.16a)

(/(1-1)2al + (/(2-1)2a2 + (/(3-1)2aa O,

(/(2-1)2a2- (/(3 1)2aa O,

a2 +a3 =0;

(4.17a)

(/(1-1)2al + (/(2-1)2a2 + (/(3-1)2a3 0,

a(r- 1)2at + (a + c)(r2-1)2a2 + (a- c)(ra- 1)2a3 0,

a2 +a3=0.

In the derivation of the second equation in (4.17a) we have used the relation rn t0
pU.

We find that a nontrivial solution o (4.15a), (4.16a) or (4.17a) must satisfy the
same condition we obtained in the proof of Theorem 4.1, equation (4.10), or that
/(1 1. The proof that/(2 and/(3 cannot satisfy (4.10) is similar to that given in Theorem
4.1. The parameter b=(-)/(+c) now satisfies -<b<-l. We again do a
perturbation calculation about b =-1. There is no root/(3 of (4.12) which is smaller
than one in magnitude near b =-1. Therefore,/(3 must pass through the unit circle
for some value of b if this method is to be unstable. However, this cannot happen
since the remainder of the argument in Theorem 4.1 goes as before. The only
requirement was that b be real and negative.

We now consider the possibility that/(1 1. If we look at the first of the equations
(4.7) and note that is negative, we can conclude that the only possibility of/(1 1
occurs at z +1. This was examined in 2 and was found to be impossible for any
of the methods in Table 2.1. This completes the proof.

Remark. There is a very good possibility that the results in this section can be
extended to a larger class of methods than that of Table 2.1. The reason for this is
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that up to the point where the condition (4.14) is derived, the proof is independent
of -(z), or(z). Accordingly, the only way to get an unstable scheme is to define z(z), tr(z)
such that there is a point Zo, IZol 1 with KE(zo) K3(Zo) 1.

$. The Euler equations with solid wall boundaries. In this section we will treat
the system (3.1) with 0 and the boundary condition u 0. This can be shown to
be a well-posed problem for the differential equations using the energy method [5].
We will use the energy method in this section to establish the stability of difference
approximations. The normal mode technique we have been using has not been justified
for problems of this typewhen the boundary is a characteristic surfacefor the
variable coefficient problem.

We will consider this problem on the bounded interval 0-<_x-<_ 1 using the
approximation (4.2) at all interior points xi =/’h, with/" 1,... ,N-1 and N 1lb.
At the boundaries we use one-sided differences, i.e.,

k
+ 0,

(5.1) Uo -0,

and

"r(E)pg +-tr(E)/(u l ug) O

-u_) =0,

(5.2) u=0,

" E pr + o" E /d u "r u "t,r O.

THEOREM 5.1. All the methods of Table 2.1 are stable with the boundary approxi-
mations (5.1)and (5.2).

Proof. The coefficient matrix can be symmetrized using the Abarbanel-Gottlieb
symmetrizer [1],

0 0

S= 0 1 0

C

If the new variables d, t and/ are defined by

O= ---S-1

the Euler equations can be written

0,+,iG=0
where

=aOb
0 b 0
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and a c//, b c/(y- 1)/y. The approximation can now be written

(5.3a)

(5.3c)

We define the vector

and the matrix

0 0

(Uj+I -Ui-1)=0, =1,2," ",N-I,

"r(E)po + -cr(E)a (t7 7 tTg) 0,

ag =0,

.r(E)ffg +kT-,(E)b(a7 ag) 0;
n

(0, 0, 1, al, 1,’" ", N-1, fiN-l, aN-l, PN N)T

0 2a 0
0 2b 0

0 -2a 0
0 -2b 0

We can now write our approximations in the form

(5.4) .r(E)" +lIcr(E)" O.

We can make M skew-symmetric by the transformation

R diag (x/, x/, 1, 1,. , 1, 1, x/, x/),
i.e.,

M R-XlIR

0 0
a b
0 0

0 0
0 0
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is skew-symmetric. Therefore, the matrix M can be diagonalized by a unitary trans-
formation Q such that

Q*MQ D

is a diagonal matrix with pure imaginary eigenvalues. After the transformations Q
and R, the system (5.4) becomes a collection of scalar equations of the form

(5.5) z(E)w +dtr(E)w O, , 1, 2,..., 3N + 1,

where the d are pure imaginary scalars. We are only considering methods which are
A-stable for ordinary differential equations, hence

Iw  1-<K (Iwl + Iw I)
where K is independent of n and ,. Since the condition numbers of Q, R and S are
bounded independently of N, we obtain a stability estimate for the original system
(4.2) with boundary conditions (5.1), (5.2).
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WHY PARTICLE METHODS WORK

J. J. MONAGHAN*

Abstract. The theme ofthis paper is that particle methods are closely related to both finite difference and spectral
methods because the three methods can be considered special cases of interpolation by kernel estimation. The kernels
for a number of special cases are given in detail, and the accuracy of the resulting interpolation is analyzed. A general
procedure for deriving equations for numerical work from the equations of hydrodynamics is described. It is applied
to the derivation of the SPH equations which conserve linear and angular momentum exactly.

Key words, particle methods, numerical hydrodynamics

1. Introduction. Although a meal can be enjoyed without understanding the
processes of digestion, numerical methods should be both understood and enjoyed.
This requirement is not merely the whim of a tidy mind, for a method once understood
can often be improved with little effort. The standard methods of fluid dynamics (e.g.
finite difference and spectral methods) meet this requirement since they are based on
well established approximation methods for functions, and their stability is at least
partially understood through the use of von Neumann’s method. Particle methods are
in a much less satisfactory state. They give a good description of a wide variety of
phenomena in plasma physics (Birdsall and Fuss (1969)) in astrophysical fluid dynamics
(Lucy (1977), Gingold and Monaghan (1977), (1978), (1982)) and galaxy simulation
(Aarseth (1972)), but the equations of motion are derived by intuitive methods which
bear little resemblance to well-known processes of analysis.

In this paper an attempt will be made to correct this discrepancy by showing
firstly that the way a function is represented in particle methods is a special case of
interpolation using information from a set of points. The interpolation procedure is
based on kernel estimation, and includes those processes which involve linear oper-
ations on the function of interest. Orthogonal function and local polynomial approxi-
mation are typical examples. It will be shown, using the same formalism, that general
equations for numerical work can be derived without specifying the details of the
interpolation method. In this way, the very close relation between finite difference,
spectral and particle methods becomes obvious.

2. Kernel estimation. The kernel estimate of the function f(r) in the domain D
is defined by

(2.1) fr(r) ft W(r, r’, h)/(r’) dr’

where the function W is a kernel with the property that

(2.2) im fo W(r, r’, h) dr’= 1.

The idea behind (2.1) is that if W can be so chosen that it mimics 8(r-r’) then
fr (r) will be close to f(r). Generally h will be chosen so that

(2.3) fr (r) --> f(r) as h 0.
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For example, we could choose

(2.4) W(r, r’, h) exp [-(r- r’)E/h 2]
(,rrh 2)3/2

In general, as in (2.4), h will be defined so that it determines the extent to which W
confines the major contribution to f: to the neighbourhood of r’ r. We shall refer
to h as the smoothing length.

For the one-dimensional case with 0 < x < 1, the choice

(2.5) W x, x’, [1 (x x ’)]",

where n is an integer, is the basis of Landau’s proof (see, e.g., Hobson (1926, Chap.
IV)) of Weierstrass’s approximation theorem (proved by Weierstrass using the one-
dimensional version of (2.4)).

Now assume, as in the particle methods, that we have a set of N points
r,r2,...,r distributed in space according to the number density n(r). We can
evaluate (2.1) approximately in the form

N W(r, rj, h)f(rj)
(2.6) fr (r) E= n(r)

with an error that depends on the degree to which the points are disordered (see 6).
If/(r) is the mass density p(r), and if o(r)= ran(r), which is the usual case in the
particle methods (where m is the mass of each particle), then (2.6) becomes

N

(2.7) pz(r) m Y W(r, ri, h).
i=1

This expression is normally interpreted by saying that the density of a point mass at

ri is smeared or smoothed out according to the smoothing function W(r, rj, h), and p
is the sum of such smoothed point masses.

We now want to show that the procedure leading from (2.1) to (2.6) or (2.7) has
an exact analogue in interpolation processes based on orthogonal function expansions
or local polynomial approximations.

If we interpolate a function in -r < x < zr by using its Fourier expansion truncated
at the Nth term (Natanson (1961)) the resulting expression can be written as a kernel
estimate

1 _I sin [(2N + 1)(x -x’)/2]
(2.8) f: (x) sin [(x x’)/2]

f(x’) dx’.

A variety of other kernels can be used (e.g. Fejer’s, Jackson’s or Poisson’s) depending
on the way the limit of the Fourier sum is defined. Other orthogonal function
expansions can also be written as kernel estimates with kernels that may be written
in a compact form using the Christottel-Darboux formula (Appendix).

If the function values are given at the points xi =]zr/N we can write (2.8) in the
form

1 N sin [(2N + 1)(x x)/2]E f(x)(2.9) f(x)
2N=-+ sin[(x-xi)/2]

which is exact for functions in the form of a truncated Fourier expansion. We can
interpret (2.9), as we did (2.7), in terms of the smoothing of the function values about
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the points where they are defined. The particle methods and orthogonal unction
interpolation are therefore similar--they can both be based on kernel estimates and
they both involve smoothing operations. They only differ in the type of kernel used
and the errors involved in going from the integral expression (2.1) to its approximation
by a summation. Of these differences the first is trivial since the particle methods can
use arbitrary kernels (we could, for example, use the kernel in (2.8) in the one-
dimensional version of (2.7) to produce a hybrid particle-spectral interpolation). The
second of the differences is the more important and we discuss it further in 6.

When interpolating by orthogonal functions it is natural to examine the sum of
the truncated series which then leads naturally to the kernel estimate. Representations
of the form (2.7) are then a convenience for numerical work. The reverse is true for
local polynomial interpolation since the natural representation is a summation similar
to (2.7) while the kernel representation is a convenience for the analysis.

All the standard local polynomial interpolation formulae can be converted from
summations to kernel representations of the form (2.1) and their relation to other
interpolation methods seen clearly. As a simple example consider the function f(x)
given at equi-spaced points x. =jh (j 0, +1, +2,...). The interpolation function is

(2.10) f(x) := h Y’. f(xi)L(x-xi, h),

where

(2.11) L(u,h)={ (1-iul/h)’ lul<-h’
O, lu[ >-h.

(If the interpolation is only required in a < x < b, the only points that can contribute
to (2.10) are those in a -h < x < b + h.)

The form of (2.10) suggests that we define the kernel estimate equivalent to the
linear interpolation (2.10), to be

(2.12) fr (x) I_ L(x x’, h)f(x’) dx’.

Since L has argument x -x’ and the domain is -<x < c, the integral in (2.12) can
be evaluated with negligible error by the trapezoidal rule and (2.10) is recovered.
This example shows that linear interpolation can be considered as a kernel estimate
with a special kernel.

If higher accuracy local polynomial interpolation is required, it is necessary to
use polynomials of higher degree. The kernels for Bessel’s interpolation (up to and
including second differences) and the symmetric Lagrangian interpolation formula are
given in the Appendix.

The various examples described here and in the Appendix show that the pro-
cedures used to estimate functions in particle methods are a disguised form of the
standard interpolation methods used in numerical analysis. The major difference
between the methods is that spectral or local polynomial interpolation normally uses
a fixed set of ordered points while the particle method interpolates from a moving
set of points which are usually disordered.

3. How to derive equations |or numerical work. The procedure we adopt to
construct equations suitable for numerical work is the following. Each of the exact
equations is multiplied by a kernel and then integrated over the solution domain.
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Integration by parts, possibly with further approximations to deal with nonlinear
terms, then produces equations for the kernel estimates.

As a simple example, consider the one-dimensional continuity equation when
the velocity v is a constant in space"

+V=0, --oO<X <0%(3.1)
t x’

with the initial condition

p (x’, 0) G (x’).

The first step of the procedure produces the equation

(3.2) W(x-x’, h) ---O- +v dx’=O.

Integration by parts shows that

(3.3) Op.___ + v O,
0t Ox

which is to be solved with the interpolated initial condition

(3.4) o(x, o)= [ W(x -x’, h)G(x’) dx’.

Equation (3.3) is exact regardless of the kernel we use in the kernel estimate.
If we use the linear interpolation estimate (2.10), then p(x) p(x), and with the

derivative defined from the right, (3.3) becomes

0 V [p(Xi+l)
(3.5) OS p(x,) +

h
O.

If we use the particle method with the Gaussian kernel, p becomes

exp [-(x -x)/h]
(3.6) m E

= h4
and the continuity equation (3.3) is identically satisfied at each particle because
dx/dt v and then

d
aSo(x) 0,

which is (3.1).
The advantages of the procedure described are that (a) in the linear case if the

exact equations are satisfied then so are the equations for the kernel estimates, and
(b) since the kernel need not be specified until the last stage, the relationships between
different methods are obvious. The procedure has the further advantage that when h
is allowed to vary in space and with time, valid equations can be derived without
difficulty.

4. The particle equations for a fluid. The example shown in 3 was linear, and
the equation of motion for the kernel estimates was exact. We now consider fluid
dynamical equations where the existence of nonlinear terms will require further
approximation. To keep the analysis simple we shall confine our attention to
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nondissipative motion in a gravitational field and use kernel estimates for the particle
method (SPH) which does not employ a grid. The exact equations are

d 1
(4.1) d- v= VP VcP,

P

(4.2) V2cP 4"n’Gp,

(4.3)
dp +pv v O.
dt

If we multiply (4.1) by the kernel and integrate over the solution domain assuming
that h is constant in space and time, the acceleration term becomes

(4.4) (d) (0t+ (v. V)v v: + ((v. V)v),.
K K

The nonlinear term can be approximated according to

(4.5) ((v" V)v)rv (Vv)r (v V)v:,

where integration by parts has been used to rewrite the combination Vv. We assume
here, and in the remainder of the paper, that either W or the variable or both vanish
on the boundary. This is the case for astrophysical hydrodynamics where the boundaries
can be taken at infinity. Other problems may, however, introduce surface terms, both
in (4.4) and in the force terms.

The errors in (4.5) are comparable to the truncation error, and are therefore
consistent with the kernel estimate. The acceleration term can therefore be taken as

v + (v V)vx,
Ot

(4.6)

and in the particle method this is
d

(4.7) d- v.

The pressure term can be written in various forms, but there are two which are
attractive because they result in exact linear and angular momentum conservation.
The first from results from noting

(4.8) V___P:p V()+-Pzp Vp,

so that, with approximations which are obvious,

(4.9) (Vi) V()g +gpg Vpg.

Referring now to (2.6) and using subscripts to spedfy function values at particles gives

(4.10) m Z W(r-r),
K i=Pi

so that the right-hand side of (4.9), when evaluated at particle i, becomes

,4.11) m ,=x (+)VW(r, -r,, h),

where means that the gradient operator acts on the variable r.
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If W(u, h) is an even function of u, then V W(r-rj, h) will be anti-symmetric
in and f. Accordingly

(4.12) (PJ Pi)viW(ri_r,h)=O,
and the contribution of the pressure to the rate of change of the total momentum
vanishes.

The second form for the VP/o term follows from the relation

(4.13) V___P_
P P

so that

(VP) 2x/: V(x/)r.(4.14) -O- :-
At particle i, the right-hand side of (4.14) becomes

(4.15) 2m , ViW(ri-ri, h),
j=l Pi j

and the contribution of the pressure to the rate of change of the total momentum
vanishes. It is easy to show that the total angular momentum also vanishes. These
results are of course obvious when it is recognized that the forms we choose for VP/o
are equivalent to specifying forces between particles which act parallel to the line
joining their centres.

The gravitational force term becomes

(4.16) -Vq:,

with

(4.17) V2(I)K 4zrGO:.
The latter equation follows from (4.2) using the kernel procedure.

The solution to (4.17) is

W(r-r, h)
(4.18) *:(r) =-Gin | dr’,

so that
N

(4.19) x(r) =-Gin K(lr-r,], h),
=1

where K is defined by the integral in (4.18).
This procedure for c is exact though not necessarily the most efficient. It has

been used in SPH because useful results in astrophysics can be achieved with N 103

when direct summation is acceptable. The gravitational force computed from (4.19)
clearly leads to linear and angular momentum conservation.

Combining (4.7), (4.11), (4.16) and (4.19) we find

(4.20)
dt2

m + 7W(r-rj, h)+Gm VK(]r-ril h)
\Pi

which is the equation of motion for particle in the SPH method.
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When we apply the kernel procedure to the continuity equation (4.3) it becomes

0

Ot tar + V" (tav)r O,

so that

d
(4.21) d-- tar + V. (tav)r -vr Vtar =0.

At particle i, (4.21) can be written

d N

(4.22) d-tar(ri)+m (v-vi). ViW(ri-r,h)=O,

and this equation is identically satisfied since, from its definition, dpk/dt is

N d
m ,E1"= - W(ri-rj, h).

With this particle method the continuity equation is satisfied exactly locally, that is
at each particle, and total mass is conserved exactly.

5. Energy conservation. We have already noted that, for consistency, the kernel
estimate should be used for both the equations and the boundary conditions. The
appropriate form of the energy equation results if we also apply the kernel procedure
to the energy equation. For the example considered in 4 the thermal energy equation
is

de=-Pv.v.
dt p

The kernel procedure results in

(5.2)
dt

The nonlinear term in (5.2) can be written in various ways, but consistent energy
conservation only results if it is written in a way which corresponds to the form of
the pressure term in the equation of motion. Recalling the steps that led to (4.11),
we write (5.2) in the form

de:_-(V" (Pv) v(P))(5.3) dt- --- +v"

which, with the approximation used in (4.9), is

der_ V (P-) +v V()(5.4)
dt

If (5.4) is evaluated at particle i, and summed over all particles, the total rate of
change of thermal energy is found to be

(5.5) d (e)i=m
ai

Vi ViW(ri-r, h)

so that (see (4.11))

d--i (eK)i=i Vi"
K,i
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and the work done by the pressure forces is, as expected, at the expense of thermal
energy. In the derivation of (5.5) we have assumed W(u, h) is an even function of u.

If (4.15) is used in the momentum equation, then (5.2) should be written in the
form

deK= x/ffV (v x/) +(5.6)
dt p .

which results in

rid
E(er)i=2m 2, vi V,W(r,-rj. h).

PP

The ravitational energy E is defined by

(5.7) Eg := - I-’1
dr’ dr= 0(r’)*(r’) dr’,

and we define its smoothed value for the particle methods as

1
(5.8) (Eg)r := m 2r(r).

Referring to (4.19), we find from (5.8) that

d
(5.9) d (Eg)r m 2 v. Vr(r),

and the work done by the gravitational forces is at the expense of the gravitational
energy.

By taking the scalar product of v and (4.20), and summing over all values of i,
we find

d 1 d d

so that, with a consistent treatment of the energy terms, the method conserves energy.
The derivation of the energy equation for the case considered here is a simple

exercise. If, however, the smoothing length is allowed to vary with time, then the
procedure we have adopted allows corxect account to be taken of this time variation.

6. Accuracy of kernel estimates. If the integration for the kernel estimate can
be carried out with no error, the accuracy of the kernel estimate is determined by the
kernel. If we use orthogonal function interpolation the error can be expressed (for-
mally) in terms of the terms omitted from the truncated series. For the other kernels
we have considered, the accuracy can be estimated by expanding the function f(x’)
in the integrand of (2.1) about the point r’ =r. We shall assume that the Taylor
expansion is valid, and work in one dimension for simplicity since the results are easily
generalized.

With the assumptions stated,

(6.) &(x) W(u,h) (x) uf(x)
u

+--f’(x) du.
2

It is convenient to choose

(6.2) W(u, h) du ,
d--
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rather than require it to be true in the limit h 0 as in (2.2). The error terms involving
odd powers of u vanish if W(u, h) is an even function of u: the usual choice for
particle methods. Any kernel which is an even function of its argument is therefore
at least equivalent to linear interpolation.

To achieve higher accuracy it is necessary to choose kernels for which successive
even moments (excluding the 0th) vanish. The Bessel interpolation (kernel B in the
Appendix) has the property that (6.2) is satisfied and

(6.3) I_ ukB(u’h)du=O fork=l, 2,3,

so that

&(x) =f(x)+O(h’).

For kernels belonging to the Gaussian family, higher accuracy can be achieved
by noting (for one dimension) that

h2 du:)(6.4) 6 (u) exp
h"

Expanding the derivative operator gives rise to a succession of kernels

(i)

(ii)

_u2/h2 1
e

h .,/-’

e-U2/h2 1 (3 U2)hx/ -and so on. The first kernel achieves linear interpolation. The second kernel is equivalent
to the Bessel kernel B(u, h). In several dimensions (6.4) is generalized by replacing
d2/du 2 by V2.

Interpolation by either orthogonal functions or by local polynomial interpolation
allows the integration for fK to be carried out either exactly or with an error that is
comparable to the error of the interpolation. If the points are disordered, as is the
case for particle methods, then the integration is not exact. Estimates of the error are
sometimes made by describing the approximation of

by

W(x -x’, h)f(x’) dx’

W(x -xi, h)f(xi)
i= n(x

as a Monte Carlo estimate. If this were true then the error would be cl/x/, and
it could dominate the total error. In practice (Gingold and Monaghan (1978)) the
errors are always much less than the Monte Carlo estimate. The reason for this seems
to be that when the initial state is ordered, and fluctuations are low, the system of
particles becomes disordered, but the disorder does not produce large fluctuations
because large fluctuations require too much energy. An exception occurs when the
physics of the problem produces an instability. Even in this case the error estimate
is more likely to be that based on disordered equi-distributed numbers (Niederreiter
(1978)) that is O(log N/N).
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Experience with the particle method SPH shows that results with errors <5
percent can be achieved with ---103 particles in nonaxisymmetric fluid problems
(Gingold and Monaghan (1981)). This clearly shows that in stable flow the particle
form of the equations of fluid dynamics show no tendency to greatly amplify an initial
field of fluctuations. An analytic proof of this conjecture would be a valuable contribu-
tion to the understanding of particle methods.

Provided that the number of particles used is sufficiently large, the integration
for the kernel estimate will be accurate enough to warrant using kernels which remove
more of the higher order even moments. This accuracy should be achieved in current
plasma simulation when >20,000 particles are normally employed.

7. Discussion and conclusions. The principal conclusion of this paper is that
particle methods work because they make use of interpolation methods which are
closely related to standard interpolation methods. Of course in practice other aspects
of the particle methods contribute to their effectiveness; for example, they auto-
matically satisfy local matter conservation and they transport angular momentum
accurately.

Apart from establishing the connection between various interpolation methods,
the kernel formalism provides a safe and convenient procedure for constructing
equations suitable for numerical work. In this paper we have limited the analysis to
those problems where a constant smoothing length is useful, but in more complicated
problems it is necessary to allow h to vary with time (Gingold and Monaghan) or
with both time and position (Wood (1981)). The kernel formalism shows that, in the
former case, time derivatives of h appear in the energy equation. In the latter case
time and space derivatives appear, and in Wood’s formulation the latter have been
omitted. These problems will be discussed elsewhere.

By working with the kernel formalism, attention is naturally directed towards
choosing the kernel to have desirable properties. We have shown how the kernel
should be chosen to reduce the interpolation error. Other requirements can be easily
introduced. For example the kernel can be chosen so that all functions can have a
specified number of derivatives, or chosen so that particles are prevented from
coalescing.

The kernels currently used in plasma CIC methods smooth the density and then
area-weight to the mesh. This procedure produces an effective kernel (Gingold and
Monaghan (1982)) to which the considerations of this paper can be applied.

Appendix. In this appendix we collect further examples of kernels associated
with interpolation.

(a) Bessel’s interpolation formula. Scale x so that the function f(x) is specified at
x 0, + 1, 2, etc., and consider Bessel’s interpolation for f(x) in 0 < x < 1. When 4th
and higher differences are neglected,

[(x) (1 x if(O) + xf(1) + 1/4x (x 1)[f(2) -f(1) -f(O) +f(- 1)3

(A.1) f(0)[1-x -1/4x(x 1)] +f(1)[x -1/4x(x 1)]

+f(2)1/4x(x 1)+f(-1)1/4x(x 1).

The coefficient of f(0) shows that the kernel, if it is an even function (as we
assume), must have the form

(A.2) (1 -Ix [)(1 + 1/4Ix I)
for 0 _-< Ix[-<_ 1. Examination of the other coefficients shows that, for 1 =< Ix l-<-2, it has
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the form

(A.3) -Ix I)(2 -Ix
and is zero for Ix[ >- 2. With this kernel the interpolation formula becomes

(A.4) [(x) E f(i)B(x -i).

If interpolation is required in the domain a < x < b, points in a- 2h < x < b + 2h are
required. The summation in (A.4) can be replaced by integration since the error is
no greater than the interpolation error.

(b) Lagrangian interpolation. We assume the data points are equi-spaced and
there are always enough to allow n-point Lagrangian interpolation. To keep the
analysis simple we take n 4 and assume unit spacing.

To interpolate [(x) we use 4 points k 1, k, k + 1 and k + 2 where k is the largest
integer -<x. Then

k+2

(A.51 f(x) X f(/lL4d(x),
j=k-I

where L4,](x) is a standard Lagrangian interpolation function. We wish to write (A.5)
in the form

(A.6) f(x)= E f(/)W(x-x]).

By comparing (A.6) and (A.5) and noting that, in (A.5)

k<-x<=k+l,

we deduce that W(u) takes the form stated below for the specified domain.

Domain W(u)

(A.7)
l<_-u<-2 L4,k_a(u+k-1)
ONu<-I L4,k(U+k)

-1-<_u-<O Lu,k+(u + k + l)
-2--<u <---1 L4,t,+E(U+k+2)

The kernel is symmetric because

L4,k(--U +k)=L4,k+l(U +k + 1)

and

L4,k-I(--U +k-1)=L4,k+2(u +k +2).

If the number of interpolation points n 4, the above procedure can be easily
generalized. If n --> we find Whittaker’s cardinal function (Hartree (1958))

sin 7r(X
C(x) E f(i) -".

i=- X --f
(c) Interpolation with Legendre polynomials. For -1 <x < 1 we can use the

approximation

(A.8) f(x) E aP(x)
]--0
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where Pj(x) is the/’th order Legendre polynomial and

2j+l I [(x’)P(x’) dx’.(A.9) aj
2

Hence

(A. 10) [(x) f(x’) ’.
=0 2

which is a kernel estimate with

(A. ) W(x, x ’) 2] + 1

=0 2

The Christoffel-Darboux theorem then shows

P(x)e (x’) dx’

P(x)P(x’).

n + 1 [P,,+x(x)P,,(x’)-P,(x)P,,+x(x’)]
(A.12) W(x,x’)-

2 x -x’
The kernel is peaked at x x’ and is symmetric in x and x’, but it is not a function
of (x- x’). This creates analytical complications with derivatives since

(A.13)
d[

W(x, x dx’ [f(x W(x, x _- [(x’) W(x, x dx
dx’ dx’

The second term on the right-hand side of (A.12) cannot be written

d

as it can when W is a function of (x- x’).
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A METHOD FOR COMPUTING THE INTEGRAL OF THE BIVARIATE
NORMAL DISTRIBUTION OVER AN ARBITRARY POLYGON*

A. R. DxDONATOt AND R. K. HAGEMANt

Abstract. An efficient programmable procedure is given for evaluating the integral of the bivariate
normal distribution (IBND) over an arbitrary polygon II. The class of arbitrary polygons includes the
subclasses: simple polygons, limit elements of sequences of uniformly bounded N-sided simple polygons
with the same orientation, and self-intersecting (SI) polygons. For a given element II defined by N ordered
points in the plane, the subclass need not be specified. The method evaluates the IBND over N exterior
angular regions A1, A2,"" ,AN of II to determine the IBND for I-I. If II is SI, a quantity called the
"winding number" of II is introduced which is given by the sum of the angular measures of the Ai
(i 1, 2, , N) divided by 2zr. A detailed numerical example, using a Fortran IV program, with approxi-
mately 9-decimal-digit accuracy is included.

Key words, statistical functions, bivariate normal distribution, probability over polygon

1. Introduction. The objective of this paper is to give a procedure for computing
the integral P of the bivariate normal density function Z(w, z) over an arbitrary
polygon I, where

Z(w, z) [2rcrwrz (1-02)1/2]-(1) 2

exp {-[(.W?w) _2p(.W?’) (z ?z)+ 2/(1-0 },
with (tZw,/Xz) the mean and

the covariance matrix of the normal random variable (w, z) with correlation coefficient
p. In an earlier work [1], [2] an efficient method was given for the evaluation of

(2) P(1-I) Z(w, z) dw dz

for II C, where C denotes a convex polygon. Here we shall extend those ideas for
the efficient computation of (2) over arbitrary polygons. Greater detail is given in [3].

Transforming the variable (w, z) to the new variable (x, y) by the linear transfor-
mation (3) of [2] reduces the integrand of (2) to a simpler one with circular symmetry,
i.e.,

(3) P(II) exp [-(x 2 + y2)/2] dx dy,

where II and II have the same structure, namely if II is convex, simple, or self-
intersecting, then 1-I has the same property, respectively. Hereafter we deal only
with (3).

* Received by the editors April 9, 1981.
f Naval Surface Weapons Center, Dahlgren, Virginia 22448.
A polygon or polygonal element will always mean a finite closed continuous line, made up of a finite

number of line segments, and its interior. Its boundary is specified by N + 1 ordered points in the plane,
where the first and last points coincide.
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The approach used to find (3) over a convex polygon C of N vertices was
equivalent to evaluating the integral in (3) over an exterior angular region at each
vertex of C. An angular region is defined as the semi-infinite part of the plane bounded
by two intersecting directed straight lines. Since there are generally four such regions,
it is always necessary to specify which one is needed. An angular region A can be
specified by the distance R of its vertex V from the origin and the angles 01 and 02
which the two sides 1 and 2 of A make with the extension L of the straight line
passing through the origin and V. The angles are measured positive in the counterclock-
wise direction about V from L. This is shown in [2, Fig. 1].

Taking advantage of the circular symmetry of the integrand in (3), a rotation of
axes and a translation of the origin are made so that the new x-axis is along L and
the new origin is at the vertex of A. Introduction of polar coordinates centered at the
new origin (x R + r cos 0, y r sin 0) yields an expression for P over an angular
region, as given in [1], [2], i.e.,

_r/2{ AO 1Io u [erfc (u)/z(u)] dO(4) P(A) e
r

where

A0 02-- 01 (for polygons IA0[ <-- r),
u (R/x/) cos 0,

(5)
z(u) (2//) exp (-u2),

erfc (u)= Ju z(t) dt.

The function erfc (u)/z(u) in (4) is approximated, for u _->0 (cos 0 _->0) by a polynomial
in u obtained by a minimax procedure. The integral can then be evaluated by
recurrence relations which are given in [1], [2]. The coefficients of the polynomial are
listed in [1] for 3, 6, 9 and 12 digit accuracy. When cos 0j < 0,/" 1, 2, the additional
relation

(6) P[A(R, O, Oj)] 1/2 erfc(sin O)-P[A(R, O, 7r 0)],

is used. The details are given in [1]. For computing efficiency, when R is sufficiently
large or small P(A) is evaluated directly by approximating expressions [1, pp. 6-8].
Also, note that when R =0, P(A)= (02- 01)/27r.

We have then that IBND over a convex polygon is given by2

N

(7) P(C)= 1-
i=1

where Ai is the exterior angular region of C at vertex as shown in Fig. 1. The vertices
{(i)}, 1,..., N, are given in counterclockwise order.

We proceed to extend our results for convex polygons by obtaining a relation
similar to (7) for simple polygons.

2. Simple 0olygons. We say a simple polygon S is positively oriented (PO) if its
vertices (1), (2),..., (N) are given in counterclockwise order, i.e., the interior of S

This result for P(C) is expressed in slightly different form in [1], [2].
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A4

As
Aa

FIG. 1. Angular regions A 1,’ A6 for C, N 6.

is on the left as the boundary is continuously transversed in the direction of the
increasing successive (i). If the interior is on the right, we say S is negatively oriented
(NO).

In this section we shall show that, just as for convex polygons, the integral of (3)
can be evaluated over any N-sided simple polygon S by computing P(A), (4), for N
angular regions, where the vertex V for each A is located at (i). In fact when S is
PO then

N

(8) P(S) 1- ., P(Ai).
i=1

A glance shows that (7), for P(C), and (8), for P(S), are the same. In (7) each P(Ai)
is positive since 0 < A0i < 7r (assuming C is PO). In (8), however, this will not be the
case if the interior angle at (i) exceeds r radians. For example, in Fig. 2 the interior
angle at (3) exceeds zr, so that A3 is measured in the clockwise rather than the
counterclockwise direction. Hence -zr < A03 < 0 forA3 and, from (6) of [2], P(A3) < 0.
Note however that P(Ai) > O, 1, 2, 4.

3)
A

(2)

FIG. 2. Polygon $, angular regions Ai, 1, 2, 3, 4.

The truth of (7) for convex polygons is apparent. In the case of (8), we give a
heuristic argument for its validity which can be made rigorous.

The argument is inductive. Certainly (8) holds for N 3. Some insight is gained
by considering N 4 with S not convex, say as in Fig. 2. We see there that 1-P(S)
is obtained by considering Y. P(Ai), where P(A3), which is negative, compensates
exactly for the excessive positive contribution from P(A2). Thus (8) holds for N 4.

Now assume (8) is true for N J 1, J _-> 4. We want to show (8) holds for N J.
We look at the special case J 8 with Fig. 3, since the essentials of a more lengthy
rigorous proof are contained in the arguments for this case.
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FIG. 3. Angular regions of simple polygons D and E.

First, a diagonal B is drawn from vertex (3) to vertex (7) which remains inside
S. Such a line can always be found for any simple polygon; a proof of this fact is given
in [3, Appendix B]. The line B separates S into two simple disjoint polygons (except
for their common boundary B) with the same orientation as S. Call the separated
polygons D and E. Each has fewer than J vertices. From Fig. 3, D has vertices at
(1), (2), (3), (7), (8). E has vertices at (3), (4), (5), (6), (7). By assumption, (8) holds
for both D and E, so that, with D and E, 1, 2,..., 5, the angular regions of D
and E, respectively

5 5

(9) P(D)= 1- Y. P(D,), P(E)= 1- Y. P(E,), P(D)+P(E)=P(S).
i=1 i=1

Now with Ai, 1, 2, , 8, the angular regions associated with S, we have

(10) D=A, DE=A2, D5=As, Ez=A4, E3=A5, E4=A6.
Then with angular regions D3, D4, E, E5 as shown in Fig. 3, we also have,

P(A3) P(D3) [P(B) P(E1)] < 0,
(11)

P(A7) P(E) +P(D4) 1 P(B)] > 0,

where P(B) denotes the (positive) probability over the half-plane below the extended
line B.

From (9)
5 5

(12) P(S)=P(D)+P(E)=2- ’. P(D,)- ’. P(E,).
i=1 i=1

Now, using (10) and (11) in (12), we have

P(S) 2 P(A 1) P(A2) [P(A) +P(B P(E1)] [P(A7) P(Es) + 1 P(B)]
(13) P(A8) P(E1) P(A4) P(A5) P(A6) P(Es)

8

1- E P(A).
i=1
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This completes the argument based on Fig. 3. In order to make the proof rigorous,
it is necessary to consider the other possibilities or the angular regions at the two
vertices of $ on the diagonal B. In the case of Fig. 3, the interior angle at (3) was
greater than zr and the one at (7) was less than 7r. The three other possibilities were
checked; the arguments for these cases require nothing new and are omitted.

Up to this point it has been assumed that the vertices of a C or $ polygon were
given in counterclockwise order. In the next section it will be necessary to allow for
NO simple polygons, i.e., where the vertices are specified in clockwise order.

If S is PO, then (4) and (8) are designed so that P($) > 0. Hence we require when
S is NO that P(S)< 0. Using this fact and taking into account the sign change for

P(Ai) when the orientation of S is reversed leads directly, using (8), when $ is NO
to

N

(14) P(S)=-I- E P(A,).
i=1

Note AN+2- from (8) andA from (14) are vertical angles with their angular measures
of opposite sign, with (N + 1) (1).

If a limit element S is obtained from a sequence, {S, (N)}, of uniformly bounded
N-sided simple polygons of PO (NO), then S is considered PO (NO) and by a simple
continuity argument (8) ((14)) holds for P(S).

Our program for computing P(S) must determine whether the +1 of (8) or the
(-1) of (14) is correct which, of course, means the program must decide whether S
is PO or NO. In the next section we show how this decision is made. The correct
choice can also be made by computing the signed area of S, A(S). This follows because
the signed area of S (or of any polygon) can be expressed in terms of vector
cross-products which depend on the orientation of S (see [3, Appendix D] or [5]).
Thus if A(S)>0, then S is PO and (8) is used to yield a positive value of P(S); if
A(S)< 0, then S is NO and (14) is used to obtain P(S)< O.

A very efficient formula, which is derived in [3], for computing the signed area
of any polygon II is given by

(15) A(II) xi(Yi+l--Yi-1), Y0-----Yr, Yr+l---- Yt,
i=1

where (xi, yi) denotes the xy-coordinate location of the ith numbered point of II. The
absolute value of A(II) represents the "area" of H provided II is in {g}, but just as
for the P function, if II is SI then the interpretation of A(H) rests on the analyst. Our
program yields A (H) as an auxiliary output.

3. Arbitrary polygons. We arrive at the class of arbitrary polygons by first
extending the class {S} to include limit elements of sequences {S,(N)} of uniformly
bounded simple polygons of N vertices with the same orientation. We designate this
class by {S} and an element of the class by S, where by previous remarks P(S) is given
by (8) or (14) depending on whether S is PO or NO. This class is then enlarged to
include SI polygons, and we designate it as the class of arbitrary polygons {l-I}, where
an element of the class is denoted by H. Thus, we have

(16) {C} _c {S}
_
{g}

_
{H}.

A simple example of an element in {} and of one in {H}, but not in {}, are shown
in Figs. 4 and 5 respectively.
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51 4I
6

3
3

6

FIG. 4. An element in FIG. 5. An SI polygon.

Our objective is to show that the integral in (3) can be evaluated for any element
in {rl} by computing the P(Ai), as expressed by (4), for the N exterior angular regions
{Ai} of that element. Significantly, it will not be necessary to specify to which of the
four classes the element belongs.

It is assumed that the polygon under consideration is sequentially numbered at
all of the following points" vertices (a vertex is defined below), where two segments
meet or cross at a point, and initial and terminal ends of overlapping segments. The
numbering, as the element is traced, is in the natural order of the integers, starting
at one, i.e., starting at some point (1), each time a situation as described is met it is
numbered in sequential order until II is completely traced, where the last point (N + 1),
as noted earlier, coincides with the first point. The set of (N + 1) xy-points at which
H is numbered is denoted by G. A reduced numbering scheme can sometimes be
used for actual computations as described in [3] and noted in the numerical example
at the end of the paper.

In order to establish our results below, it is necessary to define exactly what is
meant by an SI element. We say II is SI if it is not in {}, i.e., if it cannot be a limit
element of {$n (N)}. Before characterizing this property, we introduce some definitions
and notation.

The/’th node, (/’), associates the integer with the ]th xy-point of the ordered
point set G which defines II. The set G is also denoted by (1, 2, .,/"- 1,/’,/" +
1,..., N, N+ 1) with (N+ 1)= (1). Let the /’th edge of 17, denoted by , be the
directed line segment of II originating at (/’) and terminating at (/" + 1), so that/"- 1
terminates and/" (0-= N) begins at (/’). We say/’-1 and/" are associated with the/’th
node. If only one node occurs at an xy-point, it is called a simple node, (SN). Of
course, more than one node can exist at the same point, in which case that point is
called a multiple node, (MN). We identify a particular MN by MN (/’), where (/’) refers
to the first node met at that xy-point, i.e.,/"-< k, where (k) is any node at that MN.
In Figs. 4 and 5 we have MN (3). A vertex j of II is a point of G such that/’-1 and
have different slopes. We define a path [m, n ] of II as a line made up of consecutive

edges n, m + 1, , n 1, ri, m _<-n.
Certainly a polygonal element is SI if the path [k 1, k ], formed by its two edges

associated with (k) at an MN crosses another such path [- 1,/’] at the same MN. By

(j-l) (k

(j) (k)

FIG. 6. An SI at (/’, k).

+)
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cross, we mean pass through rather than just meet. In this case, we say (j, k) is a
self-intersection point of H, or simply an intersection point, and that the element is SI
at (, k). Such a situation is shown in Fig. 6. If two paths just meet at an MN, rather
than cross, and have no other points in common, as shown in Fig. 7, then (, k) is not
an intersection point. Using these notions, it is easy to see that the polygon of Fig. 5
is SI at (3, 6), whereas the element in Fig. 4 is not SI.

(k + 1) (j + 1) /It(k-

(9 (k) (j) (k)

FIG. 7. Not SI at (j, k ). FIG. 8. SI at (], k) indeterminate.

In addition to the path configurations of Figs. 6 and 7 more subtle configurations
can occur such as those in Fig. 8 and in the polygons of Figs. 9a and 9b. In such cases
(], k) may or may not be an SI point, which points out the need for a more precise
characterization of an SI polygon. We proceed with that as an objective.

With MN (/’) denoting the MN of II at (/’), where/’ is the first node numbered at
that point, let J(/, 8) represent a disk centered at (j) with radius 8j, where/i is chosen
so small that J(/’, 8) intersects only those edges which originate or terminate at MN
(/’). We also refer to such a disk as a J-disk.

FIG. 9a. An SI polygon at (3, 8).

0

8
9

6

FIG. 9b. A polygon in {S}.

The approach now is to construct a polygon T "close" to II and simple, if possible.
If T is simple, then II is in {S}. If T cannot be constructed as a simple polygon, then
II is not in {S} and we say it is SI and in {H}.

To proceed with the construction of T, consider two successive nodes (k), (k + 1)
with 1 <_-k _<-N and (N + 1)- (1). Let Tk denote the edge of T which is to be taken
close to edge k. This segment is constructed as follows"

(A) Tk k if (k) and (k + 1) are SN.
(B) Tk =Bk if (k) is an SN and (k +1) is at MN(j), 1-<_/’<-k+1, where Bk

emanates from (k) and terminates at a point Sk+l in J(], 8). If k =N, then
require sN+1 (N + 1) (1), TN N, so that T is closed.

(C) Tk =Dk if (k) is at MN (i) and (k + 1) is an SN, 1 _-<i -<_k, where Dk emanates
from Sk, a point in J(i, 8i), and terminates at (k + 1). If k 1, then Sl (1)
so that T will be closed at (1).

(D) Tk Lk if (k) is at MN (i) and (k + 1) is at MN (/’), /’, 1 <_- -_< k, 1 _-</" _-< k + 1,
where Lk emanates from sk in J(i, ) and terminates at Sk+ in J(/’, 8). If
k N, then j 1 and s+ (N + 1)= (1) so that T is closed. For the same
reason, if k 1 then s (1).
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This construction is carried out for each k 1, 2,..., N-1, N to obtain T.
Clearly, by choosing the 8 radii sufficiently small T can be obtained arbitrarily close
to II. Now if the Sk can be chosen for any d; so that T is simple, then by choosing a
sequence of 8 approaching zero, a sequence of T’s can be constructed which make
up {S, (N)} converging to II. Hence in this case II is in {}. I this cannot be done, i.e.,
if in some J-disk paths of T must intersect (i.e., actually cross), then II is SI, since it
cannot be obtained as the limit of a sequence {$, (N)}. If an intersection takes place
in J(], 8j) between paths [Tk-1, Tk ] and [Tk+m-l, Tk+m], we say H has an intersection
point at (k, k + m).

By this characterization of S and SI elements, the polygons in Figs. 4 and 5 are,
as noted before $ and SI, respectively. In Fig. 10a a typical T-construction is shown
for the element of Fig. 9a. Clearly it is SI at (3, 8), because L7 must intersect T2 2
ot Ta in order to join La at s8.

a On the other hand, the element in Fig. 9b is in
{g} since as Fig. 10b shows T can be constructed as a simple polygon.

$8

L7
Ls

6

2

FIG. 10a. Typical T-construction for polygon ofFig. 9a.

$4 SI1 10

3 s
6

FIG. 10b. Typical T-construction .for polygon ofFig. 9b.

SI polygons should not appear often in practice. If, however, the generation of
a polygon is not under control of the analyst, say the nodes are computer assigned,
then SI polygons can occur. (See [3, Fig. 20].) Negative values of P, as well as IPI > 1,
are possible for such elements and, as in the case for NO simple polygons, proper
interpretation of such results is required of the analyst.

The main result of the paper can now be expressed by one equation. For any
element II of {l-I}, with N + 1 numbered points, (N + 1) (1), (3) is given by

N

(17) P(II) W- ., P(A,),
i=1

We have L8 instead of D8, because we assume every polygon has a multiple node at (1) in the sense
that (1) (N + 1).
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where P(Ai) denotes the value of P for the ith exterior angular region of II, as defined
earlier (see Figs. 1 and 2), and W is a new quantity, which we call the winding number
of II and define below. Thus there are two steps to evaluating P(II) for any polygon.
The first is to evaluate the P(A) for each 1, 2,..., N; the second is to compute
the winding number of H. The computation of the P(A) no longer offers any difficulty.
It has been summarized earlier and is discussed extensively in [1], [2], [3]. We shall
indicate below that W is obtained by simply adding up the N angular measures A0i
of the Ai and dividing the result by 2r. Thus for an element in {$} that is PO (NO),
W 1(-1) which gives agreement with (8) ((14)). This follows since the sum of angular
measures o the Ai or a PO (NO) simple polygon is 2zr(-2r). By a continuity
argument the results also hold for elements of {}.

In order to establish (17) for elements in {II}, we need a few additional symbols
and definitions.

A circuit C of H is a closed path of H with no self-intersections. Thus a circuit
is in {}, and its first and last points are located at the same MN. In case II is in {},
then II is a circuit; its first and last points (1) and (N + 1) are at MN (1).

The primary circuit (PC) of II, denoted by Co(H) is the first circuit detected, in
tracing II from (1), which closes at (k +m), where (k, k +m) is the first intersection
point encountered with paths [k 1, k ] and [k +m 1, k + m ] intersecting at MN (f).
We have /" <- k < k + m with Co (1-I) (k, k + 1,. , k + m 1, k + m). This circuit
includes all nodes (k + i) at MN (f), where 0 _-< -< m. If II is in {$}, then Co(H) 1I.

We use Fig. 9b and a reordering of some of its nodes to cite two examples of
primary circuits. If nodes (12) and (13) are interchanged then II is SI and Co(H)=
(11, 12, 13, 14), where/" 1, k 11, k +m 14=N + 1. The first intersection point is
at (11, 14). If in Fig. 9b nodes (5) and (7) are interchanged, then Co(H) (4, 5, 6, 7, 8).
Later we shall refer to these modifications of Fig. 9b as 9b(1) and 9b(2), respectively.

Now let II1 ---H. Then decompose II into PC(s) as follows"
(a) Obtain Co(II1). Set 1 and go to (8).
(/) Find Co (1-I) and go to (8).
(3’) II has been decomposed into a set of disjoint elements4 of {g}. The decomposi-

tion is complete. If K, we say II has been decomposed into K primary
circuits.

(8) If Co(II)= H go to (3"). Otherwise, delete Co(Hi) from II.5 Call the result
II+1, i.e., II+ EI-Cp (IIi). Set + 1 and go to (/).

Clearly this decomposition of II into primary circuits can always be carried out.6

Referring to Fig. 9a and cases 9b(1) and 9b(2), three examples are given of decomposi-
tions into primary circuits. For Fig. 9a, we have

Co (II)= (3, 4, 5, 6, 7, 8), Co (II2)= (1, 2, 8, 9).

(Note that if (5) and (6) are interchanged II is in {S}.) For 9b(1) (nodes 12 and 13 of
Fig. 9b are interchanged) we have

C(II) (11, 12, 13, 14), Co(II2) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14)
4 Two elements of II are disjoint if neither has more than one of its nodes in common with the other.

A set of elements of II are disjoint if they are disjoint pairwise.
The deletion of Cp(IIi) from Hi means all nodes of Cp(IIi), except the last, are dropped from Hi. The

resulting set of nodes specifies IIi+1.
6 Another decomposition of H, found in Knopp’s constructive proof that every polygon can be

decomposed into union of a set of simple polygons and a set of overlapping line segments [4] is discussed
and used in Appendix A of [3]. A one-to-one correspondence between Knopp’s decomposition of II and
that by primary circuits can be made.
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and for 9b(2) (nodes 5 and 7 of Fig. 9b are interchanged)

Co (fix)= (4, 5, 6, 7, 8), co(II2) (8, 9, 10, 11),

c(II3) (11, 12, 13, 14), c(II4) (1, 2, 3, 14).

In general, with II decomposed into K PC (s), we have

K

n= c.(n,).
i=1

Now since the PC (s) are disjoint

K

(19) P(II) E

Also the Co(IIi) are in {g}, hence from (8) and (14)

(20) P[Co(II,)]= W- Y P(A,.), W=
if Co (IIi) is PO,
if Co (IIi) is NO.

Here Ai, denotes the nth angular region of Co(Hi) and N + 1 denotes the number of
nodes specifying Co(II). Substituting (20) into (19) gives

K K N
(21) P(FI)= E W- E E P(A,.).

i=1 i=1 n=l

The winding number of II is defined to be

K

(22) W Y’. W.

Thus, for the polygons of Figs. 9a and 9b, and for cases 9b(1) and 9b(2), W 2, 1, 2, 0,
respectively.

Now let

N

(23)

where A0 appears as the first term on the right-hand side of (4) and denotes, as usual,
the angular measure in radians of the exterior angular region A of II.7 It is necessary
to show that

N K X
(24a) P(Ar) P(Ain),

r=l i=1 n=l

(24b) W= fl/2zr.

We present the elements of a proof. Suppose Co(IIx)=(k,k +1,... ,k +m)so
that II2 (1, 2,. ., k 1, k + m,. ., N, N + 1), where II2 H-Co(l-Ix) (see footnote
5). Denote the exterior angles of Co(l-Ix) and (H2) at (k) by A x,x and A2,k, respectively.
Denote their corresponding angular measures by r and A. Also recall A0k and A0k+,,
denote the measures of A and A+,, of H, respectively.

In the particular ease of Fig. 11 below we have

(25)

Note that since A0i is needed in (4), 1 is available with only N additions.
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From (25) and the way A t,t, A2,k, Ak, Ak+m are defined it follows directly, in that
case, that

(26) P(A 1,1) +P(AE,k P(A +P(A+m).

In fact, a straightforward geometrical or analytical argument shows (25) and (26) are
always true.

Assume now that II has only one self-intersection. Then the only angular regions
affected by the decomposition of II to Cp(II1)UI-I2 are at (k) and (k +m). Hence,
from (19) and (20) with Co(1-I1) and IIE in

P(II) P[Co (II1)] + P(IIE)
k+m-1 ](27/ Wl P(A I.x) + ., P(Ar) + W2
k+l

P(Ar)+P(AE.k)+ E
k+m+l

P(A,)].
By (22) and (26), the basic result given by (17) follows.

(k-l)

(k+m+l) ’
FIG. 11. Parts of Co(l-Ix) and lI of SI polygon at (k, k + m).

In the case of one self-intersection, it remains to show that (24b) holds. We have
the winding numbers W for Co (IIx) and WE for IIE given by

k+m-1 k-1 N

(28) 2rW " + E A0r, 2"n’W2 A + E A0r + E A0r.
r=k+l r=l r=k+m+l

We have used the fact that since II has only one self-intersection Co(l-I2 II2. Now
using (22) and (25), we get

(29) W= Wx+ W2=-- ’+X +
N

(rk,k+m)

1 v l
r=l 2r

An induction argument can be used to treat the case where II decomposes into
K(>2) PC elements. Assume (17) holds for all polygons II which are decomposable
into no more than K- 1 PC elements. The essence of a proof that (17) holds for
elements decomposable into K PC elements is obtained from the argument above
for K 2.
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Indeed, let H have K such circuits. Then by the decomposition procedure
described above

(30) II Cp(II1) U II2,

where 1-I2 can be decomposed into K-1 PC elements with winding numbers
W2, W3," , Wc. But, by the induction hypothesis (17) holds for 1-12. Therefore, the
remainder of the argument goes as above for K 2, where W2 is replaced by ir__2 Wi
in (27), (28), (29).

Numerical results for a variety of configurations are given in [3]. A Fortran IV
computer program has been developed which finds P(II) and A(II) (see (15)) to
approximately 3, 6 or 9 decimal-digit-accuracy, provided the xy-points which specity
II are given to the same accuracy. The numerical results were checked by an indepen-
dent computing program which decomposed II into a set of separate triangles. For
each triangle, taking its orientation into account, the value of P was found, using (8)
or (14), where probabilities over angular regions were computed by an independent
procedure. The P values for the set of triangles were properly combined to yield
P(II). The details are given in [3].

In Table 1 numerical results correct to approximately 9 decimal digits are shown
for an SI polygon, II. The polygon is numbered so that P(H) represents the probability
for an event, governed by a normal bivariate distribution, occurring in $1 and/or $2,
where $1 (1, 2, 3, 4, 5, 6, 7, 8), $2 (9, 10, 11, 12, 13, 14). From probability theory,
we have

(31) P(II)=P(S US2)=P(S1)+P(S2)-IP(S n
where $1 (’1 $2 (14, 15, 16, 17, 18, 19) is NO.

In the first column of the table the node numbers are shown. The next two
columns contain the xy-coordinate values of the nodes. The fourth column lists the
values of P(A) for r 1, 2,..., N(N 19), and the last column contains the angular
measure in radians for each A.

TABLE 1

(r) x y P(Ar) AOr

1 -3 0 1.6803 8191(-2) 2.3561 9449
2 0 -3 7.8697 697 (-3) 1.4288 9927
3 4 0 4.9999 7913(-1) 2.4980 9154
4 0 0 0
5 0 0 -2.5000 0000(-1) -1.5707 9633
6 0 1 0 0
7 0 3 1.6803 8191(-2) 2.3561 9449
8 -3 0 4.9985 6392(-1) 2.3561 9449
9 -2 0 -3.1610 4292(-1) -4.6364 7609(-1)
10 0 -1 1.6619 3815(-1) 1.2490 4577
11 0 0 0
12 2 1 1.5721 5682(-1), 2.3561 9449
13 0 1 6.1402 8574(-2) 4.6364 7609(-1)
14 -2 0 8.1445 3315(-1) 3,1415 9265
15 0 -4.5518 3800(-1) -2.0344 4394
16 0 0 2.5000 0000(-1) 1.5707 9633
17 1 0 -2.1101 0015(-1) -2.3561 9449
18 0 -1 -1.1199 0438(-1) -1.2490 4577
19 -2 0 1.6509 772 (-3) 4.6364 7609 (-1)
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It is worth noting that, for the actual computations, nodes (4), (6), (11) could
have been omitted. They were retained, because they are helptul here in specifying
the primary circuits, namely

Cp(II1) (4, 5, 6, 7, 8, 9, 10, 11),

Co(II2) (1, 2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20).

These PC’s are both PO, hence W 2 which agrees with the computation of W using
(24b).

From (15), Table 1 and (17), we have

9 A0 9

A(II) 16.5, W rE1= -- 2, P(II) 2 r=E P(A) 8.5204 0186 (-1).

By separate computations, we also have as a check

P(S1) 7.0866 8287 (-1), P(S2) 4.3294 2915 (-1),

P(S1 f’) $2)=-2.8957 1016 (-1).

A Fortran IV listing of the CDC-6700 computer program is given in [3].
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ON THE SOLUTION OF THE FINITE ELEMENT EQUATIONS FOR
NONLINEAR SHELL ANALYSIS*

LOIS MANSFIELD,"

Abstract. The relative efficiencies of the finite element methods derived from the potential energy
formulation and from the mixed formulation for nonlinear shell analysis are compared. The result of this
comparison is that the mixed method is considerably more efficient.

Key words, nonlinear shell analysis, arch problem, mixed finite element method, multigrid method

1. Introduction. The purpose of this paper is to compare the relative etiiciencies
of two finite element methods for the large displacement analysis of plates and shells.
The first method comes from the minimum potential energy formulation where the
stress-strain and strain-displacement relations are substituted into the equilibrium
equations resulting in a system of equations to be solved for the displacements alone.
This system represents the Euler-Lagrange equations associated with the minimization
of the strain energy functional. The other method we consider, the so-called mixed
method, results from using instead a modified form of the Hellinger-Reissner station-
ary variational principle, where the stresses and bending moments appear as indepen-
dent variables in addition to the displacements. These methods are described in more
detail in 2.

The method of solution on which our comparison is based consists of taking the
load to be given by A fo and tracing successive solutions for a sequence of values
of X. At each load step we solve the finite element systems by Newton’s method. At
each Newton iteration step one is required to solve a linear system of equations. One
can use either direct or iterative methods to do this. It seems to us that iterative
methods might have some advantage here because one always has a very good initial
guess in the previous iterate.

For the mixed method, however, the Jacobian matrix is indefinite, so there is the
question of finding a good iterative method to use with the finite element method.
Fortunately, since the finite element subspaces that are used to approximate the
stresses and bending moments can be chosen so that their elements have support on
a single triangle only, the unknowns associated with these quantities can be easily
solved for in each iteration step in terms of the displacements from the previous step.
The displacements can then be updated using a Richardson type iteration which always
reduces and smooths the error. We have then chosen to accelerate this scheme by
use of the multigrid method. Details are given in 3.

The result of our comparison is that the mixed method is considerably more
efficient than the method obtained from the minimum potential energy formulation.
The greater efficiency in the mixed method comes because the Jacobian contains no
worse than linear polynomial terms in the unknowns, while in the minimum potential
energy method, quadratic polynomial terms appear. Also for the systems themselves,
the mixed method has quadratic terms, while the minimum potential energy method
has cubic terms. This means that far fewer arithmetic operations are required to set

* Received by the editors May 1, 1981, and in final form January 15, 1982. This research was supported
by the National Science Foundation under grants MCS78-27482 and MCS80-16532.

f Department of Applied Mathematics and Computer Science, University of Virginia, Charlottesville,
Virginia 22901.

447



448 LOIS MANSFIELD

up and evaluate these quantities, even though there are many more unknowns in the
mixed method. Actual counts of arithmetic operations are given for both methods in
4.

In the case of an arch or shell, as the load is increased a critical load is reached,
which occurs at what is called a limit point in applied mechanics. At this point a can
no longer be used as a parameter in tracing the load curve. In 5 we give experimental
results for the arch problem where a new parameter s similar to [2] is introduced,
and the load curve is traced beyond the limit point using this new parameter.

2. Description of the methods. The shell surface is defined parametrically by a
position vector r(x, y) which is a vector function of two curvilinear surface coordinates
x and y. Let l be the shell domain, a bounded open set in R 2 with boundary F. For
simplicity we consider the shallow shell equations rather than the conventional shell
equations. We assume the presence of large displacements but small strains, and that
Kirchhoff’s hypothesis holds. We assume that body forces f act on the shell and take
as the boundary conditions

(1) u=v=w=w,=O onF.

Let

ot (Or
2

+ (Or2
2

+ (cgra
2

02-2 (Orl
2

+ (Or2
2

+ (Or3
2

Then the displacements u= (u, v, w) may be obtained by solving the variational
equation W’(u)= 0 where W(u) is the strain energy functional given by

u +kw+ wW(u)
2(1-v n

Ux + kllW + Wx Oy + k22w + Wy

1 1 1

(2)

+(1--v) vx+uy+k2w+wwy aa2dxdy
2 12

+ + + dx dy+
24(1-

--Inf. IlOt ot z dx dy.

Here E is Young’s modulus, v is Poisson’s ratio, 6 denotes the thickness of the shell,
and the k,,e denote the curvature of the shell.

The finite element method consists of choosing finite dimensional subspaces
sh = Ho (12), $ =Ho (12), $ H(), and solving

I1 2 Ux +kllW + w axWk11h+a
+V ux +kllW + W y +WyW

2
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-!o,[.lhotlot2dxdy=O, all hG-.sh hEShv, lh.sh

for u h sh,, v h eS ho, wh eS.h
We assume the region has been triangulated and that the spaces S, S), and

Sh consist of piecewise polynomials over this triangulation. In this paper we will not
deal with the complication of curved boundaries so we shall assume that is a convex
polygon. Our comparisons with the mixed method will be based on the use of
C-quadratic finite elements to approximate u and v and the 12-parameter Clough-
Tocher finite elements to approximate w.

Let , (u, N, M) where N,, Me, 1 a, g 2 are the stress resultants and
bending moments. The mixed method results from solving S’() 0, where S() given
by

s()
(1--2) I [-N21 +2vNxN22-2(1 + v)N2 -N2]tla2 dx dy
2E6 n

21 1 2 1 1 1 )N22

(4)
+ Uy "" /3x -’l’-k 12w

01 o102
WxWy)N12] lO2 dx dy

6(1- [-MI +2vMxM2:-2(l+v)M2-M2]axa2dxdy
E6

wxxM11 +wxyM12+--wyyM22 a102 dx dy
12t 1ix2 o 2

If f" IltX ltX 2 dx dy

is a modified form of the Hellinger-Reissner stationary variational principle.
In addition to the subspaces Sh,, sh, and Shw, one must choose subspaces sh ($hN)3

with ShN c L2(fl) and sh (ShM)3 with ShM c L2(fl). The finite element method consists
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of solving

2) I v t, + 2(1 + v)NN. +E fl
L 11 11

(5)

I [( h h l(a+ ux +kllw + w Nll +Nhl .,h hu+k +w

(-21 h + k22wh + 1(_.
2
Wh2 ld’h +Nh22 (2 "h h 1

012

+ Uy+mVx+k12w +WxW N2
ffl O 102

+N2 t h ^h hy+mvx+kl21 +
(1 fflO2

12(1 v r,th lllrh h /h h h

E3 I.*’ lv" v(Mi 22 +M22Mll

f" uha ia2 dx dy O,

{W hxWyAh + WyWxt) 13tlO2 dx dy

,h .’h h h+2(1 + v)lvl 1211"1 12 +M22M22 ]0102 dx dy

wxya’112 +Mh2h

+.__Wh h hyyM22 +M22wv ooz2 dxdy

alla eSh," eSo, W eS,, 1,1h s S, ff4" eS,

for u h e Sh h h h h Nh Mh hlvl..,v eSo, w eS, esh, S
In [4] it was shown that optimal orders of convergence are obtained if for all

,h h h h h h ,h ,h ,h ,h hu eS,, So, and Sw, ux, vy, and vx +uy are contained in sh and h Wxy

and h are contained in S. Although these conditions have not been shown to be
absolutely necessary, it is known (see [3]) that other choices, such as choosing all
subspaces to consist of the same type of finite elements, do not give optimal rates of
convergence. We choose both S and sh to consist of piecewise linear polynomials
with jumps at the edges and vertices of each triangle in the triangulation of II. For
S there should be jumps at the edges and vertices of each subtriangle of the
macrotriangles associated with the Clough-Tocher elements as well. Thus basis ele-
ments can be chosen lor sh and S with support on one triangle only. This fact will
enable us to efficiently use the multrigrid algorithm to solve the linear system in each
step of Newton’s method.

We also compare the minimum potential energy method with the mixed method
for the arch problem. For the arch problem the strain energy functional is given by

(6)

E8
u’ + kw + ku w’ dxW(u)

2(1 v2) a

ioF-’63 Io U’-- W" a dx f ua dx,+242S v2) a

where u=(u, w), k denotes the curvature and a2= (r)Z+(r)2. The finite element
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method consists of choosing finite dimensional subspaces shc, Ho (0, a) and S c

H02 (0, a), and solving

1 v 2 u’ +kw +- ku--w

(7) +

x a’h + kC’h + kUh W’h a dx

2) u’.- w’ a’-’ o dx t ftha dx =0,
12(1-v a a

all ah G_ sh 1h G_ Shw,

for Uh e Sh h
u, wheSw.

The mixed method results from solving $’(,)= 0 where $(,) is given by

s(,)
-(1 v2) N2o dx
2E6

6(1- v2) I0E6
M2ot dx

+ u’+kw+ ku--aw’ N+ u’---a w" adx

where (u, w, N, M). The finite element method consists of choosing in addition
to S. and Sw, finite dimensional subspaces sh= L2(0, a), St= L2(0, a), and solving

(9)

--(1 1,2) ’lhlrhOl dx 12(1 _2) Mh/rh dx

+ U h + kWh +’ kUh----

-w

f" Uha dx O,

all ah Sh hl’h S Nh ShN, Mh ShM,
for Uh sh, Wh S, Nh S, Mh S.

These equations differ from being one-dimensional versions of the shell equations
in that the assumption that derivatives of curvature can be neglected, which is used
in the shallow shell theory, is not assumed; therefore, (6-9) give equations of the
deep arch.

In our comparison we shall choose S to consist of 0C -quadratic or linear finite
elements, sh to consist of piecewise cubic Hermite polynomials, S to consist of
piecewise linear polynomials with jumps at the grid points or piecewise constants, and
ShM to consist of piecewise linear polynomials with jumps at the grid points.
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3. Method of solution of the equations. Our comparison of the relative efficien-
cies of the two finite element methods described in the previous section will be based
on the following method for the solution of the equations. We take the load to be
given by f A/0 and trace successive solutions for a sequence of values of A. In the
case of an arch or shell, there is a critical load which occurs at what is called a limit
point in applied mechanics. At this point A can no longer be used as a parameter in
tracing the load curve. A method for continuing beyond this critical load is given in

5. Here, for simplicity we shall assume we are in a region where A is a suitable
parameter.

At each load step we solve the nonlinear system of equations F(x) 0, by Newton’s
method or by a modified Newton’s method using the solution at the previous load
step as the initial approximation. For A 0 the only solution to the equations in the
previous section is u- 0, N 0, M 0. At each Newton iteration step we have chosen
to solve the linear system of equations

J(x,)(x,,+l -x,) -F(x,)

by the multigrid method.
We have not made a detailed study of how the multigrid method compares with

other iterative methods or with direct methods in this context. This is a subject for
further research. Because one always has a good initial guess, iterative methods may
have some advantage here. If so, it is important to find a rapidly convergent method
to use with the mixed method where the Jacobian is indefinite. We chose to use the
multigrid method instead of other possible iterative methods, because of both its fast
convergence and the fact that, as we show in this section, it can be modified to give
the same fast convergence for the mixed methods where the linear systems are
indefinite, as for positive definite systems.

To solve the linear system

(10) Kx y

by the multigrid method, it is assumed that one has a sequence of grids parameterized
by h with associated subspaces S Sa,, where he oh,+, O > 1. To solve the linear
system

(1) Kx" =y,
associated with the grid parameterized by h, the multigrid method alternates iteration
sweeps, whose purpose is to smooth the error, with corrections obtained from
approximating the solution of the residual equation on the coarser grid parameterized
by h-l. This can be formalized by the following algorithm given in [5].

Starting with a given initial approximation x*’ to the solution x to (11)’

Do steps 1, 2, and 3 for k 0, 1, ,/x 1"

1. X
q,t,i

X
q,k,i-X fl (Kqx q,k,i-1

Y q), 1, 2," ", n.
q-l,k,O2. With e defined by

(12) Kq_leq-a,,o rEq_irq’k’n
q-l,k,Owhere rq’k’n yq-Kqx q’k’n, compute *7 such that

lln - .k.o  -l.k.O q II, o
3. Set x q’+l’ x q’’" +Hq_ir/q-’’.
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To approximate the solution to (12), one uses the same algorithm. It is assumed
that for the coarsest grid, the system is small enough to solve efficiently by a direct
method or to carry out the iterations in step 1 until convergence. In most situations
the Richardson iteration of step 1 may be replaced by the Gauss-Seidel method or
an under-relaxed Jacobi method. Let 8q-1 denote the embedding of Sq-1 into S.
Corresponding to the operator 8’-1 there is an operator from R(N_) to R(Nq).
Relative to bases {7-}i- and {7} of the subspaces Sq-1 and Sq, this operator

Thas a matrix representation Eq_l. Its transpose Eq_ maps R (Nq) onto R (N_).
Under the assumption that the system (10) came from the minimization of a

quadratic functional and that Sq-1 $, it was shown in [5] that the multigrid method
can solve (10) with O(N) arithmetical operations, where N is the number of unknowns
in (10). When the Clough-Tocher elements are used, to satisfy Sq_ Sq, it is necessary
that Sq be obtained by refining each of the subtriangles in each macrotriangle. Although
the assumption that Sq_ Sq enabled Nicolaides to prove his result, it is undoubtedly
not completely necessary. One can obtain his results if one can show that Eq_iX-is a good approximation to x q, where x is the solution to (11) and xq- is the solution
to the same finite element problem but on the grid parameterized by hq-1. In the case
Sq--I Sq, the embedding g’q_ may be taken to be the identity, and Ilx . -Eq_xxO-ll
is easy to estimate using standard finite element convergence results.

If the multigrid algorithm is applied as described above, it will not work to solve
the equations resulting from the use of mixed methods. Since the mixed methods
result from stationary principles rather than minimum principles, the linear systems
are indefinite so that step 1 in the multigrid algorithm will magnify rather than reduce
the part of the error associated with the negative eigenvalues. Although the purpose
of step 1 is to smooth the error rather than necessarily to reduce it, the fact that the
positive and negative eigenvalues are of nearly equal magnitude means that step 1
will magnify the error faster than steps 2 and 3 can reduce it. For the mixed methods,
the linear systems have the form

B T C g’
where the vector tr represents those unknowns associated with 1Ih and Nh, and u
represents the unknowns associated with uh. Since elements of our subspaces sh and
S have support only on one triangle, the matrix M is block diagonal with the size
of the blocks determined by the number of basis functions with common support on
a given triangle.

For mixed methods, we propose that step 1 of the multigrid algorithm be modified
to

(13) Solve Mltq’k’i= Bllq’k’i-l--fq for 0"q’k’i,

(14) Setuq’k’i----Uq’k’i-l--[J(BTq’k’inuCuq’k’i-l--gq), 1, 2, ., n.

Because M is block diagonal, (13) is inexpensive to solve. If BrM-XB +C is positive
definite, fl can be chosen to both reduce and smooth the error.

To use (13)-(14), one must determine a suitable value for the parameter fl in
(14). Note that the parameter/ depends on A. In numerical experiments we have
done, we took/ to be a vector rather than a scalar, as indicated in (14). We determined
the main diagonal of the matrix BrM-B, and initially took/ to be the vector which
made (14) equivalent to an under-relaxed Jacobi iteration, to solve

BTM-1Bu g.
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Since M is block diagonal the main diagonal of BTM-IB is not difficult to determine.
We found that we were able to maintain satisfactory convergence with our initial/3
until we got fairly close to her. By this time the matrix BrM-1B + C had changed
enough that we needed to update/3. The matrices M and B can be decomposed into
submatrices coming from the stretching and bending equations in the system F(x) 0.
We determined the main diagonal of the most significant part of BrM-IB and used
this to update/3. The components of the matrix C were small compared with those
of BrM-B. Throughout, we followed the policy of updating/3 only when our bound
for the maximal allowable number of iterations in the linear system was exceeded.

The multigrid method has the disadvantage that the region must be simple enough
for it to be feasible to generate a sequence of grids as described above. Another
iterative method which can be used for mixed methods is

(15) Solve Mtr Bui- -f for ri,

(16) Setu 3,ui-x + (1-y)ui-2-B(Brtr + Cui-- g).

Equations (15)-(16) represent a second degree iterative process applied to BrM-IB +
C and is suggested in [1].

4. Comparison of efficiency of the two methods. In this section we will compare
the efficiency of the minimum potential energy methods with mixed methods with
regard to the efficiency of solving the resulting algebraic systems. Our comparison
will be based principally on a comparison of the number of arithmetic operations
required to evaluate the Jacobian matrices and the systems themselves in order to
perform each Newton iteration step,

r(x.)(x.+-x.) -F(x.).

The procedure we follow for evaluating the Jacobian J and the system F is the
standard procedure of proceeding element by element and inserting into J and F the
contributions from that element. This procedure relies on a table of integrals for each
element, which needs to be set up once and stored. In the case of the plate which has
constant coefficients, a single table of integrals can be used for all the elements provided
that multiplications by factors dependent upon the geometry of the element caused
by the transformation of terms like

02w 02

" Ox20x dx

to a standard triangle are done separately. For simplicity we shall assume that these
operations are incorporated into the table of integrals for each element, so that even
in the case of a plate, a separate table exists for each element.

We have not compared the number of operations required to set up these tables,
except or the arch with sh consisting of piecewise linear polynomials in C, $"w
consisting of piecewise cubic hermite polynomials, Sh consisting of piecewise con-
stants, andS consisting of piecewise linear polynomials with jumps at the grid points.
Here 70 multiplications were required for the mixed method, while 1102 multiplica-
tions were required for the potential energy method. The integrals were computed
using a Gauss quadrature rule of sufficient accuracy to carry out all integrations exactly,
assuming the kij and f are constants. This insures that the integrals are computed with
the same order of accuracy as the finite element methods themselves (see [7]). Although
this comparison may be slightly biased in avor of the mixed method because $
consists of piecewise constants, it certainly seems to indicate that mixed methods are
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no less efficient than potential energy methods with regard to the calculation of the
element integral tables.

The numbers of operations required per element of the finite element mesh are
given in Tables 1 and 2 below for the plate and shell problems, for the potential
energy method (POT) and mixed method (MXD). The finite element subspaces are
as stated in 2. We have split up the number of operations required to set up J(x,,)
into a linear part and a nonlinear part, since only the nonlinear part needs to be
updated at each iteration step.

TABLE
Number of arithmetic operations per element ]or plate problem.

set up Y(x,) set up F(x,)
linear nonlinear total

POT 780 216,666 217,446 1,370,212
MXD 385 6660 7045 11,868

TABLE 2
Number of arithmetic operations per element for shell problem.

set up J(x.) set up F(x,,)
linear nonlinear total

POT 2478 248,658 251,136 1,429,888
MXD 493 6660 7153 12,084

Table 3 gives the numbers of arithmetic operations per element required for the
arch problem. POT1 refers to the potential energy method as described in 2, where
sh consists of C-piecewise linear polynomials, and POT2 refers to the same method,
where $h consists of C-piecewise quadratic polynomials. MXD1 and MXD2 are the
corresponding mixed methods.

TABLE 3
Number of arithmetic operations per interval for arch problem.

set up J(x,,) set up F(x.)
linear nonlinear total

POT1 63 2523 2586 4176
POT2 84 4374 4458 6902
MXD1 4 93 97 322
MXD2 6 308 314 644

Table 1 indicates that for the plate problem 30.9 times more operations per
element are required to set up J(x,) in POT as in MXD and that 31.2 times more
operations per element are required to set up the system itself. For the shell problem
35.1 times more operations per element are required in POT to set up the Jacobian
and 35.6 times more operations are required to set up the system itself. For the arch
problem these numbers are 26.6 and 12.97 for POT1 and 14.2 and 10.7 for POT2.
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We give here more details concerning how we calculated the numbers given in
Tables 1-3. Consider the system for the potential energy method or the plate problem.
For any element K, one has to evaluate

(17)

(18)

y) Uxtuu +1/2(w +,,vu +(w

h + WhxWh)hx] dx dy -A IK f2h dx dy,

and

hAhh h h h h h h h h ._ lUhyWxWxE
[(Uxh q-1/2(wh)2)WxWx +(Vy +(Wy)2)WyWy +UxWyWy

h h h h h h h)2 h h hx2 h h+(1 u)(uy +v)(w yw rwyxw +w )+(w w +(w) wwx]dxdy
(19)

E63 ah h ah h ah h h

+12iC-z) j [w" xwx + w ,,w ,, + ,, +
hh f+2(1-u)wywy]dxdy-A [3hdxdy,

where ah and 6h range over the six piecewise quadratic polynomials which are nonzero
on K, and ranges over 12 nonzero Clough-Toeher cubits on K.

bahTerms like uu dx dy require 6 multiplications and 6 additions to evaluate,
while terms like (w)Za require 288 multiplications and 144 additions. Thus (17)
and (18) each contribute 6 entries requiring 1349 arithmetic operations. Expression
(19) contributes 12 entries requiring 29,502 operations each. Thus 370,212 operations
are required to evaluate the system for the potential energy method for the plate
problem.

On each element K for the mixed method for the plate problem, one has to
evaluate

1 ) (1-
(o u + (w" ( ax,

r E6

(21) u h +vh h h_2 (1-- h+ WWr (1 + )Nz Nz& dy,

1 h (1--h + (W,) (N2 wNI R2 dx dy,(22) v E6K

12(1-v
ES-3 (Mhx ,Mh M dx dy,

12(1-v
(24) --why 3

r E6

(25) -wry
K

(1 + u)Mh2]]12/h2 dx dr,

12(1 -u) Mh h ] h

E6 22 vM11 M22 dx dy,
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(27) Nh Ah h
22t) +N12vxh) dx dy -A f2h dx dy,

K

(28)

hAh hA ha a +Nh2 (W,,W + W h) +Nh22w h[Nlw,,w,, y yW yWy

,,y y, dx dy A f31 h dx dy.
K

Expressions (20) and (22) each contribute 3 entries with 459 operations each, while
(21) contributes 3 entries with 463 operations each. (23) and (25) each contribute 9
entries with 62 operations each, while (24) contributes 9 entries with 45 operations
each. Finally (26) and (27) each contribute 6 entries with 9 operations each, while
(28) contributes 12 entries with 505 operations each. Thus 11,868 operations are
required to evaluate the system for the mixed method for the plate problem.

The numbers of operations required to evaluate the systems for the shell and
arch problems are determined in the same manner. To evaluate the Jacobians, one
notes that since they are symmetric, only the upper triangular part needs to be set
up. The determination of the number of operations required is done similarly to what
we have indicated for the evaluations of the systems.

5. Continuation beyond the critical load. For an arch or shell, as the load is
increased, a critical load is reached which occurs at what is called a limit point in
applied mechanics (see Fig. 1). At a limit point the Jacobian becomes singular, but
perhaps more importantly, the load parameter A is double valued in the neighborhood
of the critical load Acr. This means that A can no longer be taken to be a parameter
in tracing the load curve beyond Acr.

To continue beyond Acr, we regard A as a dependent variable to be determined.
We introduce a new parameter s and trace the solution curve using s. Let

(29) G(x)-Ab =0

denote the system of equations to be solved from any of the methods described in

/cr

FIG. 1
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2, where x denotes all of the unknowns of the problem, and b is the vector obtained
by taking the inner product of 0 with each of the basis functions used to define uh.

We augment the system (17) by adding the single equation

or

(3o)

c I fo" u"+X-s =0,

N(x, A, s) cuTIfO + , S 0,

where is the mass matrix associated with uh, o is the set of nodal values of fo,
and c is a positive constant. We solve the combined system (29)-(30), where s is a
parameter but A is to be determined along with x. Other choices for N(x, A, s) are
given in [2].

The linear system to be solved at each Newton iteration step is

J(x,,. ,t,)(x,+-x,)-x,+6 -G(x).
(3)

c (u "+’)J3SVo + x,+ s.

We have done some numerical experimentation with a shallow circular arch
subject to a uniform pressure. We used pieeewise linear polynomials to approximate
u, pieeewise cubic Hermite polynomials to approximate w, piecewise constants to
approximate N and pieeewise linear polynomials with jumps at the grid points to
approximate M. The mixed method proved to be so much more efficient than the
potential energy method (in actual computations as well as from the analysis of 4)
that most of the experimentation was done with the mixed method.

In fact, in actual computations we noticed another advantage that mixed methods
seem to have over potential energy methods. With the mixed method we were able
to take much larger load steps and still get convergence of Newton’s method. This
shows up in the theoretical analysis of the two methods. In [4] Kantorovieh’s theorem
was used to show the existence and uniqueness of solutions along the load curve.
Away from limit points, the size of the ball about the initial guess in which one could
guarantee a solution shrank as w increased for the potential energy method, but
remained constant for the mixed method.

For a circular shallow arch subject to a uniform pressure, (8) reduces to

2)/o 6(1- 2) IoS(+) =-(1-u Nz dO ____u M2 dO
2E6 E6

w,, io+ (w N---MdO -X w dO.

In our numerical experiments we took s as the parameter and A as a dependent
variable throughout, not just in the neighborhood of Acr. TO solve the linear system
(19) we used the multigrid method where we modified (13)-(14) to

(32) Set/ q,k,i
S C (Wq’k’i-1) Tllffo,

(33) Solve Mrq’’i= Buq’’i-x-fq for rq’’i,

(34) Setuq’’i=uq’Li-x-fl(BTcrq’Li+cuq’Li--Aq’Lilfo-gq),
where w denotes the unknowns associated with w n. The updating of A in (32) preserves
the same structure in the linear system as was present when A was used as the
parameter.
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In our most extensive experiment, we took the radius of curvature R 100 inches,
the thickness of the arch 8 2 inches, and a 1. We also took E 107 psi and u 0.3.
Initially we took the constant c in (30) to be 1, but ran into some difficulty getting
by Acr with (32)-(33). However, with c 10, we had no difficulty. We determined
to be 749.03958 using a grid size h =1/4. This is in good agreement with the analytic
determination of Acr given in [6].

Acknowledgment. The author wishes to thank Ms. Yannjun Hsu Chang for
programming assistance.
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DISCRETE WEIGHTED MEAN APPROXIMATION OF A MODEL
CONVECTION-DIFFUSION EQUATION*

E. C. GARTLAND, JR.5.

Abstract. Five-point finite-difference approximations are considered for a model (linear, constant-
coefficient) convection-diffusion equation in two dimensions. Standard difference schemes for such problems
behave badly when the convective terms are dominant. A new discretization is derived from a local integral
representation of the true solution. This derivation is analogous to the way that the discrete Laplacian can
be derived from the mean-value property of harmonic functions, and it generalizes an approach due to
Allen and Southwell [Quart. J. Mech. Appl. Math., 8 (1955), pp. 129-45]. Also discussed is how the strong
upwind bias of this and other discretizations serves to make more stable some methods of the two-sweep
or marching type for the direct solution of the resulting linear algebraic equations.

Key words. Nonstandard difference approximations, convection-diffusion or convective-transport
equation, marching or two-sweep algorithms, local integral representations

Introduction. A model elliptic boundary-value problem, which embodies some
numerically troublesome aspects, is considered. The problem is nonsymmetric with a
strong first-order term, and it possesses a boundary layer.

Attention is restricted to uniform-mesh discretizations that are coarse with respect
to the boundary-layer thickness. This is analogous to computing an "outer" solution,
the problem of resolving the boundary layer being considered a separate component
of a complete solution process. The difficulties to be overcome are twofold: (1) to
determine an accurate discretization (here restricted to a five-point stencil) of the
nonsymmetric differential operator and (2) to overcome the polluting effect that the
boundary layer has on the discretization error.

The discretization is derived by replacing a local integral representation of the
true solution with a quadrature rule. This derivation is analogous to the way that the
discrete Laplacian can be derived from the mean-value property of harmonic functions,
and it generalizes, in a certain sense, an approach attributed to Allen and Southwell.
The polluting effect of the boundary layer is overcome, to a degree, by using asymptotic
information about the true solution locally to improve the discretization at those
points that "see" the boundary layer.

Also discussed is an efficient method for solving directly the resulting linear
algebraic system of equations. This method is of the two-pass or marching type. Such
schemes are not widely used because they are very unstable with respect to the growth
of roundoff errors. For these convection-dominated problems, however, the stability
is significantly improved.

1. The problem. Let R denote the rectangle (0, a) (0, b). Consider the following
model problem:

(1.1)
-eAu+u,=O inR,

u 3’ on OR.

Here e is a positive constant that is small compared to a, and 3’ is a function defined
on the boundary OR. Such a problem is known as a convection-diffusion or convective-

* Received by the editors August 12, 1981, and in revised form February 19, 1982. A portion of this
work was completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Mathematics at Purdue University, West Lafayette, Indiana.

5" Mathematics Department, Southern Methodist University, Dallas, Texas, 75275.
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transport problem. The unknown u can be thought of as a concentration (of a chemical,
of heat, of vorticity, etc.) that is convected, by a stream flowing the positive x direction,
and diffused. The parameter e gives the strength of the dispersive effects relative to
the convective effects.

The form of the solution to (1.1) is complicated. It has a regular boundary layer
of thickness O(e) along the downstream edge, x a, and parabolic or shear layers of
thickness O(e 1/2) along the top and bottom edges, y =b and y =0. A thorough
discussion of this behavior can be found in [8].

When e/a << 1, the problem is said to be convection dominated, and its numerical
approximation is difficult. This difficulty is due to the presence of the boundary layers.
Approximation in or near these layers is degraded by the rapidly varying nature of
the solution there. Even in the parts of the region away from the layers, standard
approximations are affected with severe stability restrictions due to the existence of
nonpolynomial-like components of the true solution [12, pp. 36-41].

Various approaches for overcoming these difficulties have been proposed for the
case of finite-difference approximations. These include upwind differencing of the
convective term (credit for this approach is difficult to ascribe, see [12, p. 64]), using
exponentially weighted differences (this idea is attributed to Allen and Southwell [2],
see also [1] and [9]), and using a modified upwind scheme (which has rational weight
functions) [3], [10].

Here I derive a new five-point difference scheme that follows in a natural way
from a local integral representation of the true solution. The scheme is a form of
discrete weighted mean-value property, and it generalizes, in a certain sense, the
approach of Allen and Southwell cited above.

2. One-dimensional problem. For the sake of illustration and motivation, let us
consider the one-dimensional analogue of (1.1)"

(2.1) -eu,,,,+u,,=O, 0<x<a, u(0)=y0, u(a)=y,.

The solution of this problem can easily be found; it is a linear combination of the
functions b and defined by b(x)= 1 and O(x)=exp (x/e). More important is the
fact that one can find a difference equation that is exact for this problem, that is, a
difference equation for which the restriction of u (the solution of (2.1)) provides the
unique solution.

For a uniform mesh, this difference equation is

(2.2)
-exp (e)u-x+2 cosh (e)u exp (---) Ui+I O,

UO TO Un + "}/a.

Here h a(n + 1), xj fh, and uj u (xi).
This difference scheme can be derived in various ways. The simplest and most

direct way is to require that it be exact on the null vectors (b and 4 above) of the
differential operator L defined by Lv =-ev,, + vx this leads to a system of two linear
algebraic equations in the three unknown coefficients of the difference scheme.
Another way (and one that will help us to generalize this approach to the two-
dimensional problem) is to observe that the scheme follows from a local integral
representation of the true solution.

Let xi_, xj, and xi/x be three consecutive mesh points; let gj be the local Green’s
function for L on the subinterval (xi_, xi/) with Dirichlet boundary conditions at
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xj-1 and X]+l; and let bj and Oi span the null space of L and satisfy di(xi_l)= 1,
di(xj+) O, 4,j(xi-) O, and Oi(xi+t) 1. Then on [xi-1, xj+], any sufficiently smooth
function v has the representation

Xj+l

v(x)= v(xi-),b(x)+v(x+)49(x)+ gj(x, )Lv() d.
xj-

The difference equation (2.2) follows from this representation (up to normalization)
by replacing v by u, which satisfies Lu 0, and x by x.

An important aspect of the difference scheme (2.2) is its strong upwind bias.
While it has the usual [-1, 2, -1] form as h --> 0, for values of h large compared to e
it has the form [- 1, 1 + 8, -8 ], where 8 << 1. And if the convection is dominant enough,
i.e., if e is small enough, this situation could persist through the whole range of feasible
values for h on a given computer.

3. Two-dimensional problem. Let us return our attention to the two-dimensional
problem (1.1). We seek a local representation of the solution that is analogous to the
integral representation (2.3). Let 11 and L be a sufficiently nice domain and linear,
second-order, elliptic partial differential operator; let g be the Green’s function for
L on fl with Dirichlet boundary conditions on 0fl, and let B denote the boundary
differential operator for the adjoint problem. It is well known (see, for example, 11 ])
that for (x, y) in fl, a sufficiently smooth function v has the representation

(3.1) v(x, y)= I0 Berg(x, y :, r/)v(:, rl)do’e+ IIag(x, y; :, rl)Lv(,, "0)dljdrl.

Here r denotes arc length. When l’l is taken to be a small neighborhood of the given
interior point (x, y), this representation provides the two-dimensional analogue of
(2.3).

If we let L be the negative of the Laplacian and fl the disk of radius h centered
at the origin, then we can express the Green’s function in terms of the natural logarithm,
and we get, on evaluation at the center of the disk,

[ f0
TM 1 I0r I0h h

v (0, 0) v (h cos 0, h sin 0) dO + In -’r (-Av)(r, O)r dr dO.

Here r and 0 are the usual polar coordinates, and we have also used the fact that Be
is equal to the normal derviative (=0r). The above reduces to the familiar mean-value
property when v is harmonic. A composite trapezoid rule approximation to this
mean-value relation using the values of v at (h, 0), (0, h), (-h, 0), and (0,-h) gives
the standard five-point discretization of the Laplacian.

Consider now the same disk domain with L equal to -e A + Ox, the convection-
diffusion operator. The Green’s function can be expressed in terms of the Bessel
functions I0 and K0, and when (x, y)= (0, 0), it is given by

g(O,O;r,O)=

-r cos 0
exp 2---- io(2)Ko(_ffe) _Ko(2)io(.e
2relo
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Substitution in (3.1) and simplification by use of the formula Io(z)K’o(Z)-
Ko(z)I (z)=-1/z [13, pp. 79-80] gives the representation

v(o, o)=

2.r h

+ Io Iog(O, O; r, O)(-e Av + v,,)(r, O)r dr dO,

valid for sufficiently smooth v. When v is replaced by the solution u (which satisfies
Lu 0) and (x, y) is a point in the open rectangle R, this becomes the weighted
mean-value relation

(3.2)
u(x,y)= exp cos u (x + h cos 0, y + h sin 0) dO,

valid for all h sufficiently small so that the disk of radius h centered at (x, y) is
contained in R.

Just as the mean-value property of harmonic functions can be used to derive the
standard discretization of the Laplacian, the weighted mean-value relation above can
be used to derive a discretization of the convection diffusion operator. A five-point
stencil is obtained by replacing u (x + h cos 0, y + h sin 0) in (3.2) by the trigonometric
polynomial t4 defined by t4(0) a0 + a cos 0 + bl sin O + a2 COS 20 that interpolates to
it at 0 =0, zr/2, 7r, and 3r/2. The coefficients ao, al, bl, and a2 can be expressed as
linear combinations of the values u (x + h, y), u (x, y + h), u (x h, y), and u (x, y h);
the resulting integrals can be evaluated in terms of the Bessel functions I, with the
help of the formula

1 I0
2w

2zr
exp (-z cos O) cos nO dO (-1)I,,(z)

[13, p. 18]; and the stencil coefficients can be expressed in terms of 11/lo by use of
the formula I,,_l(z)-I,,/l(z) (2n/z)I,,(z) [13, p. 79]. The following five-point stencil
results:

I1-1-(1--) _1 + (1 +_)11 (e)h

Let Rh denote the set of interior nodes of a uniform rectangular partition of the
region R with mesh width h, rn vertical mesh lines, and n horizontal mesh lines; let
c3Rh denote the boundary nodes. Let Lh denote the finite difference operator associated
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with the stencil above, and let Uj and yj denote the discrete approximation to u and
the value of 3’ at the ijth nodal point. The difference equation

(3.4) LhUii 0 in Ra, U yi on OR,

I refer to the discrete weighted mean approximation of (1.1).
As h 0, the stencil (3.3) has the usual "diffusion" form

When hie >> 1, however, the following asymptotic expansion is valid;

-4() _..3e 1 e +o

Thus, if the mesh size is coarse compared to the boundary-layer thickness, the
discretization has a strong upwind bias, and in the limit as e - 0, with h held constant,
it becomes the backwards difference approximation to u 0.

There is a number, call it z*, approximately equal to 1.545(+/- .005) at which the
east" coecient of the stencil (3.3) vanishes. When h/2e Nz*, the discrete weighted
mean approximation is monotone (that is, Lhq 0 in Rh and q 0 on 0Rh imply

0 in Rh), and the discretization error can be bounded in terms of the truncation
error (see, for example, [7] and Theorem 2 below). When h/2e > z*, however, this
coecient is of the wrong sign (positive), and the approximation is not monotone.
This can be viewed as an exhibition of the lact that mesh sizes larger than this critical
value are too coarse to show the elliptic nature of the problem.

Nevertheless, the following theorem shows that the discrete weighted mean
approximation is uniquely solvable for all positive e and h.
TOM 1. Let e and h be positive. Then the difference equation (3.4) has a

unique solution.
Pro@ It is sucient to show that zero is not an eigenvalue of Lh in Rh with

homogeneous Dirichlet conditions on 0Rh. When h/2e N z*, Lh is monotone, so that
Lhq 0 in Rh and q 0 on ORb imply q is zero.

Let c, c, c, c denote the north", south", east", and west" coecients of
the stencil (3.3). If h/2e > z*, then c > 0 and the eigenvalues and associated eigentunc-
tions of Lh are given by

4e hr kTr
Ak h-+ 2(csc,) 1/2 cos n+l + i2(-CwCe)I/2 COS m+l, k 1," m and

l=l,.. .,n,

and

( k , ( C_ee )
lX 2

( Cn )
2

tzkTr hr
,v sin sin /x=l m and ,=1,... n.m+i n+l’
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From the inequality 211(z)< zlo(z) (valid for z positive), it follows that cs and cn are
greater than -e/h 2, and we have that Re (hkl)>4e/h2--2(CsCn)a/2> 2e/h 2.

Thus zero cannot be an eigenvalue in this case either. [3
The discretization error of the discrete weighted mean approximation is appraised

in the following theorem.
THEOREM 2. Let zii denote the truncation error (-q (th-L)uq) of the discrete

weighted mean approximation. Then there exist points &, , and rli satisfying x-a <,
:I <x+a and yi-1 < r/i < Yi+l such that

r, _2eI2 ( h )o e u(xi, yi)

h2 2e I1 2e I

+" T o Uxxx j Y).

The inequalities

Then

Proof. The expression for ri follows from Taylor’s formula, some straightforward
manipulations, and the identity Io(z)-2Ix(z)/z I2(z) [13, p. 79].

The discretization error, ei, satisfies Lheq "ri in Rh and e 0 on Ogh. Let h*
denote the value 2ez*, the critical point at which the "east" coefficient changes sign.
When 0<h <= h*, Lh is monotone, the inverses L can be bounded uniformly in h
as follows. Let be the comparison function defined by (x, y)=y (b-y)/2e; then
Lhtij 1. Given a mesh function v, observe that

th (llt,v.ll6.) -IIt,v.ll m t,v. for all and j.

Thus Ioi1--< IlLavill6, and Ilvqll <--IIL,v, l1116,,11. It follows that IILllI_-< 116, 11- b 2/8e.
For values of h greater than h* and less than hmax (the maximum value permitted

by the dimensions of the region), Theorem 1 guarantees that the bounded inverses

L all exist. Let the constant C1 denote the maximum of the norms of these,

max (llt lll: h* <_- h <_- hmax}.

_I(z)<Z I2 ()2Io = and o(Z)-<_
valid for z greater than or equal to zero, are easy to establish and can be used to
bound the truncation error. Define C2 by

1 1 e

Straightforward manipulations give IIz, ll--< C2h2.

Let eii denote the error ui- Ui, and let II. denote the grid maximum norm. Then there
exists a constant C, independent of h, such that

lie/ill-<- Ch 2.
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Thus the inequality of the theorem is established with the constant C given by
C C2 max {C, b/2}.

4. Boundary-layer improvement. Several numerical experiments were perfor-
med comparing various five-point discretizations of model problems of the form (1.1);
these tests are discussed in 6. The discrete weighted mean approximation was found
to be superior to all of the other tested schemes with respect to both the average and
maximum norm measures of relative error. Most of the experiments were conducted
on meshes that were coarse relative to the boundary-layer thickness e, and all of the
methods, to some extent, suffered from the same problem: as the mesh was refined,
the average error was reduced by an acceptable amount, but the maximum relative
error was reduced only slightly (if at all).

A consideration of the truncation error associated with the discrete weighted
mean approximation suggests a remedy for the problem. The truncation error can be
represented as a quadrature error--this is natural considering the derivation of the
scheme. Let eij denote the difference uij Ui between the true solution and the discrete
approximation to that solution at the i]th mesh point. Some simple manipulations give

4e 1 (-_eh 0)Lheij exp cos [u(xi+h cos0, y+h sin O)-t4(O)]dO.
2’Io

We see that the truncation error is the error created by replacing u (x + h cos O, y +
h sin 0) in (3.2) by the trigonometric interpolating polynomial t.

For convection-dominated approximations, where h > e, this truncation error can
be expected to be small at all points except those along the vertical mesh line x a h.
At these points, the circular integration path goes through the boundary layer,
and the trigonometric polynomial t4 cannot be expected to approximate well
u (x + h cos 0, y + h sin 0).

The first-order term in the asymptotic expansion of the true solution is given by

(4.1) u(x, y)- u(0, y)+ [u(a, y)-u(0, y)] exp ((x-a)/e).

By using this information locally, we can derive a better discretization for the points
along the last mesh line. In the weighted mean-value relation (4.2), replace u(x +
h cos 0, y + h sin 0) by the function q4 defined by

q4(O)=bo+exp ((x +h cos O-a)/e)(ao+aa cos O+ba sin 0)

that interpolates to it at 0 0, r/2, r, and 3-/2. As before, the coefficients
a, and b can be expressed as linear combinations of the values u (x + h, y), u (x, y + h),
u(x- h, y), and u(x, y- h), and the stencil coetficients can be expressed in terms
Bessel functions. Let o denote the quantity exp (-h/e). We have the following stencil:

(4.2)

1 1+o Ix (2__)

Too
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By using the stencil (4.2) along the boundary-layer mesh line and the stencil (3.3)
at all other points, we obtain a dramatic improvement in accuracy and achieve our
best results. This stencil can be used in a similar way to markedly improve the accuracy
ot other approximations, such as upwind differences. Both of these facts are docu-
mented in 6.

5. A tlireet solution method. The strong upwind bias possessed by the stencil
(3.3) can be used to advantage in the direct solution of the difference equations (3.4);
this applies as well to other discretizations of our problem that possess this same
property. Consider an algorithm of the two-sweep or marching type. Such methods
go back at least to von Mises (who discussed them in a seminar at Harvard around
1955 but dismissed them as unstablel) and appear at various places in the literature:
Roache [12], who refers to these as error vector propagation (EVP) methods, uses
them routinely; Birkhoff and George discussed them in [6, pp. 230-6], and Bank and
Rose analyzed them in detail from the standpoint of complexity and roundoff-error
instability [5].

Let Ui denote (Uil, Uin) t, the column vector of interior values of Uij along
the ith vertical mesh line; let T denote the n n, tridiagonal, Toeplitz matrix [cs, 1, cn]
(i.e., with lower codiagonal entries equal to cs, diagonal entries equal to 1, and upper
codiagonal entries equal to c,), and let B denote the n-vector containing the boundary
data associated with the grid points along the ith vertical mesh line. Were U, known,
the remaining vectors U,,-1, , U1 could be computed by using the stencil (3.3) in
a three-term recursion and "sweeping" upstreammthe reason for sweeping in this
direction will be made clear in the sequelmaccording to

(5.1) Um+l 0, Um Urn, -cwUi-1 TUi + ceUi+l-Bi, m, m, -1, , 2.

The essence of the two-sweep or marching method is to (1) do a sweep with U,, set
equal to zero, (2) use the result of this first sweep together with the unsatisfied boundary
condition at the upstream end to compute the correct initial values for U,,, and (3)
do another sweep with these correct values to compute the solution on all of the
remaining interior grid points.

This method is very simple and very efficient. The marching phases require O(ran)
work and storage, and it was shown by Bank and Rose [4], [5] that for separable
problems on rectangular domains, the second phase, which requires the solution of a
full n n linear system for the correct initial values of U,,, can be accomplished with
this same complexity. This complexity is of optimal order, i.e., of the same order as
the number of unknowns.

The shortcoming of the method is its instability with respect to growth of roundott
error during the marching phases. Let Pk be the polynomial of degree k defined by

(5.2) p_a(x)=0, p0(x)=l, --CwPk/x(X)=Xpk(X)+CePk-I(X), k=0,1,’’’.

The polynomial Pk is related to the modified Chebyshev polynomial Sk, which satisfies
the above recursion when Cw Ce =--1, by the following:

pk (X ( w)
k/2

( X )
Let p(T) denote the spectral radius of T. During a sweep, an initial error can be
amplified by a factor of p,(p(T))--a detailed error analysis for this type of algorithm

Garrett Birkhott, 1981, personal communication.
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can be found in [5]. In the prototypical case of the discrete Laplacian, where cn cs
Ce =Cw =--1/4, p,,(p(T)) is approximately 6", and such severe exponential growth of
roundoff error is indeed observed.

The presence of strong convection (and its consequent upwind-biased stencil)
provides a considerable improvement. When e/h << 1, the "west" stencil coefficient,
Cw, is approximately equal to p(T) so that the following asymptotic expansion is valid:

7 2

Table 1 compares the amplification factors p,,(p(T)) for discrete Laplacian and the
discrete weighted mean approximation of the convection-diffusion equation (2.1) with
e taking on the values 1, .1, .01, and .001.

TABLE 1
Amplification factors

Convection-diffusion
Discrete

m Laplacian e 1 e .1 e .01 e .001

5 5.5 (3) 3.6 (3) 2.4 (2) 2.7 (0) 1.1 (0)
10 4.0 (7) 2.6 (7) 8.3 (5) 3.7 (1) 1.5 (0)
15 2.8 (11) 1.8 (11) 4.2 (9) 1.7 (3) 2.5 (0)
20 1.9 (15) 1.2 (15) 2.4 (13) 2.2 (5) 5.0 (0)
30 9.0 (22) 5.6 (22) 9.3 (20) 3.3 (10) 3.3 (1)
40 4.1 (30) 2.5 (30) 3.9 (28) 3.2 (16) 4.2 (2)

On a CDC 6600, for example, the single floating-point precision of which is at
least fourteen decimal digits, amplification factors of 101 or so can be tolerated for
these problems. So when e .01, for instance, a 30 30 problem can be solved directly
in this way (as opposed to a maximum 13 13 discrete Laplace equation); when
e .001, this threshold is not reached until m > 80. Moreover, p,,(p(T)) can be easily
computed from (5.2) and is a reliable measure of the possible errors due to marching
instabilities.

(5.3)

The basic algorithm used to do the calculations in the next section is the following:

V,/ =0

V,=0

-cwVi-1 TVi -I-ceVi+l-Bi, m, rn 1,. , 1

p,,(T)U,, -Vo
U,,+ 0

U’ U,,

-cwUi-1 TUi + ceUi+l-Bi, m, rn 1, , 2.

The n n linear system p, (T)U, V0 is solved by using the factorization

2 [ 1 m2 c, 2 ir \
II t-I --4 cos /,
=1 \Cw Cw m +11

p(T)=
1 (,.-1)/ / 1/-T I-I |---TZ-4cos2 iTr )I,.Cw i=1 \Cw Cw m +1

m even,

m odd.
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The algorithm differs from the algorithm of [5, p. 798] only in the slightly different
form of the recursion and in the different factorization of p,,, which is chosen to avoid
the need for complex arithmetic in the convection-dominated approximations where
Cw and Ce are of opposite signs. It fits essentially into the context of the variable-
coefficient discretizations analyzed in [4].

For cases where this marching algorithm is not stable enough to solve the whole
problem directly, generalized marching [5], which makes use of this basic algorithm
on subproblems and is analogous to multiple shooting, is a viable alternative. A
marching (or generalized marching) algorithm can also be used to solve the problems
associated with the boundary-layer modified discretizations, which are discussed in
the previous section and have the property of using a different stencil along the last
mesh line. In this case, the sweeping phases are similar to those of (5.3), but the
second phase requires the calculation of the m zeros of the polynomial taking the
place of p,,. This can be done by finding the eigenvalues of a tridiagonal rn x rn matrix
(as in the variable-coefficient implementation of these schemes [4]), which can be
accomplished by the QR algorithm, for example, and the complexity of the resulting
algorithm is O(m 2 + ran).

6. Numerical results. Numerical experiments were conducted for the model
problem (1.1) on the unit square (a b 1) with various boundary conditions and a
wide range of values for the parameter e. The tests were performed on an n x n grid
with n taking on values given by n + 1 4, 8, 16 and 32. The following methods were
tested" standard central differences; upwind differencing of the convection term [12,
p. 24]; exponentially weighted differences [2], [9]; a modified upwind scheme [3],
[10]; the discrete weighted mean approximation (3.3); the discrete weighted mean
approximation with boundary-layer improvement ( 4); and upwind differences with
the same boundary-layer improvement.

The performance of the standard central difference approximation was extremely
poor, as expected, and this scheme can be immediately dismissed. The performances
of the exponentially weighted and the modified upwind schemes were very similar:
both had more uniform error distribution than the other schemes but low accuracy.
Results for the exponentially weighted scheme are reported. The upwind scheme
typifies this type of approximation: the accuracy is quite good (even for very coarse
meshes) away from the boundary layer (as reflected in the average error column of
Table 2), but it is very nonuniform and falls off sharply along the last mesh line
adjacent to the boundary-layer. This latter situation is improved by utilizing the
boundary-layer modified stencil (4.2). The discrete weighted mean approximation
performed the best (with respect to both the maximum and, in particular, the average
error) of the unmodified schemes, and the discrete weighted mean approximation
with boundary-layer modification performed the best overall.

Two other schemes were tested. Both were derived from the weighted mean-value
relation (3.2) in the same way that the discrete weighted mean approximation was
derived, with one using piecewise linear splines and the other using periodic cubic
splines. The results for neither of these are reported: the former yielded a monotone
approximation but was not very accurate and required numerical quadrature to
evaluate the stencil coefficients, and the latter was comparable to the discrete weighted
mean approximation but also required numerical quadrature.

Table 2 contains representative results for 5 of the methods, along with the
relative errors associated with the asymptotic expansion (4.1), for the model problem
with e equal to .01 and with the boundary conditions

u(x,O)=u(x, 1)=O, u(0, y)=y(l-y), u(1, y)=2y(1-y).



470 E.C. GARTLAND, JR.

TABLE 2
Discretization errors (e=.01). Methods: (0) one-term

asymptotic expansion, (1) exponentially weighted differences,
(2) upwind differences, (3) discrete weighted mean approxima-
tion, (4) upwind differences with boundary-layer modification,
and (5) discrete weighted mean approximation with boundary-
layer modification.

Relative error

Method n + 1 Maximum Average

0 4 7.7(-2) 5.1(-2)
7.7 (-2) 5.1 (-2)

2 4.9(-2) 1.8(-2)
3 1.8(-2) 7.4(-3)
4 1.6 (-2) 6.9 (-3)
5 1.5 (-2) 6.5 (-3)

0 8 9.0 (-2) 5.1 (-2)
1 8.8 (-2) 5.0 (-2)
2 8.9 (-2) 1.4 (-2)
3 4.0(-2) 6.6(-3)
4 7.2(-3) 1.8(-3)
5 6.5 (-3) 1.5 (-3)

0 16 9.6 (-2) 5.1 (-2)
1 7.0 (-2) 3.7 (-2)
2 1.6 (- 1) 1.3 (-2)
3 6.4 (-2) 4.7 (-3)
4 3.2(-3) 5.3(-4)
5 2.2 (-3) 3.5 (-4)

0 32 9.6 (-2) 5.1 (-2)
1 3.0(-2) 1.6(-2)
2 2.2 (-1) 1.0 (-2)
3 5.2 (-2) 1.8 (-3)
4 1.4 (-2) 1.1 (-3)
5 2.3(-3) 1.8(-4)

7. Conclusion. It has been shown that the approach of the discrete weighted
mean approximation possesses several advantages for a problem on which standard
(polynomial-based) approximations fail. The effectiveness of this approach has been
demonstrated by numerical experiments. It has the advantage of treating the differen-
tial operator as a whole and, in a sense, generalizes the ideas of Allen and Southwell
for the discretization of these types of operators.

The approach can readily be adapted to the slightly more general problem

-eAu+UoVu+qu =f inR, u =3’ on OR,

where U (U cos 00, U sin 0o) and e, U, 00, and q are constants. The local Green’s
function for the disk of radius h centered at the origin is given by

Ur -0o)]exp -W- cos (0
g(0, 0; r, O)=.

2zreIo(trh)
[Io(trh)Ko(trr)-Ko(trh)Io(trr)]
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where

U2 + 4eq 1/2

O"

And this gives rise to a local integral representation for the solution

u(x,y)=
2"n’Io(trh)

exp cos (0 -00)] u(x + h cos 0, y + h sin 0) dO

g (x, y r, O)f(x + r cos 0, y + r sin o)r dr dO.

Replacing the integrals above by appropriate quadrature rules will yield the
discrete weighted mean approximation for this problem. Also, variable-coefficient
problems, in which U, 0o, and q above are functions of x and y, can be handled by
using at each mesh point a discrete weighted mean approximation based upon the
values of the coefficient functions evaluated at that point (and treated as constants).

The approach generalizes to other differential operators and can be expected to
provide an improvement in those cases where polynomial-based approximations have
difficulty. It also has the advantage of permitting the local use of asymptotic informa-
tion, as done in 5, to improve the accuracy of the approximation. This is, of course,
rather problem specific, but it does provide a mechanism for using this information
(here the first two terms of an asymptotic expansion of the true solution) when it is
available.

The two main difficulties of the discrete weighted mean approximation are its
complicated derivation and analysis and the necessity of evaluating special functions.
The latter point is not too detrimental, since the only nonstandard function that is
required is the ratio of two Bessel functions I1/Io, which can be approximated to
sufficient accuracy (over the pertaining range of values of its argument) by a rational
function or asymptotic expansion.

This discretization, like others of such convection-dominated problems possesses
a strong upwind bias, and this helps to make more stable direct solution algorithms
of the marching or two-sweep variety. This is important because these algorithms are
of optimal computational complexity (in sufficiently nice geometries) and can afford
significant savings in solving certain nonlinear problems, such as the vorticity transport
equations, which are typically approximated by iteratively solving a sequence of
linearized problems like ours [12].
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PRECONDITIONING AND COARSE GRID CORRECTIONS IN
THE SOLUTION OF THE INITIAL VALUE PROBLEM FOR
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS*

P. J. VAN DER HOUWENt AND H. B. DE VRIES"

Abstract. The numerical solution of nonlinear, time-dependent partial differential equations is dis-
cussed. An initial value problem for a system of ODE’s is obtained by the method of lines, and an implicit
linear multistep method is applied to this initial value problem. Using Newton type iteration the nonlinear
implicit relations are replaced by a sequence of linear equations. The linear problems are preconditioned
by applying incomplete LU-decomposition and are then solved by iterative refinement. The convergence
is accelerated by introducing coarse grid corrections. Numerical examples are given and a comparison is
made with other integration techniques.

Key words. Numerical analysis, method of lines, initial-boundary value problems, incomplete LU-
decomposition, coarse grid corrections

1. Introduction. When the method of lines is applied to an initial-boundary value
problem for a (nonlinear) hyperbolic or parabolic differential equation, we often obtain
a system of ODE’s of the form

(1.1) dY
dt

=f(t, y), v 1, 2,

with prescribed values for y (and dy/dt) at to. By applying a linear multistep
method to this equation we are asked to solve at each time step the system of equations

k

(1.2) y-bozf(t,+:, y)= E [ayn+:-+bz’(t,+:-t, y,+:-)],
/=1

where y, denotes the numerical solution at t,, ,, t,+l-tn and {at, b} are real
coefficients. The (approximate) solution of (1.2) is identified with y,+l.

Assuming that f is differentiable with respect to y we may define the iteration
process

(1.3)

Y
(0)

Y (pred),
y (J) [I b0z ,..]- [b0z , (J .)y (j-x) + b (u (/))], /--1 9M

j= --.0f(t,+t, y ()), O<-u(/)<u(/+l)<-j,=
Oy

where Y’. denotes the right-hand side of equation (1.2), y(pred) is some predictor, ,
] 1,..., M, are approximations to J and u (]) is a piecewise constant function. This
function will be called the update function because each time it changes its value a
new right-hand side function is to be evaluated.

The scheme (1.3) contains several well-known iteration processes as special cases.
For instance,

(1.4) 3 J, u (j) / 1,

yields the modified Newton-Raphson process.

* Received by the editors December 16, 1980 and in revised form April 15, 1981.
f Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
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A second class o methods is based on a splitting of the Jacobian matrix J. Well-
known methods arise i (f(t, y) originating rom a 2-dimensional problem)

-= J, jodd,
j1 +j2 j,(1.5) 4" /J2, even,

where J1 and J2 are "simply structured matrices" (e.g., tridiagonal matrices). A slight
modification of (1.5) is given by

(1.5’) Ji J1 +J2 bo’rJ1J2 J bornJ1J2.

A third class of iteration methods is based on incomplete LU-decomposition.
Let L’U* denote an incomplete LU-decomposition of the matrix I-bo’r"J (from
now on the index n is omitted in the steps r,), i.e.,

(1.6) I borJ L*U* R,

where R is the residual matrix with a small matrix norm and L*, U* are a lower and
upper triangular matrix, respectively. These matrices were chosen as proposed in [8].
Let J be a (K K) matrix; then writing A I-bo’r"J and denoting the elements of
the matrices A, L*, U* and R by aj, l, u*j and r, 1<i,= ]<K,= the incomplete
LU-decomposition is defined by

*=I ]=I K,l

If (k, ]) e P then u 0= rk := akj 2 l’iu
k-1

(1.7) else u :] := ak] ., liu*i] for/" k," K;
i=1

If (], k e P then lk OZ rik := aik li U *ik
i=1

else lk := aik IU /U’k for/" k + 1,. ., K,
i=1

where k 1,. ., K. In all our experiments P is the set of pairs of integers defined by

P={(i,])lli-]l#O, 1, b-l, b; l <- i, ] <-_K},

where b is the half-bandwidth of A; i.e., ai 0 whenever [i -]] > b.
This choice o the set P is suitable when the partial differential equation does

not contain mixed derivatives and is semidiscretized by standard symmetric differences.
For more details on the L*U*-decomposition we refer to [8].

We now define the approximations .,/" 1, ..., M in (1.3) by
1

[I-L*U*].(1.8) I-borJ L’U*, J =boz
Substitution into (1.3) yields for y ti) the expression

(1.9) y () [L* U*]-IERy o"-1) + (u (1))].

This iteration method can be interpreted as a Newton type method in which the linear
systems are first preconditioned and then solved by iterative refinement. To see this
we consider the linear system to be solved in the modified Newton-Raphson process
or (1.2) in the form

(1.1O) (I borJ)y b (u (/)),
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where y uj)) is the solution of the preceding Newton step. Let L*U* be the incomplete
LU-decomposition defined by (1.7); then (1.10) can be preconditioned to obtain

(L*U*)-(I-borJ)y (L*U*)-(u(])).
Substitution of (1.6) yields

(1.10’) y =[L*U*]-[Ry +b(u (]))]

and applying iterative refinement leads to (1.9).
In the second and third class of iteration methods discussed above the update

function u(j) is still free. The most simple choice is u(])=-1, which requires in
each iteration an ]’-evaluation and is therefore rather expensive in general. For the
second class o methods based on a splitting o the Jacobian matrix, this strategy was
investigated in [4] (method of successive corrections). In this paper we consider more
efficient update strategies. Furthermore, in our numerical experiment we will apply
the third class of iteration methods.

In 2 we derive the iteration error o the general iteration method (1.3) and in
3 the effect is considered of introducing coarse grid corrections into (1.3). Finally,

in 4 we apply (1.9) in a number of parabolic initial-boundary value problems and
show that coarse grid corrections improve the accuracy considerably. Also comparisons
are given with other integration techniques.

2. The iteration error. Let r be the solution of equation (1.2) and define the
iteration error

(2.1) e (]) r y i).

Then it is easily verified that the iteration error of the scheme (1.3) satisfies the relation

(2.2)

[I-bor J.]e (1)= bor{[J-]e(i 1)-(J?-f(t,+,, n)) + (Jy((i))-f(t,+, y((i))))}.

(2.3)

where

Since f is assumed to be differentiable, it satisfies an inequality of the form

Ill(t, v)-Jv-f(t, w)+Jwll<=sup I1 0-f-f(t, y)-J [[v-wll,
yeY 0y

Y= {yly ov + (1- O)w, 0_--<O--< 1}.

Using this inequality we derive from (2.2) the estimate

I1 (i)II <= Ibolrll(I bo".)-II{IIY -1111 (/- I)11 / cll (u

y yi oy oy

={yly =O+(1-O)y ("’)), 0<O<l}.=
From (2.4) it is immediate that the final iteration error

(2.5) e(M)=O(z<a++)) asz0

where ff is the order of accuracy of the predictor formula used in (1.3) and m denotes
the number of f-evaluations. Thus in order to obtain the same order of accuracy p
as the generating k-step method (1.2), at least (p+l)/v-ff-1 right-hand side
evaluations are required.
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(3.1)

to obtain

(3.2)

We also conclude from (2.4) that for slowly varying Jacobian matrices Of/Oy the
contribution of the (Newton) error e (u (/’)) will be small when compared with e (/"- 1).
This means that one should keep u(]) sufficiently long on a fixed value in order to
compensate the possibly large error constant caused by the factor IIJ-ll. This may
lead to large numbers of matrix-vector multiplications but does not increase the
number of function evaluations.

3. Coarse grid correction. In order to accelerate the convergence of (1.3) we
add to y (/-1) for/" M1, M2, the correction term (cf. [2], [3])

c (i)= Phn[I bo’r"Jn]-lRnh[ (u (j 1))- (I bo’rJ)y (i-1)]

y (i)= EI bor%]-Eboz" (J -)(y 0"-1) + c 0") + 4’ (u (i))],

i MI, Mz,"

Here, Jn denotes the Jacobian matrix of the right-hand side function corresponding
to a coarse grid with grid parameter H. The (rectangular) matrices Rnh and Phn relate
the grid functions defined on the coarse grid IIn and the grid l’lh actually used
(h <H). Rnh (the restrictor) transforms a grid function defined on llh into a function
defined on fin, and Phn (the prolongator), and vice versa. These operators are assumed
to satisfy the relation (el. [2])

(3.3a) IlPhnRnh --zll O(Hq) as H 0, q _>- 1.

Furthermore, it will be assumed that

(3.3b) IIJ, -Rhheh,-,ll o(n) as h <n- 0.

The coarse grid corrections

(3.1’) c (i) PhnC /), j Mx, M2,’ ",

require the solution of linear systems for c with

(3.4) An =I-borJ
as its matrix of coefficients. Let An be an approximation to An such that At is easily
evaluated, and write the linear system for c0 in the form

(3.5) Anz
Then we may define the iteration process (cf. [2])

(3.6a) Zo AO
(3.6b) zt =[I-fiAu]zt_+, l 1, 2,....

We shall assume that this process solves (3.5) with negligible error. Then the
iteration error of (3.2) satisfies the equation (el. (2.2))

[I bo’r"f.]e (]) bo’r"{[J fi][I PhnaRnha]e (] 1)

(3.7) [I + boz" (J ])PhHAhleHh
[(J/--f(tn+l, l))-(Jy (u(i)) -f(tn+l, y(U(/))))]}

where we have written A I- bor"J and where it is assumed that u (/’) u (/- 1) for
j Mx, M2,
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In a similar way as we derived (2.4) from (2.2), we now derive from (3.7) the
estimate

(3.8)
+ CllI+ bo’r" (J --..)Phz-zARna ]l (u (/))11},

where C. is defined in the same way as in (2.4). The main difference with the estimate
(2.4) is the occurrence of the factor IlI-PhnAIRnhAII in the error constant of e (]- 1).
In order to see the magnitude of this quantity we substitute A and An, and write

I PhHAIRHhA
(I bo’t" j,)-1[(i bo’r"J*)- (I bor"J*)ehH(I bo’r"Jn)-IRHh (I borJ)],

where J* is a (square) matrix satisfying the relation

(3.9) J*Phu PhuJu.

It is easily verified that

(3.10)
I PhNARuhA

(I bo’r"J*)-[(I --PhHRHh) bo’r"Phu(Jn --RHhJPhH)RHh (PhHRHh)-I].
Hence, by virtue of (3.3)

(3.11) IlI-PhnaRnhall o(n’ +’r"nq) asz, h <H0.

From (3.8) we now derive for/" M, M2,

(3.12) II (j)ll--<

where C is a uniformly bounded constant as z and H 0.

4. Numerical experiments.
4.1. The test examples. All initial-boundary value problems chosen for our

numerical experiments are defined on 0-< <_-1 and

a= x )lo _-< <_-

and semidiscretized on a uniform grid Oh with mesh width h by standard symmetric
differences. The grid used to define the coarse grid correction (3.1) has grid parameter
H 2h. Thus, h results in 81 equations on the fine grid and 16 equations on the
coarse grid. For h 0 we have 361 and 81 equations, respectively.

The examples were chosen such that the exact solution is available. Therefore,
initial and boundary conditions can be prescribed by providing the exact solution.

Our first example is linear and serves to test the effect of the coarse grid correction
on the rate of convergence of the iteration scheme:

Ut=a(U,qxl+U,2,,2)-ae-’(4a+x2+x), a 1,100,
(4.1) e-t
Since the exact solution is quadratic in the space variables x and X2, the space
discretization error vanishes so that the time integration aspect can be tested more
or less separately from the effects of space discretization.

The second example is defined by [9]

(4.2) Ut + U5, U(xx, x2, t) [(2t +xa +x2)]/4.
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This nonlinear problem gives rise to an iteration error e (M) where both the error of
the inner iteration and the outer (Newton) iteration are present (cf. (2.4) and (3.12)).
It therefore can be used to demonstrate the effect of the inner and outer iteration
processes.

4.2. The numerical scheme. In this paper the numerical experiments are restric-
ted to parabolic equations, i.e. u 1 in (1.1). For the implicit formula (1.2) the fourth
order backward differentiation formula (cf. e.g. [6, p. 242]) was chosen, which results
in

(4.3) b0 12
-zs, E [48y.- 36y._1 + 16y,,-2- 3y.-33

in the iteration process (1.3). This formula was chosen because of its excellent stability
properties [1], so that (1.3) is also expected to be stable if the iteration error is
sufficiently small in each integration step.

In order to apply {(1.3), (4.3)}, four starting values are required which were
obtained from the exact solution of the initial-boundary value problems. Furthermore,
we put y (pred).._

Yn, "/’n--"/" is constant, J was obtained by analytical differentiation, ,.
is determined according to (1.8) (for details of the L*U*-decomposition used we
refer to 11 ]) and the update function u (f) is defined by

(4.4) u(1)=O, u(])= [m(]-l)]M
]=2,... ,M,

where [x] denotes the integer part of x and m is the number of f-evaluations per
integration step to be specified in the tables of results.

The scheme {(1.3), (1.8)} was combined with the coarse grid correction (3.2). The
values M1, M2, where this coarse grid correction is inserted are given by

(4.5) Mt l(p +s + l)-s,

where p and s are integers to be specified in the tables of results. From (4.5) it follows
that two coarse grid corrections are "separated" by p +s iterations and the first
correction is preceded by p iterations. In the experiments M is always a multiple of
p + s, hence the number of coarse grid corrections per integration step is given by

M(4.6) r
p+s

The performance of the coarse grid correction C itself requires the solution of the
linear system (3.5) which is solved by (3.6) in tz iterations including the initial iteration
(3.6a). The matrix x in (3.6) is obtained by incomplete LU-decomposition (cf.
(1.8)). The prolongator and restrictor operators needed in the coarse grid correction
can be compactly formulated by introduction of the averaging operators
and/x When applied to a grid function at a point O, these operators are respectively
defined by the average of the values at the two "horizontal", the two "vertical", the
four "horizontal" and "vertical" and the four "diagonal" neighbouring points of
Furthermore we can divide the grid points into four groups according to Fig. 4.1. The
coarse grid with a parameter H 2h consists of grid points denoted by . Let v be
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a grid function defined on the coarse grid, i.e. the points []. Then the prolongator is
defined by

0 0 0

[] []

0 @ 0 0

[] []

0 0 0 x2

FIG. 4.1. Grid ]’or h .
(4.7) (PhHV )m V, (PhHV )o tzlV, (PhnV )m tz-v, (PhnV )o tz V.

Let u be a grid function defined on the fine grid with grid parameter h. Then

(4.8) (RI-IhU )rn 1/4U + 1/4(IZ xU )C3 + 1/2(IZ+U )C3.

The numerical scheme specified in this section will be called the PCGC (preconditioning
and coarse grid corrections) method.

4.3. Numerical results. In the institute reports [5], [11], a large number of
experiments were reported presenting detailed information on the required computa-
tional effort for evaluating the function 4 in (1.3), for performing the iteration steps
defined by (1.9) and for computing the coarse grid correction (3.1). Here, we present
only a few numerical results in order to demonstrate the behavior of the PCGC method.

In the tables of results we specify the values of

(4.9)

m number of right-hand side evaluations f per step,

M number of fine grid iterations per step,

r number of coarse grid corrections per step.

Furthermore, we use the notation"
A (r) accuracy in the end point 1 measured by the minimal number of correct

digits, i.e.,

(4.1 O) A(z) -log10 Ily. u (t.)ll o,
where III1 is the maximum norm and u(t,) denotes the exact solution of
the partial differential equation on the grid ’h at t,.

/(z, 2z) effective order of the scheme {(1.3), (1.8)} in the interval (z, 2-) defined
by

(4.11) ff(r, 2z)=
A(’)-A(2r)

loglo 2
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In all experiments reported below we chose p s and performed 4 coarse grid
iterations in the calculation of the coarse grid correction (3.1). For those who are
interested in the computational effort involved in the experiments we give the
expressions for the total number of f-evaluations (Y. ), total number of matrix-vector
multiplications on h ( matvec), and the total number of equations L*U*y b to
be solved on fh (Y. SO1):

Y’.f =(z-x-3)m,

Y’. matvec (.-x_ 3)fro + r(p + s + 1)], sol (z-x- 3)(p + s)r for r # 0,

matvec (z-1 3)(m +M), ’. sol (r-1 3)M for r 0.

4.3.1. Coarse grid correction strategy. In order to demonstrate the effect of the
number of coarse grid corrections on the accuracy, we first choose the linear problem
(4.1) which requires only one f-evaluation per step so that the update function is fixed
(u (/’)= 0). In Tables 4.1 and 4.2 some results are listed showing that inserting coarse
grid corrections into the iteration scheme improves the accuracy considerably.

TABLE 4.1
Results for problem (4.1) with c 1, " 1/4 and h .

Number of fine grid iterations M
Number of/-evaluations m
Number of coarse grid corrections
Number of correct digits A

5 10 2 4 6
1 1 1
0 0 2 3
3.20 4.93 2.90 5.26 4.84

TABLE 4.2
Results for problem (4.1) with t 1, -=1/4 and h--o.

Number of fine grid iterations M
Number of f-evaluations m
Number of coarse grid corrections
Number of correct digits A

5 10 20 2 4 6 8
1 1 1 1 1
0 0 0 2 3 4
1.62 2.27 3.56 2.55 4.46 4.86 4.83

TABLE 4.3
Results for problem (4.1) with t 100, " 1/4 and h o.

Number of fine grid iterations M 2 8 16 2 6 8 4 12 16
Number of f-evaluations m 1 1 1 1 1
Number of coarse grid corrections 0 0 0 1 3 4 1 3 4
Number of correct digitsA -0.85 -0.27 0.46 0.40 3.13 4.83 0.56 3.71 4.80

In Table 4.3 the results are given tor the highly stiff problem (4.1) with c 100.
Without coarse grid corrections (r 0) the convergence is extremely slow, whereas a
minimum number of iterations with only a single coarse grid correction is sufficient
to obtain some accuracy. Additional experiments have shown that the accuracy
gradually increases if the number of coarse grid corrections increases from 1 until 4,
and remains constant for larger values of r(A (1/4) 4.7).
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TABLE 4.4
Number of correct digits A obtained without coarse grid corrections (r O) ]’or

problem (4.2) with " 1/4 and h .
M m=l m=2 m=3 m=4 m=5

4 1.47
6 1.68
8 1.93 1.96

10 1.96 2.26
12 1.95 2.44
16
20
24
30
40 1.95 2.44

2.48
2.95 3.00

3.48

2.95 3.48

3.55
3.90

3.90

In Tables 4.4 and 4.5 the effect of the number of f-evaluations m and coarse
grid corrections is illustrated for the nonlinear problem (4.2). If no coarse grid
corrections are inserted then we see from Table 4.4 that roughlyM 4 +4m iterations
are required in order to reduce the iteration error in the solution of the linear systems
to a negligible value. The method with r > 0, however, only needs M 2m iterations
to achieve the same result (see Table 4.5). Notice that this is also the lowest possible
number of iterations because r-> m and M 2r.

TABLE 4.5
Number of correct digits A obtained with coarse grid corrections ]’or problem (4.2)

with 1/4 and h -2-o.

r=M/2 m=l m=2 m=3 m=4 m=5

1.96
2 1.95 2.44
3 2.95
4
5
6
8 1.95 2.44 2.95

3.48

3..90
3.46 3.90

4.3.2. The effective order of the iteration scheme. From experiments with the
method of successive corrections {(1.3), (1.5)} reported in [4], it follows that often the
order of accuracy is considerably less than the asymptotic order of accuracy, particularly
for small values of rn and large values of ’r where tr denotes the spectral radius of
the Jacobian matrix J. Therefore, we are interested in the effective order (4.11) of
the scheme {(1.3), (1.8)}.

In Table 4.6 the effective orders are given for problem (4.2) together with the
asymptotic order p derived from (2.5). The integration steps are performed without
coarse grid corrections. Each three iterations the function/c is updated, henceM 3m.
For rn > 3 and z _>- the space discretization error becomes dominant in the error
y, u (t,) so that (4.11) does not give the order of the time discretization error (indicated
by --). The results in this table indicate that the asymptotic order p is not reached.
A possible explanation might be the effect of the space discretization error or the still
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relatively large values of z. Since we cannot decrease the value of z (as the space
discretization error would become dominant), we decrease the value of h.

TABLE 4.6
Effective orders obtained without coarse grid corrections for problem (4.2) with

h andM 3m.

z m=l m=2 m=3 m=4 m=5

1/5

1/10

1/20

0.6 3.6 4.6 5.9 5.8

0.9 1.3 2.3

1.3 1.2 1.6
1/40
z0 p=l p=2 p=3 p=4 p=4

TABLE 4.7
Effective orders obtained by m coarse grid corrections for problem (4.2) with h --o

andM 2m.

r m=l m=2 m=3 m=4 m=5

1/5

1/10

1/20

1.8 3.7 4.5 5.9 6.7

2.0 3.3 4.3 4.8

1.0 2.9 4.0
1/40
z-*0 p=l p=2 p=3 p=4 p=4

In Table 4.7 the results are listed obtained for h and by inserting r m coarse
grid corrections. Although the asymptotic order is still not shown, we see a convergence
to the correct values for decreasing z-values. It is also evident from these results that
the introduction of coarse grid corrections increases the effective order considerably.

4.4. Comparison with other integration methods. The PCGC method has been
compared with two other integration methods. The first one is the second order
one-step Runge-Kutta-Chebyshev method (RKC method) described in [10]. The
second method is also based on the preconditioned linear equation (1.10’), but instead
of accelerating the process of iterative refinement by coarse grid corrections as is done
in the PCGC method, the convergence is accelerated by applying Chebyshev iteration
(Richardson’s method). By virtue of the property that the matrix I- (L*U*)-XR has
its eigenvalues in the right half-plane (provided that certain mild conditions are satisfied
[8]), Manteutiel’s analysis of Richardson’s method can be applied [7] and the optimal
values of the iteration parameters can be evaluated. The generating method is identical
to that of the PCGC method. This method will be called the preconditioned Richardson
method (PR method); the number of f-evaluations is denoted by m, the number of
iterations for solving the linear systems is denoted by q.
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Our test examples are again problems (4.1) and (4.2), both with h =.
In order to compare the three methods the A(z)-values and the computational

effort required are listed in one table. The computational effort is measured by the
number N of computational units which are defined differently for each method. For
nonlinear problems one may choose

PCGC (r m)’ f+4 matvec+2 sol+C4+L[(L*U*)h +(L*U*)n],
m

(4.12) RKC: 10f,

PR: 1/2 f + (q + l) matvec +--(L* U*)h + q sol
m

Here, L’U* denotes the computational effort to perform the incomplete LU-
decomposition on l’lh and 1. For the definition ot the other quantities we reter to
the preceding subsections.

For linear problems one may choose the computational units

PCGC: l_[f + matvec] + C4 + 3 matvec+ 2 sol,

(4.13) RKC: 4f,

PR: g[f + matvec + q (matvec+ sol)].

Notice that the computational work involved to perform the incomplete LU-decompo-
sitions is neglected in these units because for linear problems these calculations are
required only once and the decompositions can be used in all integration steps.

In (4.12) and (4.13) not all calculations performed by the various methods are
taken into account. In the PCGC method the evaluations of the Jacobian matrices
are neglected and are in fact provided in closed form in our experiments; in the RKC
method the evaluation of the spectral radius of the Jacobian matrix is neglected and
in the PR method all initial work for estimating the iteration parameters and the
evaluation of the Jacobian matrices as well are not taken into account. For a more
detailed discussion of the computational units (4.12) and (4.13) and for a comparison
on the basis of arithmetic operations we refer to [11].

Another important aspect in interpreting the results obtained by the three methods
is the storage requirement. The RKC method requires only a few vector arrays whereas
especially the PCGC method needs considerably more storage.

In Fig. 4.2 the A(-) values and the corresponding computational work N
(expressed in terms of the units defined in (4.13)) are illustrated. These values were
obtained by performing the integration with a number of integration steps (RKC with
r 1, , 5 and , the other methods with z 51-, and o.

In Fig. 4.3 the A(z) and N values for problem (4.2) are illustrated, as obtained
by the RKC, the PR and the PCGC method. The results of the RKC method correspond
to z 1, 1/2, , o, 0, o and . For the PR and PCGC methods the integration step -and the value of m are indicated in the plots.

From Figs. 4.2 and 4.3 we conclude that relative to the units (4.12) and (4.13)
the PCGC method is the most efficient one and the RKC method the most expensive
one. However, are the units (4.12) and (4.13) comparable? This is both problem- and
computer-dependent, so that we shall not try to answer the question. Moreover, the
aspect of storage may be as important as the computational effort which places the
RKC at the first place.
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Finally, we remark that the PCGC method analysed in this paper should be
implemented as a full multigrid method as described in [2] and [3] if one decides to
base a software package on preconditioning and coarse grid corrections. Also a more
suitable predictor formula y (pred) might be considered.

Acknowledgment. The authors are grateful to Mr. J. Kok for programming the
incomplete LU-decomposition.
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COMPARISON OF TWO ALGORITHMS FOR SOLVING
LARGE LINEAR SYSTEMS*

ZAHARI ZLATEV/f JERZY WASNIEWSKI, AND KJELD SCHAUMBURG

Abstract. Assume that the coefficient matrix A in the system Ax b is large and sparse. Consider the
following two algorithms: DS (where the system is solved by a direct use of Gaussian elimination) and IR
(where the use of Gaussian elimination is combined with the use of a large drop tolerance and followed
by iterative refinement). Assume that some sparse technique is implemented with both DS and IR. The
performance of two codes, the NAG subroutines (which are based on DS) and the RECKU subroutines
(which are based on IR) are compared on a wide set of test matrices. The comparison shows that the
second algorithm, IR, performs better in general. The computing time and/or the storage needed may be
reduced considerably when the IR algorithm is used. Moreover, this algorithm normally provides a reliable
estimate of the accuracy of the computed solution. When the problems are time and storage consuming,
IR is much better (it gives a reduction in the computing time of up to 10 times and a reduction in the
storage of up to 2-3 times). It is shown that IR is very efficient when linear least-squares problems are
solved by the use of augmented matrices.

Key words. Sparse matrices, direct solution, iterative refinement, drop-tolerance, accuracy require-
ments, nonzero elements, fill-ins, pivotal strategy, test-matrices, matrix generators, least-squares problems,
augmented matrices, storage schemes for sparse matrices.

1. Introduction. Consider the problem

(1.1) Ax=b, nli, AI"", bl"1, rank(A)=n.

Let x Rnx be the exact solution of (1.1). An approximate solution, g Rnl,
of (1.1) can be found by the following algorithm:

(i) Use the Gaussian elimination to decompose matrix A into two triangular
matrices L and U so that

(.2) LU PAO +E

where P and O are permutation matrices, E is a perturbation matrix.
(ii) Calculate a first approximation, x 1, by

(1.3) x Hb, H OU-1L-1P.
(iii) Attempt to improve the accuracy of xl by iterative refinement"

(1.4) r=b-Axi, di=Hr, x+l=x+di (i=l(1)p-1).

The third step is optional. If it is not carried out, then we set g X and will
call the algorithm DS (direct solution). If all three steps are applied, then the algorithm
will be called IR (iterative refinement). In this case 7 xp is normally more accurate
than x 1. Moreover, Ildo-lloo is a reliable estimate for IIx -gll.

Consider the case where A is dense. Then the use of IR is connected with
requirements for both extra storage (about 100%; a copy of matrix A should be

* Received by the editors January 29, 1980, and in revised form January 19, 1981.
t Institute for Numerical Analysis, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
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Department of Chemical Physics, University of Copenhagen, The H. C. Orsted Institute, Universitets-
parken 5, DK-2100 Copenhagen, Denmark.
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made) and extra computing time (for the calculations in (1.4)). Therefore the third
step of the above algorithm is usually not carried out when A is dense. In this situation
double precision is often recommended in order to meet the accuracy requirements.
Moreover, a cheap estimate of the condition number of matrix A can be calculated
(without using any copy of matrix A) and used as a measure of sensitivity of the
results to errors in the computations (see Cline et al. [7] and Forsythe et al. [15]).

Assume now that matrix A is large and sparse. Also in this case the use of IR
will give both an approximation xp which is normally more accurate than x and
a reliable error estimate. Moreover, if the sparsity of A is exploited by some sparse
matrix technique (SMT), then it is possible to develop an algorithm where the use of IR
will often lead to a reduction in storage and/or computing time (compared with the
storage and the computing time needed when DS is applied). Such an algorithm has
been implemented in package Y12M (Zlatev [31], Zlatev et al. [34], Zlatev and
Wasniewski [36] and Zlatev et al. [37]). The SMT implemented in Y12M will be
sketched in the next section. It is necessary to emphasize here that, roughly speaking,
by the application of any SMT, one attempts to store and use in the computations
only the nonzero elements of A (see Brayton et al. [5], Curtis and Reid [8], Duff [9],
Reid [23] and Tewarson [26]). In the algorithm implemented in Y12M we go further:
We keep and use in the computations only the elements of A which are larger (in
absolute value) than a special parameter T, the drop tolerance (Clasen [6], Reid [22],

(s/l, is removed (andTewarson [26] and Wolfe [30]). This means that any element, a
thus not used in the further computations) when

(1 5) , I<T,
where s 1 (1)n 1 and

(1 6) a(+ ( (,
i =ai-ais_i/as, as #0, a =aiiA.

It is obvious that the use of a large drop tolerance (LDT) may lead to a reduction
of both the storage and the computing time. However, the approximation x so found
will often be inaccurate. Therefore LDT should not be used with DS. This leads to
the necessity of using IR when T is large.

In Y12M both the use of T > 0 and the use of IR are optional. If IR is applied,
then the components of the residual vector r are accumulated in double precision and
then rounded to single precision (see Bj6rck [4], Stewart [25], Wilkinson [27], [28]
and Wilkinson and Reinsch [29]). The IR process is terminated when any of the
following stopping criteria is satisfied"

(1.7) IId,- llo < llx, (e is the machine accuracy),

(.8) IId, lloo>lld,-lloo^i>2,
(1.9) =/MAX (/MAX is prescribed in advance).

The use of IR should be combined with a careful choice of T. Some practical rules
for choosing T are given below.

Assume that: (i) matrix A is not very ill-conditioned, and (ii) all numbers

(1.10) at max (la), l(1)n, aii

have the same magnitude. Denote

(1.11) a min (ai).
l_i_n
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Then T [10-Sa, 10-3a ] will normally be a good choice for T. Note that even if
some very crude estimate of the magnitude of a is known, then this estimate can be
used instead of a. If no information about the magnitude of the nonzero elements of
A is available, then row scaling of matrix A can be carried out before the beginning
of the decomposition (1.2). The cost of this process is O(NZ). This is 3-5 times
cheaper than the cost of one iteration in (1.4) and is negligible compared to the total
computational time needed for IR. We hope that the user will have some information
about the magnitude of the nonzero elements of matrix A and, therefore, will be able
to use the above rules. If this is not the case, then a special option in Y12M can be
used. In this option, one can specify some T in the interval [-10-3, -10-5]. The code
Y12M will perform row scaling automatically and use in the computations a drop
tolerance T1 =-T. Note that row scaling has no essential effect on the numerical
solution (Forsythe and Moler [16]). It is carried out only to facilitate the choice of T.
It should also be mentioned that the algorithm advocated in Duff et al. [13] is
implemented in our package Y12M. An additional rule, which can be successfully
applied in the solution of linear systems of ordinary differential equations by implicit
time-discretization schemes, is described in Schaumburg et al. [24].

If T is chosen according to any of the above rules, then we shall call it a large
drop tolerance (LDT). Thus, the value of the LDT is related to the magnitude of the
nonzero elements of matrix A.

We shall refer to the option in Y12M where LDT and IR are used as RECKU
subroutines in this paper. This means that, unless the opposite is emphasized in the
text, the use of LDT and IR is always assumed in the RECKU subroutines.

Our purpose is to show that the use of LDT and IR is often more efficient than
the simple use of DS. The numerical results in Zlatev [31], Zlatev et al. [34], [37]
show that usually the Y12M option with LDT+ IR (the RECKU subroutines) performs
better than the Y12M option with DS only. The same conclusion can be drawn from
Schaumburg et al. [24], where some large chemical problems are solved. In this paper
the performance of the RECKU subroutines is compared with a good code oriented
to the users. The subroutines F01BRE and F04AXE from the NAG Library have
been chosen as such a code. We shall refer to these subroutines as NAG subroutines.
The NAG subroutines have been chosen because (i) these subroutines perform best
among the subroutines available at RECKU2 (where the NAG Library is imple-
mented), (ii) the basic ideas used in these subroutines are well described (Duff [10]
and Duff and Reid [12]). It is very important (but this was not decisive for our choice)
that the RECKU subroutines and the NAG subroutines are based on similar principles
(e.g., the ideas proposed in Gustavson [18], [19] are applied in the storage scheme
in both packages; see 2). This makes the comparison and the discussion of the results
easier. However, it must be emphasized here that the results depend not only on the
fact that LDT+ IR is used or not used. The influence of some other factors (e.g., the
pivoting strategy) can also be traced, sometimes. Unfortunately, such influence cannot
be avoided when two different codes are used. Nevertheless, we believe that the main
reason for the difference in the results is the use of LDT and IR in the RECKU
subroutines. This is important because our purpose is not to compare the two codes,
but to show that an algorithm based on SMT+LDT+ IR is often more efficient than
a good user oriented algorithm based on SMT and DS.

NAG: Numerical Algorithms Group, Banbury Road 7, Oxford, England.
RECKU: The Regional Computing Center at the University of Copenhagen.
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2. On the storage schemes and the pivotal strategies used. The storage schemes
used in both packages are very similar. They are based on ideas proposed in Gustavson
[18], [19]. A brief presentation of the storage schemes is given below; for more details
about the RECKU subroutines see Zlatev [31], Zlatev et al. [34] and Zlatev and
Wasniewski [36]; about the NAG subroutines, Duff [10] and Duff and Reid [12].
Only the facts needed to better explain the numerical results are described in this
section.

Denote by NZ the number of nonzero elements in A. The main arrays (which
have length larger than NZ) are three in both packages: real array A and integer
arrays SNR and RNR (here and below the notation used in the RECKU subroutines
is given). On entry the nonzero elements of matrix A must be stored (in an arbitrary
order) in the first NZ locations of array A so that if A(K)--ai (K I(1)NZ) then
RNR(K)= and SNR (K)=f. The RECKU subroutines order the elements by rows
and store them in the first NZ locations of arrays A and SNR so that if A(K)=
ai (K 1 (1)NZ), then SNR (K)= . A and SNR form the row ordered lit. The row
numbers of the nonzero elements ordered by columns are stored in the first NZ
locations of array RNR. This array forms the column ordered list. The nonzero
elements are ordered in a slightly different way within the lists by the NAG subroutines;
however, the basic ideas are the same. Some additional information (e.g., about the
row starts and the row ends) is also needed and is stored in an integer array HA (with
length 13n; two arrays are used in the NAG subroutines but their total length is also
13n). After stage s, s l(1)n- 1, of the elimination the row numbers of the nonzero
elements in column s are not needed and are therefore removed from array RNR.
In this way the length of array RNR may be smaller than the length of the arrays in
the row ordered list (about 40%, even if the matrix is such that the number of fill-ins

(s) 0(s) 0 in (1.6) while neither a isis large; the new nonzero element created when a i
(s)nor a s 0 is called fill-in). The possibility of using a smaller length for array RNR

has been proposed in Zlatev and Thomsen [35] and Zlatev and Barker [33], and after
that was also used in Duff [10], Duff and Reid [12], Munksgaard [21] and Zlatev and
Wasniewski [36]. It is difficult to give recommendations about the length of arrays A
and SNR. If IR +LDT is used, then this length is normally in the interval [2NZ, 3NZ].

In the RECKU subroutines, two extra large arrays are needed (a real array A 1
and an integer array SN; both of length NZ). A copy of the nonzero elements of
matrix A (ordered by rows) is made in array A1 so that if AI(K)= ai (K I(1)NZ),
then SN(K)=f. Some additional storage (of length 4n) is also needed when the
RECKU subroutines are used (e.g., to store the residual vector r in the ith iteration;
see Zlatev et al. [34]).

Let COUNT (RECKU) be the largest number of nonzero elements kept in array
A during any stage of the elimination process (1.2) when the RECKU subroutines
are used. Denote the corresponding number for the NAG subroutines by
COUNT (NAG). Then the relation

COUNT (RECKU)+NZ <COUNT (NAG)

will indicate that it is possible to use less storage with the RECKU subroutines. The
parameter COUNT (without any indication when the meaning is clear) will be used
in the storage comparisons.

The pivotal strategies used in both packages can be found as special cases in the
GMS (generalized Markowitz strategy) described in Zlatev [32]. However, these
strategies are different. Moreover, the influence of the pivotal strategy on the results
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is sometimes apparent. Therefore, a brief discussion of the pivotal strategies is needed
before the presentation of the numerical results.

Assume that the sth pivotal element has to be found (s 1(1)n- 1). Consider

(2.2) As={a si)/s <--i <--n,s <-- <--n},

(2.3) Is {i/m l(1)p(s), l <--p(s) <--n --s + l, s <--_i, <--n},

(2.4) (ikIs)^(iIs)^(k <q)=r(ik, s)<--r(i,s),

(2.5) (iIs)^(s<=i<--_n)=r(iv<s),s)<--r(i,s),
) A/lai I" u > max (laS)l), Is, u > 1},(2.6) Bs={ai (s)

ik
s<--_k<--_n

(2.7) Mij It(i, s 1][c (, s 1],

(2.8) Ms min (Mi),
() Bs
(s)(2.9) Cs {aii Bs/gi]s =Ms},

where (i) r(i, s) and c(.i, s) are the numbers of the nonzero elements in row and
column j which belong to As (As is called the active part of matrix A at stage s), (ii)
u is called a stability factor and Bs is called a stability set, (iii) Ms is called the
Markowitz cost of element a <s)

ij, and (iv) the elements of set Cs are candidates for
pivotal elements at stage s of Gaussian elimination.

The pivotal strategies defined by (2.2)-(2.9) depend on two parameters: u and
p (s). In the original Markowitz strategy (Markowitz [20]), u and p (s) n -s + 1
are used. In the NAG subroutines u 10 is recommended and p (s) n -s + 1 is used
(Duff [10] and Duff and Reid [12]). Moreover, any element of Cs can be chosen as
a pivotal element in the NAG subroutines. Zlatev [32] proposed choosing as pivotal
the element of C with the largest absolute value. This strategy is called an IGMS
(improved generalized Markowitz strategy) in Zlatev [32] and is implemented in the
RECKU subroutines (with recommendations u [4, 16] and p(s)<-3). Since the ele-
ments of C are also elements of the stability set Bs, the change made to obtain an
IGMS does not seem to be very important for the accuracy of the results. However,
it can be verified both theoretically and experimentally that this is not so. In Zlatev
[32] it is proved that there exist classes of matrices for which any IGMS will ensure
stable results, while the GMSs may cause instability. In Zlatev [31], [32] there are
some examples given where the codes based on GMSs produce much poorer results
than the codes based on IGMSs (see also the results in Table 3 of this paper).

3. Test matrices. Three matrix generators have been used in our experiments.
These generators are described in Zlatev et al. [38]. Each generator can produce
arbitrarily many matrices depending on some or all of the following parameters"
m, n, c, r, c. The numbers of rows and columns in the desired matrices can be changed
by m and n respectively (we shall mainly use m n). The positions of certain nonzero
elements in A are determined by the choice of c. The number of nonzero elements
can be changed by r (so that NZ rm + 110). The magnitude of the nonzero elements
can be varied by c so that max <-_i.<-, ([al)/min<_i,_, (lai[) 10,a A, a, 0. Only
the parameters n and c can be varied in the first two matrix generators, the subroutines
MATRD and MATRE. These subroutines generate square matrices which are called
matrices of class D (n, c) and class E(n, c), respectively. Two illustrations for matrices
of these classes are given in Figs. 1 and 2; more details can be found in Zlatev [31],
[32], Zlatev et al. [34], Zlatev and Wasniewski [36] and Zlatev et al. [38].
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FIG. 1. Sparsity pattern of matrix A D(20, 4). The nonzero elements are indicated by o.

FIG. 2. Matrix A E(10, 4).

All parameters can be changed in the third matrix generator, subroutine
MATRF2, which produces matrices of class F2(m, n, c, r, a) (see Zlatev et al. [38]).
The sparsity pattern of a matrix of this class is given in Fig. 3.

All Harwell test matrices (36 in number; see Duff [10], Duff and Reid [11], [12])
have also been tested.

4. Numerical experiments. All numerical experiments have been carried out at
RECKU (the Regional Computing Center at the University of Copenhagen) on a
UNIVAC 1100/82. The FTN compiler and single precision (e 1.49 10-8) have
been used. The computing time is always given in seconds. The right-hand side vector
has always been generated so that all components of the exact solution, x, are equal
to 1. T 10-2, u 4 and p (s) min{n s + 1, 3} were normally used with the RECKU
subroutines, while the recommended value of parameter u (u 10) was chosen for
the NAG subroutines. Whenever another value of some of these parameters was
applied, this value is explicitly given in the corresponding table.

4.1. Solving systems with different numbers of equations. Test matrices of classes
D(n, c) and E(n, c) have been used in order to investigate the performance of the
two codes in the situation where n is varied (n =650(50)1000; moreover, for each n
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FIG. 3. Sparsity pattern of matrix A F2(26, 26, 12, 3, a). The nonzero elements are indicated by O

six systems with c 4(40)204 are solved). A tendency for the efficiency (with regard
to the computing time used) to increase when n becomes large has been observed (see
Table 1). For many examples, COUNT (RECKU)<COUNT (NAG)/3 has been
found (see Tables 2 and 3). The accuracy of the approximations found by the RECKU
subroutines is close to the machine accuracy for all 96 systems. The accuracy of the
approximations found by the NAG subroutines is normally O(10-4 for matrices of
class D(n, c) and varies from O(10-1) to O(10-6) for matrices of class E(n, c).

TABLE
For each n, the sum of the computing times (in seconds), found in the solution of 6 systems with different

values of c (c 4(40)204), is given.

65O
700
75O
8OO
85O
900
950
1000

Total

Matrices of class D(n, c)

NAG
subroutines

RECKU
subroutines

46.52
58.63
56.38
64.50
67.74
75.89
88.99
80.85

13.16 (28.3%)
13.00(22.2%)
13.77 (31.5%)
14.55(22.6%)
15.16(22.4%)
16.00(21.1%)
16.28(18.3%)
17.85(22.1%)

559.50 119.77 (22.2%)

Matrices of class E(n, c)

NAG RECKU
subroutines subroutines

51.55 16.34 (31.9%)
71.33 19.10(26.8%)
85.45 21.55 (25.2%)

107.31 23.06 (21.5%)
127.42 25.33(19.9%)
137.55 27.45 (20.0%)
224.30 29.51 (13.2%)
251.55 31.79(12.6%)

1056.46 192.22 (18.4%)
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4.2. Solving systems whose matrices have different sparsity patterns. The experi-
ment described in 4.1 has been considered for n 800. The results are given in
Tables 2 and 3. It is seen that both the storage parameter COUNT and the computing
time vary very much with c when the NAG subroutines are used.

TABLE 2
Comparison of some characteristics obtained ]’or matrices D(800, c), c =4(40)204, NZ =4n + 55

3255 .for all values of c.

4
44
84
124
164
204

Average results

NAG subroutines

Time COUNT

3.41 8431
11.61 17668
13.86 20340
13.98 18416
12.63 18497
9.01 16257

10.75 16608.2

RECKU subroutines

Time COUNT

2.37 (69.5%) 4573 (54.2%)
2.09 (18.0%) 5843 (33.1%)
2.43 (17.6%) 5979 (29.4%)
2.44 (17.5%) 5978 (32.5%)
2.75 (21.8%) 5921 (32.0%)
2.47 (27.4%) 5937 (36.4%)

2.42 (22.6%) 5705.2 (34.4%)

TABLE 3
Comparison of some characteristics obtained lor matrices E(800, c), c 4(40)204, NZ 5n -20- 2.

4
44
84

124
164
204

Average
results

NAG subroutines

Time COUNT Accuracy

2.71 9420 5.49 E-4
53.67 30424 4.13 E-1
24.73 22868 1.31E-2
12.45 16778 2.36 E-3
7.69 13951 1.29 E-3
6.06 12166 7.05 E-5

17.89 17.601.2 7.17 E-2

RECKU subroutes

Time COUNT Accuracy

2.45 (90.4%) 6504 (69.0%) 0.0
6.88 (12.8%) 9882 (32.5%) 5.96E-8
4.43 (17.9%) 8793 (38.5%) 1.12 E-6
3.67 (29.5%) 7849 (46.8%) 7.45 E-8
3.15 (41.0%) 7218 (51.7%) 1.49 E-8
2.48 (40.9%) 6443 (54.0%) 2.98 E-8

3.84 (21.5%) 7781.5 (44.2%) 2.16 E-7

Denote by the ratio of the maximal and the minimal computing times when
the NAG subroutines are used with n 800 and c 4(40)204. Let t2 be the correspond-
ing number for the RECKU subroutines. For the matrices D(800, c), tl =4.1 and
t2 1.3. For the matrices E(800, c), tl 19.8 and t2 2.8. The same tendency holds
for all other values of n. Moreover, the same is also true for parameter COUNT.
However, for this parameter it is more important to emphasize that the whole test
described in Table 2 can be carried out if the length of arrays A and SNR is larger
than 6.2,NZ for the NAG subroutines, while 2 NZ will be sufficient for the RECKU
subroutines. For the test in Table 3, the corresponding numbers are 7.7,NZ and
3,NZ. The same tendency holds for all other values of n. The recommended value
for the length of A and SNR is [2,NZ, 4,NZ] for the NAG subroutines, while the
interval for the RECKU subroutines is [2,NZ, 3 ,NZ]. The values of COUNT are
not known in advance. Therefore, in general, we cannot reserve the optimal storage
needed. Nevertheless the results given in Tables 2 and 3, together with those of many
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other runs (see [34]), allow us to draw the following conclusion, which is very important
or the practical use of sparse packages: It seems to be easier to give a reliable interval
]’or the length o[ arrays A and SNR when SMT+LDT+ IR is used.

The accuracy o the approximations for n 800 is: O(10-4) for the NAG sub-
routines and for matrices of class D(800, c); from O(10-1) to O(10-5) for the NAG
subroutines and for matrices of class E(800, c); from O(10-6) to O(10-8) for the
RECKU subroutines or both classes. The accuracy obtained when matrices of class
E(800, c) are run is given in Table 3. The poor accuracy found with the NAG
subroutines for some matrices of class E(n, c) can be explained by the fact that the
pivotal strategy used in the NAG subroutines is only a GMS (see, for more details,
[31], [32]). All 48 matrices o class E(n, c) have been run with the DS option of our
package and T 0. The accuracy was from O(10-4) to O(10-6). This shows that the
use of an IGMS sometimes can give much. greater accuracy.

4.3. Solving systems whose matrices have different densities o| the nonzero
elements. Some test matrices of class F2(m, n, c, r, a), m n 500, c 200, a 100
and r 5(5)40, have been run. Since NZ rm + 110, the density of the nonzero
elements of matrix A, NZ/n 2, has been varied in this experiment. The computing
times found are given in Table 4. The accuracy of the approximations was from
O(10-2) to O(10-4) for the NAG subroutines and from O(10-6) to O(10-7) for
the RECKU subroutines. The relation COUNT(NAG)=3.COUNT(RECKU)
holds for all 8 examples (e.g., for r=5 we have COUNT(NAG)= 13450 and
COUNT (RECKU)= 5391).

TABLE 4
The computing times when the density, NZ/n 2, of the nonzero elements is varied. The

matrices are F2(500, 500, 20, r, 100).

NAG RECKU
NZ NZ/n2 subroutines subroutines

5 2610 0.01 9.91 2.22 (22.4%)
10 5110 0.02 32.96 6.16 (18.7%)
15 7610 0.03 56.84 11.60 (20.4%)
20 10110 0.04 59.32 14.84 (25.0%)
25 12610 0.05 131.39 25.59 (19.5%)
30 15110 0.06 97.69 34.32 (35.1%)
35 17610 0.07 117.16 50.76 (35.2%)
40 20110 0.08 288.03 62.81 (21.8%)

Note that the computing time or r 25 is larger than that for r 30 when the
NAG subroutines are used. It is difficult to explain this phenomenon (this is not caused
by a bad preservation of sparsity; the values of COUNT (NAG) are 49150 for r 25
and 55515 for r 30). The only possible explanation is based on the implementation
of the pivotal strategy in the NAG subroutines. The pivotal element at stage s is
searched among all nonzero elements of As (p(s) n -s + 1) (see 2). The rows and
the columns of As are searched in order of increasing number of nonzero elements
(using rows in preference to columns in cases of tie). The search is terminated if
Mi]s < Jr(i, s) 1 ]2 when a row is searched and if Miis< c (/, S )[C (], S 1 when a column
is searched (see Duff and Reid [12, p. 28]). It is stated that normally the process is
terminated rather quickly (Duff [10, p. 25]). However, from Duff [10, Table 5], it is
seen that the average number of the searched rows and columns can be considerably
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large (up to 14 even if n is small, n 199). We believe that the large computing time
for r 25 is caused by a large average number of searched rows and columns, i.e.,
the pivotal strategy fails to determine quickly the pivotal elements during the decompo-
sition (1.2).

4.4. Solving badly scaled systems. Matrices of class F2(m, n, c, r, a) with m n
50, c 20, r 4 and a 10k, k 0(1)6, have been tested. The results are given in
Table 5. The estimations of the condition numbers of the matrices used in this test
have been found by a subroutine given in Forsythe et al. [15]. Note that for the next
value of a, a 107, the iterative process used in the RECKU subroutines is not
convergent. Only the accuracy of the approximations is of interest in this experiment.
Therefore, small matrices have been run, and neither computing times nor the values
of COUNT are given in Table 5. However, it should be mentioned that the NAG
subroutines performed better than the RECKU subroutines in this run (with regard
to both the computing time and the storage).

TABLE 5
Test with badly scaled matrices F2(50, 50, 20, 4, a) (NZ 310, estimates

of the condition numbers of the matrices are given under COND).

NAG RECKU
a COND subroutines subroutines

10 2.81E +01 9.69 E-7 0.0
101 6.52 E +03 3.04 E-5 1.04 E-7
102 2.83 E +04 5.74 E-5 2.53 E-7
103 4.80 E + 05 9.41 E 5 3.87 E 7
104 7.80 E +06 4.42 E-5 8.94 E-7
105 6.72 E +09 5.46 E-2 6.75 E-7
106 6.26 E + 12 1.38 E + 1 2.49 E-3

4.5. Tests with Harwell matrices. All Harwell matrices (36 matrices with n in
the range [32, 1250]) have been run. Only the sparsity pattern for some of these
matrices is given. If this is so, then we generated the nonzero elements as follows.
Let us assume that (according to the prescribed pattern) there is a nonzero element
in position (i,/’). Then aij is generated either by

(4.1) aij if =i, +./if >], i-f if </’}

or by

(4.2) ai {2i + 1 if j, / if > j, ] if <j}.

Some of the matrices are rectangular. If this is so, then the augmented system,
[1, 2, 3], is formed in the following way:

(4.3) By =c

where

(4.4) B=[A/r A0], y=[], c=[b0].
When the nonzero elements are given we do not know their magnitude (and we

did not try to obtain any information about it). The option which performs row scaling
automatically (see 1) has been used with T =-10-5 (the computing time spent in
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performing scaling is included in the computing time needed to obtain an approxima-
tion to the solution, but scaling is a very cheap process). In Table 6 the total results
are given. In Table 7 more detailed results for some of the tests are presented.

The NAG subroutines detected numerical singularity twice (when WILL 199 and
ABB 313 were solved and the nonzero elements were created by (4.2); some informa-
tion about the matrices and their names is given in [11]). For matrix GENT 113 the
NAG subroutines gave no error message and large errors (llx- lL 10+) when
both (4.1) and (4.2) were used to generate the nonzero elements. The growth factor
(an estimation of max1=,i-<. ([a , I)/maxl=,.-,(la,l),s*= l(1)n-l, found by a device
from Erisman and Reid [14]) is large, 2.4E+10; however, for another matrix,
ASH608, the growth factor is 8.5E+12, but IIx-glL4.5E-8; an estimation of
the condition number of the matrix (Cline et al. [7] and Forsythe et al. [15]) may be
helpful in this situation.

TABLE 6
Some results obtained in the experiment with the Harwell test matrices.

Compared characteristics NAG subroutines RECKU subroutines

Total time 225.46 118.39
Total COUNT 217871 181906
Number of failures 3 3
Failures detected by the code 2 3
Number of back substitutes 33 106

TABLE 7
Numerical results for some o]’ the Harwell matrices.

Name of the
matrix

ASH 292
ARC 130
BP 600
BP 1400
FS 541-1

NZ

2208
1282
4172
4790
4285

NAG subroutines
Time COUNT

1.86 5346
1.90 1978
4.28 5632
6.18 7199
4.86 12571

RECKU subroutines
Time COUNT

1.78 3766
1.23 1711
2.94 5321
4.33 7084
1.61 4285

The RECKU subroutines returned with an error message that a row or column
without nonzero elements was found in 6 examples. This is an indication that the
matrix is singular when T 0. If T > 0 then this is not certain. Therefore, after such
information the computations have been repeated with T 10-1. In three cases
(WILL 199, ABB 313, GENT 113), the second run has not been successful either. In
the other three cases (FS 541-2, FS 541-3, FS 541-4), the second run has been
successful; see Table 8. When a matrix is run both with T 10-5 and T 10-1, the
sum of the computing times for the two runs is taken into account in Table 6.

Finally, some remarks concerning the experiment with the Harwell matrices are
needed. For the successful runs, the accuracy obtained by the NAG subroutines has
been in the range [10-2, 10-s], while that obtained by the RECKU subroutines in the
range [10-4, 10-s]. Some of the Harwell matrices can be represented in block-
triangular form. There is an option in the NAG subroutines where this property can
be exploited (i.e., the matrix can be transformed into block-triangular form when the
matrix allows this). This option has not been used in our runs. We plan to develop a
similar subroutine at RECKU.
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TABLE 8
Numerical results for the matrices which have been run twice with the RECKU subroutines

(T 10-5 and T 10-1).

Name of the
matrix

FS 541-2
FS 541-3
FS 541-4

NAG subroutines
Time COUNT

9.22 15059
10.14 15053
10.44 15666

RECKU subroutines
Time COUNT

0.83+6.07 11085
0.73+8.11 12961
0.73+6.77 11838

4.6. Solving least-squares problems by augmented matrices. Many experiments
performed with rectangular matrices (from the Harwell set and generated by subroutine
MATRF2 with m > n) show that the RECKU subroutines perform very well in the
solution of least-squares problems by the use of augmented matrices. Some results
obtained by the use of test matrices from the Harwell set are given in Table 9. In
Table 10, examples generated by MATRF2 are given. More numerical results are
given in Zlatev [31].

TABLE 9
Solving least-squares problems by augmented (m + n)* (m + n) matrices (NZ is the number of the nonzero

elements in the augmented matrix).

Name of the
matrix

ASH 219
ASH 958
ASH 331

Dimensions
m n NZ

219 85 1095
958 292 4790
331 104 1655

NAG subroutines
Time COUNT

3.50 3943
77.96 23579
8.47 6764

RECKU subroutines
Time COUNT

1.47 3004
9.70 16356
2.44 4913

TABLE 10
Matrices A F2 (m, 400, 20, 2, 10), m 1000 (100) 1500, are solved. The values of NZ given in the table

are the numbers of nonzero elements in the augmented (m + n), (m + n )-matrix used in the solution.

Matrix
identifiers

m NZ

1000 5220
1100 5720
1200 6220
1300 6720
1400 7220
1500 7720

NAG subroutines

Time COUNT Accuracy

47.24 10618 4.47 E -8
65.00 12125 1.49 E-7
82.04 13648 5.96 E -8
95.37 14158 4.47 E-8

109.59 14922 4.47 E -8
123.36 15874 4.47 E-8

RECKU subroutines

Time COUNT Accuracy

2.73 5333 5.96 E -8
2.94 5913 7.75 E-8
3.20 6690 5.96 E -8
3.51 7379 0.0
3.70 7960 1.49 E -8
3.91 8220 1.49 E-8

5. Some concluding remarks.
5.1. When will IR perform better than DS? The examples in 4 show that IR

with a large Tmay perform better than DS when sparse matrices are solved. However,
there is no guarantee that this will always be so. Three examples where the RECKU
subroutines perform more poorly than the NAG subroutines are given in Table 11.

In the first example, the RECKU subroutines perform poorly because (i) the
matrix is small (and the computational cost of the iteration process (1.4) is a consider-
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TABLE 11
Numerical results obtained in the tests with some Harwell matrices (the numbers of iterations are given in

brackets).

Name of the
matrix

IBM 32 32
SHL 0 663
STR 600 363

NZ

126
1687
3279

NAG subroutines
Time COUNT

0.09 209
0.61 1687
1.64 4409

RECKU subroutines
Time COUNT

0.17 (3) 192
1.11 (3) 1687
2.80 (3) 4699

able part of the total computational cost), (ii) extra work is done to perform row
scaling, to check if (1.5) is satisfied and to carry out 3 iterations, (iii)
COUNT (RECKU)COUNT (NAG).

In the second example, SHL 0, the same explanation for the poor performance
of the RECKU subroutines, without (i), can be given. Note that COUNT (RECKU)=
COUNT (NAG)=NZ. There are 5 matrices (among the 36) which give the same
relation. Moreover, the matrices SHL are permutations of triangular matrices; see
Duff and Reid [11].

In the third example, STR 600, an explanation similar to that in the first example,
but without (i), can be given. Moreover, COUNT (RECKU) > COUNT (NAG), which
means that in this case the pivotal strategy used in the NAG subroutines performs
better (the pivotal search is carried out in the whole As, while in the RECKU
subroutines p (s)= 3 is used). The possibility that the pivotal strategies with large p(s)
could sometimes preserve the sparsity better than the pivotal strategies with small
p(s) is noted in Zlatev [32]. However, note that (i) COUNT (RECKU) is small,
COUNT (RECKU)< 1.5 NZ, (ii) the pivotal search with large p(s) may be time
consuming (this has already been noted in 4.3; see also the result for matrix BP 1400
in Table 7 where COUNT (NAG)COUNT (RECKU) but the computing time for
the NAG subroutines is larger than that for the RECKU subroutines).

Infinitely many matrices which produce few fill-ins can be constructed. For
example, any matrix of class E(n, 2) will produce no fill-in. In this situation and if
COUNT>NZ but only a few elements are removed by check (1.5), the RECKU
subroutines will perform more poorly than the NAG subroutines (with regard both
to storage and computing time; however, the IR option may still be preferable because
it normally gives better accuracy and reliable error estimation).

The situation described above is not typical. In many examples COUNT >>NZ
has been found. If COUNT >> NZ, then the use of SMT+LDT+ IR is normally very
efficient. Some numerical results are given in Tables 12 and 13 to illustrate this.

We can conclude that ]’or "cheap" problems (where COUNT NZ or COUNT
is not much larger than NZ), the RECKU subroutines may perform more poorly than
the NAG subroutines (with regard to the storage and computing time used). However,
for "expensive" problems the RECKU subroutines will normally give much better results
(a reduction in computing time of up to 10 times and a reduction in the storage of
up to 2-3 times have been observed; note too that the IR process will usually produce
more accurate approximations, and reliable error estimations are available).

5.2. On the convergence of IR. It is possible that the iterative process (1.4) will
not converge [25], [27], [28]. This is the case when matrix A is too ill-conditioned
and/or if the drop tolerance T is too large. Normally, the code provides a clear
indication in this situation. Smaller values of T may give good results when this
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TABLE 12
Matrices which generate many fill-ins (COUNT >> NZ). The matrices are E(n, 44),

NZ 5n-2c- 2. Note that if the length of arrays A and SNR is 3*NZ, then the
RECKU subroutines will succeed in the solution, while even if this length is 9.NZ the
NAG subroutines will not.

65O
700
750
8OO
85O
900
950
1000

NAG subroutines
Time COUNT

23.47 22246
28.46 24286
38.29 26932
53.67 30424
58.54 35290
57.35 37230

115.58 40488
152.31 45850

RECKU subroutines
Time COUNT

4.55 (19.4%) 7697 (34.6%)
5.27 (18.5%) 8453 (34.8%)
6.12 (16.0%) 9174 (34.1%)
6.88 (12.8%) 9882 (32.5%)
6.97 (11.9%) 11646 (33.0%)
7.47 (13.0%) 12360 (31.2%)
8.07 (7.0%) 12551 (31.0%)
8.50 (5.6%) 14082 (30.7%)

TABLE 13
Perlormance of two options ol the RECKU subroutines [or some

large chemical problems [24], where n 255, NZ 7715.

Option Tolerance Time COUNT

DS 10-14 41.25 23837
IR 10-2 16.77 16808

happens. If matrixA is extremely ill-conditioned, the iterative process will not converge
even with T 0. DS with double precision computation "might give an answer of
acceptable (but unknown) accuracy" (Golub and Wilkinson [17, p. 148]).

5.3. On the rate of convergence. Normally the iterative process (1.4) is termin-
ated after 3-4 iterations. However, for some matrices (e.g., these of class E(n, c) with
n =c2), the rate of convergence can be very slow. Therefore some rules which
accelerate the convergence may be useful sometimes. Unfortunately, the rules normally
used in practice, work only for systems with symmetric and positive definite matrices.
Some attempts to accelerate the rate of convergence for systems of general matrices
have been carried out. We are continuing the experiments in this direction.

5.4. Main conclusion. In the previous studies (Schaumburg et al. [24], Zlatev
[31], Zlatev et al. [34], Zlatev and Wasniewski [36]), it has been verified that the IR
option of our package Y12M performs better than the DS option. Of course, this will
not be very valuable if our DS option is a bad one. Therefore, in this paper we picked
out a good code, oriented to the user, the NAG subroutines, which performs DS only.
Then we compared the two algorithms, iterative refinement with a large drop tolerance
as implemented in Y12M, and the DS as implemented in the NAG subroutines. It
has been shown that not only are a higher degree of accuracy and a reliable error
estimation normally found when IR is used, but also the storage or the computing
time, or both, can often be reduced. Moreover, the reduction is sometimes very
considerable. This is an unexpected result (if the matrix is dense, then both more
storage and more computing time are always needed with IR). This shows that IR is
a useful option for any package based on the use of some sparse matrix technique.
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However, we must also emphasize that IR should only be an option in the package.
For some problems the DS option can be used successfully (e.g., if only a few fill-ins
are produced or if many systems with the same matrix have to be solved).
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THE SIMULATION OF GENERALIZED INVERSE GAUSSIAN AND
HYPERBOLIC RANDOM VARIABLES*

A. C. ATKINSON"

Abstract. Computer algorithms are described for simulation of the generalized inverse Gaussian,
generalized hyperbolic and hyperbolic distributions. The efficiencies of the algorithms are found. Timing
comparisons with the best available algorithms for sampling the gamma distribution show the new algorithms
to be acceptably fast. The extension to sampling multivariate generalized hyperbolic distributions is
described. Listings of Fortran implementations of the algorithms are available.

Key words, generalized inverse Gaussian random variable, hyperbolic random variable, pseudo-
random variable, rejection algorithm, simulation

1. Introduction. The hyperbolic distribution was introduced by Barndorff-
Nielsen (1977) to model the log size distribution of aeolian, that is wind blown, sand
deposits. The purpose of the present paper is to describe algorithms for the simulation
of this and the related generalized hyperbolic and generalized inverse Gaussian
distributions. Since these distributions are not well known, even to statisticians, we
begin with a short description of their properties, uses and interrelationships.

The generalized inverse Gaussian distribution has probability density function

(,l,lx)1
(1) f(x)

2Kx (4"-) e(x, ,, X, 4)

where

e(x t, X, ) xx- e -/2)x-‘+*x) (x > O)

and Kx is the modified Bessel function of the third kind with index A. The distribution
is denoted N-(A, X, ). The domain of variation for the parameters is

X>0, 6=>0 ifA<0,

X>0, 6>0 if A=0,

X->0, >0 ifA>0.

One special case is the gamma distribution (X 0), which follows from the Bessel
function limit

K,,(x).-.F(u)2’-lx as x$0 (u>0).

Other special cases are the distribution of the reciprocal of a gamma random variable
(6 0) and the inverse Gaussian distribution (A =-1/2).

The density (1) can be reparameterized by setting to xXX, a shape parameter,
and r/=X, a scale parameter. The two parameters are therefore A and to. Figure 1
shows the shapes of three members of this two-parameter family when r/= 1, so that
X to. As would be expected from the special cases, the distributions are, in shape,
like an enriched family of gamma distributions.

The primary importance of the generalized inverse Gaussian lies in its use not
for the description of data, but as a means of simulating other distributions via mixing.
If tr

2 is sampled from an appropriately parameterized form of (1), the random variable

* Received by the editors November 9, 1979, and in revised form May 15, 1981.
t Imperial College, London SW7 2BZ.
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FIG. 1. The density function of the generalized inverse Gaussian distribution" (a) h 0, to 1, (b) h 1,
to 1 and (c) h 20, to 10.

Y with conditional normal distribution of mean : =ix +/3tr2 and variance tr
2 has the

generalized hyperbolic distribution with probability density function

(2) )2}h-1/2Kxa(a,/, 8){,,/8 + (x -/z _/(a,]6:+(x i))e

Here A, a,/3,/x and 6 are parameters and the normalizing constant is

with Kv the modified Bessel function of the third kind with index v. An algorithm
which uses the mixing property is described in 5.

An important special case of this distribution occurs when h 1. The resulting
hyperbolic distribution has density

-o,4+--+t3x(3) [(x) 2aK(r’------ e

where ( x/a 2__ 1"2 and, in (2), the location and scale parameters/x and 6 have been
set to 0 and 1 respectively. In addition to sand particles, the distribution has been
found (Barndorff-Nielsen (1977), (1978), (1979)) to apply to sizes of diamonds, to
incomes and to some distributions arising in turbulence.

The graph of the logarithm of the density (3) is a hyperbola with asymptotes bx
and -yx, where b a +/3 and y a -/3. For/3 0 the distribution is symmetric. The
logarithmic plot of Fig. 2 shows a symmetrical hyperbolic distribution together with
a normal distribution of the same mean and variance which plots as a parabola. The
asymptotes of the hyperbolic distribution are proportional to the density of a double
exponential, or Laplace, distribution. Thus the hyperbolic distribution has a near
normal center but exponential tails, a combination of importance in robust statistical
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FIG. 2. Log density functions: (a) asymptotes of hyperbolic distribution, (b) hyperbolic distribution ct 1,
0 and (c) normal distribution.

procedures. One reason for the development of the algorithms described here was
interest in the robustness properties of estimates based on the hyperbolic distribution.
An important asset of this approach is that when fl in (3) is nonzero, asymmetric
distributions result. Customary robust procedures are concerned with symmetrical
situations.

The paper begins in 2 with a review of rejection algorithms. Section 3 applies
the method to sampling the generalized inverse Gaussian distribution. A more efficient
method for values of h in the range 0-<_h < 1 is derived in 4. The use of these
algorithms to produce generalized hyperbolic distributions by mixing is described in

5. The next section considers the special case of the inverse Gaussian distribution
with h 1. The resulting algorithm is used in 7 to sample the hyperbolic distribution
by mixing. Comparisons are made in the same section with a method which uses
rejection on the hyperbolic distribution itself.

Section 8 compares the algorithm of 3 in the special case of the gamma
distribution with some of the better known algorithms for the gamma distribution.
Section 9 uses the generalized inverse Gaussian as a mixing distribution with multivari-
ate normal distributions to yield multivariate generalized hyperbolic distributions.

From a practical point of view the most useful of these distributions are probably
the generalized inverse Gaussian distributions with index h -0 and 1 and the family
of r-dimensional hyperbolic distributions produced by mixing multivariate normal
distributions with generalized inverse Gaussian distributions of index (r / 1)/2. The
family has the property that the log density forms an r-dimensional hyperboloid.

2. Rejection algorithms. The algorithms for sampling the generalized inverse
Gaussian and hyperbolic distributions use the envelope rejection technique with first
stage sampling from an envelope g (x), which is sampled by inversion. If U is uniformly
distributed on (0, 1), the method is to set U g(X) and invert analytically to obtain
X=g-(u).
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Let the density to be sampled be f(x)= ce (x). We divide the range of x into two
parts. Since generalized inverse Gaussian variates are nonnegative we take these as
(0, t] and (t, c). If we let

1 (O<=x<=t),
(4) g(x) Iqdi(x),

2 (X > t),

with hi(x)=e(x)/di(x) and Si=suphi(x) over (0, t] or (t, ) as indicated by i, the
generated value X is now accepted if

(5) U*<=h,(X)/Si,
where U* is uniformly distributed on (0, 1), independently of U. The probability of
accepting a given value x is ke(x)/S. To ensure that f(x) is sampled correctly, we
require

(6) k k2 -F,-
S Sz

and then the efficiency of the algorithm is E =FIe. A second requirement is that g(x)
be a density, so that, in an obvious notation,

(7) 1 Io g(x) kl d(z) dz + kz dz(z) dz kaAx + kzAz,

which defines the A.
We now solve for k and kz. If (6) is rewritten as

(8) k =klS2=k2S1,

combination with (7) leads to

(9) k -a A1 A2

The efficiency of the algorithm is, from (6),

(o) E
F 1
C C (SIA1 + 52A2)"

The algorithm with highest efficiency is found by choosing the envelopes di(x) to
minimize SIAI+SzA.. If is fixed, the choices in the two regions are therefore
independent of each other.

The method can be extended by dividing the range of x into three or more parts.
Figure 3 shows a three-part envelope for the hyperbolic distribution which is described
in 7. Algorithms with two-part envelopes have been used for the gamma distribution
with index less than one (Ahrens and Dieter (1974, Algorithm GS)) and in the switching
algorithm for the beta distribution (Atkinson and Whittaker (1976)). We now apply
the method to sampling the generalized inverse Gaussian distribution.

3. The generalized inverse Gaussian distribution. Properties of the generalized
inverse Gaussian distribution (1) are given by Blesild (1978). One property we shall
use is that the distribution is unimodal with mode

(11) t=m(A,X,)

(A 1)+4(1-A)2+X

2(l-A)

(6 > o),

(, =o).
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FIG. 3. Density function of the hyperbolic distribution a 0.7,/ 0.56 showing three-part envelope ]’or
Algorithm HYP.

The distribution is simulated by dividing the range of x at the mode, a convenient, if
nonoptimal, choice. The envelopes are the exponentials

(12) dx(x)=e and d2(x)=e

so that in (7)

(e st 1) e -pt

(13) A= and A2 .
s p

One advantage of this choice is that g(x) is readily sampled. A second is that the
rejection functions h(x) are proportional to generalized inverse Gaussian densities
and are, in the notation of (1),

(14) h(x)=e(x;A,X,O+2s) and h2(x)=e(x;A,X, tO-2p).

This representation makes the point that we must have p <-/2 for the right-hand
tail of f(x) to be covered by the envelope. It follows from (11) and (14) that the
suprema of hi(x) are given by

Sl h(xL)
(15)

S2 hE(XH)

where xL m (h, X, + 2s),

where x, m (h, X, ff 2p).

It remains to find values of s and p. The optimum values minimize ASl + A2S2.

It is not possible to find such values analytically except for the special case of the
gamma distribution. One possibility which was not explored was to perform a numerical
optimization to find p and s. Instead crude step searches were used which are described
in Atkinson [1979b, 3]. Evidence to be given in 8 suggests that the neighbourhood
of the optimum is sufficiently flat for this procedure to be negligibly suboptimum.

The algorithm involves one further constant. If the distribution function of the
envelope is G(x), let r G(t) klan, where k is given by (8) and (9).
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ALGORITHM GIG ( arbitrary).
Set r klA1.
1. Generate U and U*. If U > r, go to 2.

x log 1 +
$

If log U* >log {h(x)/S} go to 1.
Otherwise return x.

2. x=--log (l-U)
P

If log U* > log {h2(x)/S2} go to 1.
Otherwise return x.

In the program listings in Atkinson (1979b, Appendix) these statements were
rewritten to increase speed of execution.

The results of efficiency calculations for Algorithm GIG are presented in Table 1,
for parameters h and to with r/= 1. As an alternative to the calculation of the Bessel

TABLE 1
Estimated % efficiency of algorithm GIG for generating generalized inverse Gaussian random

variables.

0.1
0.5
1
5
10

-1 -0.5 0 0.5 1 2 3 5 10 20

0.4 0.8 3.2 18.6 91.6 87.0 83.8 79.4 77.7 76.1
10.3 16.3 32.0 63.4 93.1 85.5 83.5 78.7 76.1 76.6
29.3 41.6 61.0 84.1 89.7 85.2 82.5 79.5 76.3 76.8
81.3 81.4 79.5 80.8 79.9 79.8 78.7 78.0 75.5 75.4
77.1 76.6 76.1 76.8 76.6 75.3 76.6 75.8 75.6 76.0

function in the density (1) the efficiency was found by simulation. The values given
are the percentage of 10,000 calls to Step 1 that resulted in the generation of a
generalized inverse Gaussian random variable. For values of A >= 1 the efficiency is
greater than 75%, and the algorithm can be considered satisfactory. The behaviour
for A < 1 is, on the other hand, not good enough. The timings in Table 2 were carried
out on the Cyber 174 at Imperial College in the manner described by Atkinson and
Pearce (1976). Ten thousand variables were generated in a DO loop, and the time

TABLE 2
Average time, in Ixsec on the Cyber 174, to generate one generalized inverse Gaussian random variable

using Algorithm GIG.

0.1
0.5
1
5

10

0 0.5 1 2 3 5 10 20

6663 1186 255 273 284 297 307 308
698 359 253 276 286 296 304 307
376 278 261 278 282 296 308 306
291 290 289 293 297 300 310 308
305 307 303 307 307 308 308 311
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for the empty loop subtracted. The CDC random number generator RANF was used
with the MNF5 compiler. For values of h >= 1 the timings are roughly 250-310 sec
per random variable. The results of 8 show that times of this order are comparable
with those for the best algorithms for the gamma distribution.

The next section describes an algorithm for h in the region 0-< h < 1. Negative
values of do not need to be considered since if X.N-(h, X, ), then 1/X..-
N-(-A, , g). Thus for h < 0 one simulates a variable with index -h and with g and

interchanged, and then returns the reciprocal of the value.

4. An improved algorithm for the generalized inverse Gaussian distribution with
0 =< k< 1. For values of greater than one, the two-part algorithm of 3 is efficient
because the right-hand tail of the log density is concave so that a value of p < /2
can be used. As a result, the envelope provides a good approximation to the distribution
where the density is appreciable. But, for h < 1, the right-hand tail of the distribution
is, in log form, asymptotically (h- 1) log x-x/2, which is convex with asymptotic
slope -/2. In the two-part algorithm a value of /2 has therefore to be used for p,
and this can give a poor fit to the heavy-tailed distribution. In order to accommodate
the upper tail of the distribution, the region above the mode can be broken into two
parts. The general form of the resulting algorithm is a direct extension of that of 2.

Instead of (4) we now let

g (x) kidi (x),
1 (O<-x<=t),

i= 2 (t<x<=w),
3 (x > w).

The general notation remains the same. The extensions of (7) and (8) are that

1 =kA+k2A2+k3A3
and

k klS2S3 k2SxS3 k3S$2.

The replacement for (9) is that

A1S -[" A2S2 -" A3S3
SlS2S3

and the efficiency of the algorithm is

1
(6) E

c(S+Sz+S)"
The three envelopes are

dl(X)=e,
so that (13) becomes

d2(x e-PX, d3(x e-qX,

st --pt --pw --qwe -1 e -e e
A , A2 A3

s p q

Because of the convexity of the upper tail of the log density, we know that
q /2. Given w, the values of p and s are found as for Algorithm GIG. To find w
an extra dimension of search is needed, the details of which are given in Atkinson
(1979b). The resulting algorithm is otherwise similar to that of 3.



INVERSE GAUSSIAN AND HYPERBOLIC RANDOM VARIABLES 509

ALGORITHM GIGLT1 (0 -<_ h < 1).
Set r k1A and v 1 k3A3
1. Generate U and U*. If U > r, go to 2.

x log 1 +

If log U* > log {h(x)/S} go to 1.
Otherwise return x.

2. IfU>v, goto3.

x log (v U) + e

If log U*> log {h(x)/} go to 1.
Otherwise return x.

{q }3. x log (1 U)
q

If log U* > log {h(x)/Sa} go to 1.
Otherwise return x.

Eciencies for this algorithm, again calculated from 104 calls to Step 1, are given
in Table 3. These show a distinct improvement over those for the two-part algorithm
given in Table 1. For all parameter values except 0.1 and 0 N N 0.5, the eciency

TABLE 3
Estimated % eciency of algorithm GIGLT1 for generating generalized inverse Gaussian

random variables, parameter A < 1.

(=x=e)

0.1
0.5
1
5
10

0 0.1 0.3 0.5 0.7 0.9 0.99

21.5 24.5 32.8 47.5 67.0 90.4 99.0
55.9 59.6 69.1 77.6 88.6 95.1 95.7
74.9 77.6 83.4 88.1 91.2 93.0 90.5
84.6 84.2 82.2 81.5 80.4 80.9 80.6
78.6 77.5 76.9 76.8 76.6 75.7 76.7

is greater than 50%. For the worst case, to 0.1 and h 0, the efficiency is 21.5%
compared with 3.2% for Algorithm GIG, a nearly sevenfold improvement. Timings
which are in line with these efficiencies, are given in Table 4.

TABLE 4
Average time, in sec on the Cyber 174, to generate one generalized inverse Gaussian

random variable, parameter h < 1, using algorithm GIGLT1.

,o (=x=)

0.1
0.5
1
5

10

0 0.1 0.3 0.5 0.7 0.9 0.99

1054 926 672 490 351 266 242
416 388 342 304 273 250 252
318 309 287 270 261 257 265
283 284 285 294 297 296 297
305 306 309 311 312 310 311
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The algorithm GIGLT1 thus provides a useful complement to Algorithm GIG
for simulation of the generalized inverse Gaussian distribution. For A > 1 the efficiency
of GIGLT1 is not markedly better than that of the two-part algorithm because of the
restriction in the upper tail that q /2.

5. The generalized hyperbolic distribution. Since the argument x enters the
generalized hyperbolic density (2) through a Bessel function, there is no hope, in the
general case, of a fast rejection algorithm for simulation of the distribution. Exceptions
are the special cases A 0 and A 1. However, simulation is possible via the rep-
resentation, mentioned in 1, of the generalized hyperbolic distribution as a condi-
tional normal distribution mixed with the generalized inverse Gaussian. A schematic
representation of the algorithm follows"

Set X =82 and -- a2-- 2.
Sample X from N-(A, X, ) and set tr2= X.
Sample Z from N(0, 1).
Return Y =/z +o"2 -- o’Z.The efficiency of this method depends upon the parameters of the generalized

inverse Gaussian distribution. The results of 7 indicate that, depending upon the
algorithm used to sample the normal distribution, 100-150 isec per variate should
be added to the timings in Tables 2 and 4 to give timings for generating generalized
hyperbolic random variables.

6. The generalized inverse Gaussian distribution with k = 1. The special case of
the generalized inverse Gaussian distribution with A 1 is important in sampling the
hyperbolic distribution, a topic which is discussed in 7. When A equals 1, Algorithm
GIG described in 3 can be used without modification, when the rejection steps
require the calculation of h (x) c (A 1) log x (Xx- + fix). If A equals 1, calculation
of log x is not required and the algorithm can be speeded up by omitting this expression.
Timing comparisons in Atkinson (1979b, Table 5) show that omission of the logarithm
leads to a saving in time of just over 25%.

One other special case merits comment: the inverse Gaussian distribution
(Tweedie (1957)), for which A =-1/2. Algorithms for sampling this distribution are
given by Michael, Schucany and Haas (1976) and, independently, by Padgett (1978).
Both algorithms include arithmetic operations, including a square root, on a generated
normal random variable. They are therefore unlikely to be appreciably faster than
use of the algorithm of 4 to generate the reciprocal of the required value.

7. The hyperbolic distribution. The hyperbolic distribution (3) can be sampled
by the mixing method of 5 or by rejection. We first describe an algorithm with
three-part envelope analogous to Algorithm GIGLT1 of 4.

At the mode of the distribution, if the normalizing constant is ignored, log f(x)=
0 =-x/=-x/ct 2 Z/. The three envelopes employed are the two asymptotes and
a uniform distribution over the central region. These three intersect at

t=-/-y/4 and w=x/--y= 1

The three-part envelope is thus

ke (x <-t),
g(x) ke (t <x <- w),

ke -vx (x > w ),
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where, since St $2 "-$3-- 1, all ki in the analogue of (8) equal k. Figure 3 shows one
example of the resulting envelope.

The remaining quantities required for the algorithm are
dt 0

At
e e

A2 (w_t)e o A3
e

In the following description of the resulting algorithm, which is similar in structure
to Algorithm GIGLT1 of 4, E is an exponential random variable with unit parameter.

ALGORITHM HYP.
Set r k At and v 1- kA3.

1. Generate U and E. If U > r, go to 2.

x log

If E < ct{/1 +xa+x} go to 1.
Otherwise return x.

2. IfU>v, goto3.

1
x t--+ Ue-/k.

IfE<ax/l+x2-x +0 go to 1.

Otherwise return x.

1 k 1
3. x log log (1 U).

If E < a{x/1 +x-x} go to 1.
Otherwise return x.

The exponential variables arise from replacement of the rejection condition
U* >= h (x)/S by the equivalent condition E <_- -log {h (x)/S}. In the implementation
of the algorithm the exponential random variables are generated by von Neumann’s
method (Ahrens and Dieter (1972, Algorithm NE)).

To compare this algorithm with the mixing algorithm of 5, we take/z 0 and
=t28 1. The parameters of the generalized inverse Gaussian with A 1 are thus X

2 2land6=a -/
Table 5 can be used to obtain comparative timings for a range of a values from

0.1 to 10 and/3 values from 0 to 0.8. Table 5(a) gives times for the special version
of GIG for A 1 which was described in 6. Timings for the mixing algorithm are
obtained by adding the time to generate a normal random variable and to form the
hyperbolic variable. The results in Atkinson (1979b, Table 6) show that if normal
variables are generated by the polar method, Algorithm PO (Marsaglia and Bray
(1964)), about 145 txsec has to be added. The polar algorithm is an improved version
of the Box-Muller method which does not require trigonometric functions. When the
normal variables are generated using the convenient algorithm of Marsaglia and Bray

There is a misprint in the description of this algorithm in Atkinson and Pearce (1976 p. 438) where
the last line of the algorithm should read "until either Isl or ITI > 3". (In the printed version the absolute
signs have been omitted.)
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(1964) an average of an additional 104 isec is required, provided that, in both cases,
the generalized inverse Gaussian and normal random variables are generated in the
same subroutine.

In Table 5(b) timings are given for the direct rejection algorithm HYP. For values
2 2of =c -/3 below the range 15-20, this rejection algorithm is faster than either

mixing method and is faster than the mixing method using Algorithm PO up to a
value of 36 for .

TABLE 5
Average time, in ixsec on the Cyber 174, to generate one hyperbolic random variable.

(a) Generalized inverse Gaussian: Algorithm GIG without logarithm

0
0.2a
0.8a

0.1 0.2 0.5 2 5 10

193 191 192 197 209 218 230
193 192 191 197 206 218 227
194 192 191 191 199 214 220

(b) Hyperbolic: rejection algorithm HYP

0
0.2a
0.8a

218 218 222 236 263 339 438
220 219 223 239 263 339 440
224 222 222 229 245 295 366

These results show that either mixing or rejection leads to a satisfactory algorithm
for sampling the hyperbolic distribution provided that c is less than 10. For larger
values of c the mixing method is preferable, with little to be gained from the extra
length of the convenient algorithm for generating normal random variables. There
remains the possibility of other envelopes for the rejection method, in particular an
algorithm similar to GIG in which the values of the parameters are found by crude
searches.

$. The gamma distribution. When X 0 and 6 2, the generalized inverse
Gaussian distribution reduces to the gamma distribution

X--1
X e

l’(x (x >- o).

For A _-> 1 Algorithm GIG of 3 therefore provides yet another algorithm for generat-
ing gamma random variables. In order to calibrate the timings given in Tables 2, 4
and 5 we compare this new gamma algorithm with some currently in the literature.

Algorithm GIG can be improved in at least three ways for the specific purpose
of generating gamma random variables. One, following Cheng (1977), is to use the
concavity of log x to provide a quick test for rejection. Unfortunately, what is required
is a quick test for acceptance, and this procedure makes the algorithm about 5 ixsec
slower.

A second and more effective way of improving the algorithm is to use the optimum
value of p in (12), which can be ound analytically and is p* {x/1 +4t- 1}/2t where

)t- 1, the mode (see Atkinson (1977) for this derivation in the context of the



INVERSE GAUSSIAN AND HYPERBOLIC RANDOM VARIABLES 513

gamma distribution). The third improvement is to use the logarithmic form of the
rejection condition, as in Algorithm HYP, combined with exponential random vari-
ables generated by von Neumann’s method, Algorithm NE.

The comparisons in Table 6 show these modifications to have surprisingly little
effect. For the exponential form of rejection to be an improvement it is necessary
that the exponential variables be generated in the subroutine where they are used.
The importance of these results is that the negligible improvement from using the
optimum value p* indicates that Algorithm GIG sacrifices little by the crudeness of
the search for optimum parameter values.

TABLE 6
Average time, in isec on the Cyber 174, to generate one gamma random variable.

Algorithm

GIG
GIG with p*
GIG with p*,

exponential rejection
Ahrens and Dieter GO
Cheng GB
Atkinson

1.5 2 2.5 3 3.5 4 4.5 5 7 10 20

260 269 277 282 286 291 291 290 302 304 306
257 268 273 280 282 289 291 290 298 302 307
247 256 265 268 273 276 275 280 283 288 290

274 271 266 260 260 245 231 205
290 277 269 268 260 261 257 256 253 253 250
240 247 254 257 262 267 271 275 286 306 352

The remainder of Table 6 gives the results of timing comparisons with three
gamma algorithms. For large A the fastest is Algorithm GO (Ahrens and Dieter
(1974)), a rejection algorithm with first stage sampling from the normal distribution,
in this case the convenient method of Marsaglia and Bray. This algorithm is valid
only for A > 2.53 . One algorithm or all A >_- 1 is that due to Cheng (1977) which
is a rejection algorithm with a log-logistic envelope. A third algorithm (Atkinson
(1977)) complements GO and is efficient in the region I<-A <-4. This is similar to
Algorithm GIG above the mode, but below the mode the envelope is a constant.

The results in Table 6 lead to conclusions similar to those of Atkinson (1977).
For A _-< 3 Atkinson’s algorithm is fastest; in the region A <3 _-< 5 Cheng’s is fastest;
above this, GO predominates. But the important result for the present investigation
is that the timings for GIG are comparable with those for the best gamma algorithms.
For A 1.5 the unimproved version of GIG is only 8% slower than Atkinson’s
algorithm and for A 5 the same algorithm is 13% slower than Cheng’s algorithm.

To some extent the choice of gamma algorithms for comparison was arbitrary.
Similar timings can be expected from the algorithms of Best (1978) and Tadikamalla
(1978). A further algorithm, based on the general method of Kinderman and Monahan
(1977), is described by Cheng and Feast (1979). For A 10 their composite algorithm
is about 5% faster than Cheng’s algorithm, with the advantage that the time does not
increase appreciably as A decreases.

9. Multivariate distributions. The distributions described so far are all univariate.
Barndorff-Nielsen (1978, 7) has described a multivariate generalized hyperbolic
distribution. This is obtained by mixing as in 5 except that an r-dimensional normal
distribution is mixed by N-(A, X, $) such that the mean : and variance are related
by =/ +/ with/ and/ vector parameters. The variance tr2A, where A is r x r
with determinant IAI 1 and tr

2 has the generalized inverse Gaussian distribution.
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To simulate this distribution, let A LLr, where L is a lower-triangular matrix.
Then if Z is an r x I vector of independent standard normal random variables, the
vector random variable LZ has an r-dimensional normal distribution with covariance
matrix A. The algorithm follows.

Set A LLT and K fl A.
Sample X from N-(A, h’, ) and set tr2= X.
Sample Z from N(0, L).
Return Y tz + o’2/ -- trZL.It remains to calculate L, and the Choleski decomposition can be used (Seber

(1977, pp. 304-6)). The NAG algorithm FOIBQF yields the decomposition A TDT7"

where T is a lower-triangular matrix with unit diagonal and D diag (d t,"’’, drr).
If D1/2 diag (d 1/2 1/2

11 ,’’’, d ), the required matrix L equals TD 1/2. The algorithm
given by Fishman (1978, p. 465, Algorithm LTM) does not include a check that the
pivots are nonzero.

10. Discussion. The timings of the algorithms described in this paper show that
they are satisfactory when compared with those for the related gamma distribution.
However, this comparison serves as a reminder that many potential enveloping
distributions, other than the exponentials used here, will give broadly similar results
and can indeed be expected to give better results for at least some special cases. One
such case is the generalized inverse Gaussian distribution when to is small and h is
in the range 0 to 0.5. Another special case is the hyperbolic distribution for large
values of a 2-/32. One obvious candidate algorithm is an analogue of Algorithm
GIG in which the parameters for a two-part exponential envelope would be found
by grid searches.

It appears that such improvements are unlikely to be needed for general use.
However, they may be necessary in applications of the hyperbolic distribution to
studies of turbulence, where tens of thousands of samples from heavy-tailed distribu-
tions are needed (Petersen (1976), Barndorft-Nielsen (1979)).

An extension is to simulation of the compound Poisson distribution introduced
by Sichel (1974), (1975) in which the Poisson parameter is mixed by the generalized
inverse Gaussian distribution. Algorithms for sampling the Poisson distribution with
variable parameter are described by Fishman (1976) and Atkinson (1979a).

Listings of Fortran versions of the algorithms for the generalized inverse Gaussian
and hyperbolic distributions are given in an appendix to Atkinson (1979b), copies of
which are available from the author.
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